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Introduction

Silkworm silks have been widely used by mankind 
for millennia, but only recently their mechanical 
properties and structure have been investigated in 
depth [1, 2]. An increasing number of studies also 
focuses on spider silk, due to its promising mechanical 
(~10 GPa Young’s modulus, ~1.5 GPa strength 
[3, 4], ~100% ultimate strain [5]) and thermal 
properties (~400 W m−1 · K−1 thermal conductivity 
[6]), combined with biocompatibility [7] and 
biodegradability [5, 7, 8]. This makes it potentially 
useful in practical applications, such as wear-resistant 
lightweight clothing [9], bullet-proof vests [10], ropes 
[11], nets [12], bandages [13], surgical threads [14], 
artificial tendons or ligaments [15], biodegradable 
food wraps [16], or rust-free panels on vehicles [17]. 
E.g., in [18], researchers used individual spider silk 
fibres braided together to create sutures for flexor 
tendon repair. Enhanced silk mechanical properties 
could further improve the fatigue strength and lifetime 
of these structures.

The production of silk is key to the spiders’ evo-
lutionary success and has been perfected over 400 

million years [7]. Silk is generally described as a semi- 
crystalline [19], biocompatible [7], composite biopoly-
mer [5], and comprises the amino acids alanine,  
glycine and serine, organized into semi-amorphous 
helical-elastic α-chains and β-pleated nanocrystals 
[20, 21]. From a mechanical point of view, it is consid-
ered amongst the best spun polymer fibres in terms of 
tensile strength [3, 4] and ultimate strain [5], there-
fore toughness [11], even when compared with the 
best performing synthetic fibres, such as Kevlar [22]. 
Silk spinning involves a number of biological, chemi-
cal and physical processes [23], leading to its superior 
mechanical properties.

The natural presence of biominerals in the pro-
tein matrix and hard tissues of insects [24], worms 
[25] and snails [26] enables high strength and hard-
ness (>500 MPa) of teeth [27, 28], jaws [28, 29], and 
mandibles [30, 31]. Thus, the artificial incorpora-
tion of various nanomaterials in biological protein 
structures to obtain improved mechanical properties 
should, in principle, be possible. A number of groups 
introduced inorganic nanoparticles [32], semicon-
ducting crystals [33] or carbon nanotubes (CNTs) 
[34] on the surface of spider silk fibres, achieving an 
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Abstract
Spider silk has promising mechanical properties, since it conjugates high strength (~1.5 GPa) and 
toughness (~150 J g−1). Here, we report the production of silk incorporating graphene and carbon 
nanotubes by spider spinning, after feeding spiders with the corresponding aqueous dispersions. 
We observe an increment of the mechanical properties with respect to pristine silk, up to a fracture 
strength ~5.4 GPa and a toughness modulus ~1570 J g−1. This approach could be extended to other 
biological systems and lead to a new class of artificially modified biological, or ‘bionic’, materials.
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enhancement of toughness [35], or novel properties, 
such as magnetism [32] or electrical conductivity [34]. 
This type of reinforcement or functionalization could 
further make silk potentially attractive for a wide range 
of applications, from garment textiles [9] to sensing 
devices [34], from medical applications, such as suture 
threads [14] or tissue regeneration materials [15], to 
defence applications such as flak jackets [10], currently 
limited by the silk large deformability [36–39].

Successful attempts to improve the mechani-
cal properties of spider silk have been limited [34, 
40]. This is due to the difficulty of developing an 
adequate spinning methodology, balancing extru-
sion, drawing, yield and purity [41]. Naturally-spun 
fibres, obtained by forcible spinning [42], harvest-
ing [43] or extracting spidroin (i.e. the main protein 
in dragline silk [2]) from glands [44], have reduced 
mechanical characteristics with respect to naturally-
spun ones, e.g. due to the CO2 anaesthesia of spiders 

[45] and the consequent loss of active control of 
their silk spinning [46]. From a technological point 
of view, wet-spinning [47], electro-spinning [48], 
hand-drawing [42] or microfluidic approaches [49] 
have been investigated to produce an artificial silk at 
the laboratory scale, mechanically [34], structurally 
[40] or chemically [49] modified with respect to the 
natural one. However, a critical step is still needed to 
reach commercial-scale.

Here, we present a method for producing rein-
forced spider silk directly spun by spiders after their 
exposure to water dispersions of CNTs or graphene, 
as schematically shown in figure 1. This leads to 
improved mechanical properties, and a toughness 
modulus (defined as the area under the load-displace-
ment curve, from the origin up to fracture [50, 51], 
per unit mass) surpassing synthetic polymeric high-
performance fibres [52] and even the current toughest 
‘knotted’ fibres [53–55].

Figure 1. Schematic of the experimental procedure. (a) Spiders are fed with dispersions containing graphene or CNTs, (b) 
the corresponding spun silk is collected and tested in a nanotensile system; (c) stress–strain curves show improved mechanical 
properties when compared to pristine samples.

Table 1. Mechanical properties (average values) of RS samples.

Spider n. Diameter (µm)

Number 

of threads

Young’s  

modulus (GPa)

Ultimate strain 

(mm mm−1)

Fracture strength  

(MPa)

Toughness  

modulus (MPa)

1 0.51  ±  0.10 15 6.0  ±  3.6 0.29  ±  0.12 795.2  ±  500.1 128.2  ±  97.2

2 0.72  ±  0.15 7 27.3  ±  5.0 0.58  ±  0.23 2397.2  ±  635.5 713.0  ±  138.5

3 0.75  ±  0.11 10 13.4  ±  6.9 0.46  ±  0.40 1257.5  ±  1299.3 422.6  ±  567.6

4 0.69  ±  0.06 108 1.9  ±  0.6 1.38  ±  1.11 465.1  ±  119.0 235.6  ±  126.2

5 0.71  ±  0.06 128 3.2  ±  0.8 1.02  ±  0.30 534.7  ±  222.1 172.4  ±  77.4

6 0.72  ±  0.02 2 37.1  ±  19.6 0.28  ±  0.06 4045.9  ±  1391.6 732.1  ±  354.9

7 0.86  ±  0.07 10 15.1  ±  6.4 0.39  ±  0.07 1726.6  ±  565.3 476.4  ±  257.8

8 0.65  ±  0.05 113 2.1  ±  2.0 0.69  ±  0.40 179.7  ±  164.0 61.1  ±  79.3

9 0.51  ±  0.04 95 5.9  ±  5.0 0.53  ±  0.44 580.7  ±  482.9 205.3  ±  179.8

10 0.81  ±  0.09 48 3.0  ±  1.5 0.55  ±  0.08 281.2  ±  179.6 75.3  ±  45.8

11 0.51  ±  0.05 111 24.3  ±  13.5 0.75  ±  0.29 1969.1  ±  1158.8 764.7  ±  640.5

12 0.83  ±  0.06 17 3.1  ±  0.1 0.77  ±  0.10 173.4  ±  0.1 48.9  ±  0.1

13 0.66  ±  0.06 74 5.5  ±  5.0 0.88  ±  0.74 648.6  ±  501.9 320.3  ±  385.8

14 1.02  ±  0.03 64 3.8  ±  1.1 1.71  ±  0.87 364.0  ±  164.1 247.8  ±  111.2

15 0.54  ±  0.02 4 9.2  ±  1.5 0.26  ±  0.06 825.2  ±  182.9 101.8  ±  9.6
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Results

Two types of CNTs are used in this study. The first is 
CoMoCAT [56] (~0.6−1.35 nm diameter) single-
wall nanotubes (SWNT-1). The second is electric arc 
discharge SWNTs (P2) from Carbon solutions inc. 
(SWNT-2). CNT dispersions are prepared by adding 

1 mg/10 ml weight-to-volume ratio of each CNT source 
to an aqueous solution of 2% w/v sodium deoxycholate 
(SDC, from Sigma-Aldrich Ltd) in deionised water. This 
surfactant is not harmful for the spiders, as discussed in 
the supplementary information (SI) (stacks.iop.org/
TDM/4/031013/mmedia). De-bundling is obtained via 
ultrasonication using a Branson Ultrasonic Processor 

Table 2. Mechanical properties (average values) of the first collection of silk samples produced after exposure of the spiders to CNTs or 
graphene (Spiders n. 1–6 with SWNT-1, spiders n. 7–10 with SWNT-2, spiders n. 11–15 with graphene). The largest increments in the silk 
mechanical properties are observed for spider 5 whereas the highest absolute values are observed for spider 7.

Spider 

n.

Diameter  

(µm)

Number of 

threads Reinforcement

Young’s  

modulus (GPa)

Ultimate strain 

(mm mm−1)

Fracture strength 

(MPa)

Toughness 

modulus (MPa)

1 0.57  ±  0.04 27 SWNT-1 3.9  ±  3.9 0.62  ±  0.65 326.1  ±  150.6 66.7  ±  60.9

2 0.43  ±  0.02 4 SWNT-1 40.1  ±  48.4 0.20  ±  0.16 3914.6  ±  5038.3 587.2  ±  820.3

3 0.77  ±  0.09 72 SWNT-1 8.7  ±  6.9 0.68  ±  0.37 1195.8  ±  1037.5 387.0  ±  384.7

4 0.76  ±  0.07 44 SWNT-1 2.4  ±  0.6 0.95  ±  0.52 579.4  ±  313.1 187.6  ±  66.7

5 0.78  ±  0.08 4 SWNT-1 37.9  ±  4.4 0.60  ±  0.28 3907.2  ±  874.1 1144.0  ±  555.3

6 0.84  ±  0.068 12 SWNT-1 9.6  ±  5.2 0.50  ±  0.24 954.3  ±  278.2 210.2  ±  87.3

7 1.00  ±  0.12 62 SWNT-2 47.8  ±  18.0 0.75  ±  0.09 5393.5  ±  1202.4 2143.6  ±  684.6

8 0.42  ±  0.08 34 SWNT-2 3.1  ±  1.1 0.41  ±  0.11 315.7  ±  124.7 47.8  ±  22.8

9 0.42  ±  0.04 82 SWNT-2 19.3  ±  6.3 0.34  ±  0.14 2034.9  ±  212.8 419.8  ±  96.2

10 0.81  ±  0.09 48 SWNT-2 0.2  ±  0.0 0.32  ±  0.02 20.1  ±  3.5 2.6  ±  1.8

11 0.67  ±  0.02 43 GS 0.8  ±  0.6 0.33  ±  0.19 58.0  ±  22.9 7.9  ±  3.4

12 0.74  ±  0.13 41 GS 4.9  ±  1.1 0.43  ±  0.06 607.5  ±  219.2 148.5  ±  71.6

13 0.66  ±  0.06 74 GS 3.1  ±  1.7 0.52  ±  0.37 421.8  ±  251.3 130.3  ±  129.0

14 1.02  ±  0.03 64 GS 0.4  ±  0.2 0.29  ±  0.08 45.9  ±  17.1 6.0  ±  2.8

15 0.61  ±  0.06 14 GS 13.0  ±  6.5 0.43  ±  0.24 1245.6  ±  559.4 254.7  ±  164.3

Figure 2. (a) Optical picture of a spider silk fibre suspended by a mechanical support (left) and map of I(2D) overlapped to 
the optical picture of the spider silk spun by spiders after exposure to graphene (right). (b) Raman spectra of RS (black line, at 
514.5 nm), GS at 514.5 nm (green line) and 633 nm (red line). Raman spectra of (c) SWNT-1-CNTS (d) SWNT-2-CNTS at 514.5 nm 
(green line) and 633 nm (red line) excitation wavelengths.
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for 2 h (450 kW at 20 kHz). The dispersions are 
ultracentrifuged using a TH-641 swinging bucket rotor 
in a Sorvall WX-100 at 200 000 g for 2 h at 18 °C to remove 
bundles and other impurities, such as amorphous 
carbon and catalyst residuals [57]. The supernatant of 
the two dispersions after ultracentrifugation is collected 
using pipettes and used for the characterization. 
Graphite flakes are sourced from Sigma Aldrich Ltd. 
100 mg are dispersed in 10 ml water with 2% volume to 
weight (v/w) SDC. The dispersion is then ultrasonicated 
for 10 h and subsequently ultracentrifuged, exploiting 
sedimentation-based separation (SBS) [58] using 
a TH-641 swinging bucket rotor in a Sorvall WX-
100 ultracentrifuge at 5000 rpm for 30 min. After 
ultracentrifugation, the supernatant is extracted by 
pipetting. The concentration of graphitic flakes is 
determined from the optical absorption coefficient 
at 660 nm [59]. A full optical and spectroscopic 

characterization of the samples is presented in SI. This 
shows that the samples consist of ~60% single- (SLG) 
and ~40% few-layer (FLG) graphene flakes [60].

21 spiders of three species were selected (Phol-
cidae Holocnemus, Pholcidae Pholcus and Theridi-
dae Steatoda) as described in the SI. The spiders 
are exposed to the aqueous dispersions by spraying 
them in a corner of the box they are contained in, 
avoiding intentional direct spraying on the animals. 
The dragline silk is collected from 2 to 12 days later, 
in order to allow sufficient time for ingestion of the 
aqueous dispersions and the production of silk. 29% 
of the spiders died before the first silk collection, and 
a further 24% after 12 days, during which starvation 
could have come into play. The silk fibres consist of 
multiple threads of approximately circular cross-
section. The average diameter of the single threads is 
determined for each sample through field emission 

Figure 3. Raman spectra of graphene (black line) and GS (red line) at (a) 514.5 nm and (b) 633 nm. Raman spectra of SWNT-1, 
SWNT-2 and SWNT-1-CNTS and SWNT-2-CNTS at (c) and (e) 514.5 nm and (d) and (f) 633 nm excitation wavelengths.

2D Mater. 4 (2017) 031013
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scanning electron microscopy (see SI), at two differ-
ent cross-sections along their length. The number of 
threads in each fibre is also counted. The presence of 
CNTs and graphene is monitored by Raman spectr-
oscopy.

Nano-tensile tests are performed under controlled 
conditions as described in the SI. Samples are prepared 
by fixing silk fibre ends to ‘C’ shaped cardboard hold-
ers (then cut after mounting in the sample holder, fig-
ure 1(b)), and subjected to traction up to failure in an 
Agilent T150 nanotensile system at a constant strain 
rate of 0.1% s−1, consistently with previous studies on 
spider silk mechanics [4, 61–63]. The stress σ, strain ε, 
and Young’s modulus E, are calculated as /σ = F A0, 

/ε = ∆l l0, /σ ε=E d d 0, where F is the force measured 
by the nanotensile system (see SI for details), A0 is the 
cross-section area of the fibre, l0 its initial length, and 
Δl the change in fibre length during the test. The area 
underlying the stress–strain curve corresponds to the 
energy per unit volume required to break the fibre, 

the so-called toughness modulus T, also alternatively 
given in energy per unit mass, as derived by dividing 

the energy per unit volume by the density of the mat-

erial: ∫σ ε=
ρ

T d1  [53].

The diameter of the cross-sectional area of the 
silk fibres is between ~5 and ~10 µm, as obtained by 
multiplying the mean value of the measured cross-
sectional area of the threads by their total number. 
The resulting diameters and number of threads 
for each fibre are reported in tables 1 and 2 for the 
reference spider silk (RS) and that collected from 
spiders exposed to dispersions of graphene (GS) and 

SWNTs (CNTS).
Figure 2 shows an optical image of a suspended 

fibre (figure 2(a)) and compares the Raman spectra 
of RS with that of GS (figure 2(b)) and CNTS (figures 
2(c) and (d)). The RS Raman spectrum comprises sev-
eral peaks in the 1000–1800 cm−1 and 2700–3500 cm−1 
regions. The peaks at ~1088 and 1160 cm−1 are char-
acteristic of the n(C–C) skeletal band of polypeptide 
chains [64, 65]. Two intense bands are also seen at 
~1230 cm−1, characteristic of amide III groups in π-
sheets structured proteins [66, 67] and at ~1444 cm−1 
assigned to CH2 bending modes, both bands typically 
found in the Raman spectrum of spider silk [68]. The 
peaks at 1615 cm−1 and 1665 cm−1 are assigned to 
n(CO) amide I bands characteristic of the π-sheets 
configuration for the polypeptide backbone [66, 68]. 
The Raman peaks in the region 2700–3500 cm−1 are 
typical of C–H and N–H vibrations [67].

Raman spectra from GS and CNTS samples are 
shown in figure 3. The spectra are normalized with 
respect to the C–H band at ~2934 cm−1, the most 
intense in RS. The normalized RS spectrum is then 
subtracted from the GS and CNTS ones. Figures 3(a) 
and (b) show that the spectrum of the flakes in the 
dispersion is compatible with that of GS. At both 514 
and 633 nm, the D to G and 2D to G intensity ratios, 
I(D)/I(G) and I(2D)/I(G), as well as the positions of the 
G and 2D peaks, Pos(G) and Pos(2D), are very similar. 
The comparison indicates that graphene detected in GS 
has a similar level of disorder [69–72] as the original 
material. The same holds for CNTS. Figures 2(c)–(f) 
show that the spectra of the original SWNTs and those 
measured on CNTS are similar, indicating a negligible 
change in the structural properties.

A summary of the mechanical properties of RS, 
GS and CNTS is reported in tables 1 and 2, and typi-
cal stress–strain curves of the silk fibres are presented 
in figure 1(c) and in the SI. Scatter in the data is large, 
mainly due to the variability in the properties of the 
collected silk samples, deriving from spiders of dif-
ferent species and ages (see SI), but also from factors 
such as the sensitivity of silk density to humidity [73]. 
However, fibre slippage in the loading frame can be 
excluded, since this would be noticeable in the stress–
strain curves, given the high-sensitivity (50 nN load 
resolution and 0.1 nm displacement resolution) of 

Figure 4. Percentage increment (green bars) or decrement 
(red bars) of the mechanical properties measured from RS 
and (a) SWNT-1-CNTS, (b) SWNT-2-CNTS or (c) GS. To 
calculate toughness values, a mean silk density value of 1.34 g 
cm−3 is used.

2D Mater. 4 (2017) 031013
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the nanotensile testing system. Ultimate strain values 
have smaller scatter, since they are not dependent on 
parameters such as fibre cross-sectional area. In CNTS 
and GS, the scatter is greater due to the varying CNTs 
and flakes concentrations, since there is no control on 
the nanoparticle uptake mechanism at this stage. Apart 
from this, there is an intrinsic variability of mechanical 
properties of different samples of the same silk, in line 
with previous studies [62, 74–76].

To avoid these problems, we focus on the variation 
in mechanical properties of the silk fibres from indi-
vidual spider specimens before and after exposure. The 
average and maximum variations are shown in figure 4. 
Fracture strength, Young’s modulus and toughness 
increase on average between 80 and 220% in CNTS 
and between 15% and 60% for GS. The highest fracture 
strength and Young’s modulus increments are  +731% 
(3.9 GPa) and  +1183% (37.9 GPa) for CNTS, with an 
increment ~+663% in toughness (2.1 GPa). This cor-
responds to 1567 J g−1, calculated using an average silk 
density value ~1.34 g cm−3 [53], neglecting changes 
due to humidity or the presence of CNTs or graphene, 
as discussed in the SI, with a 41% decrement of ultimate 
strain (0.6 mm mm−1). This should be compared to the 
toughest silk fibres found to date, having a toughness 
~520 MJ m−3 [62], and a strength ~1.65 GPa [62]. The 
combination of increment in toughness and decrement 
in ultimate strain is peculiar and fundamental in appli-
cations such as parachutes or bullet-proof vests, where 
high performance textiles are required to stop bullets 
in millimetres [77]. The second highest increments 
~+350% (2.0 GPa) in fracture strength and  +330% 
(19.3 GPa) in Young’s modulus are found for SWNT-
2-CNTS, corresponding to an increment ~+204% 
in toughness (0.4 GPa), with a decrement ~36% in 
ultimate strain (0.3 mm mm−1). A smaller, but still 
significant, increment is also observed for some of the 
fibres containing GS, with  +151% (1.2 GPa) in fracture 

strength and  +142% (13.0 GPa) in Young’s modu-
lus, corresponding to an increment of both toughness 
and ultimate strain of  +250% (0.3 GPa) and  +166% 
(0.4 mm mm−1), respectively.

We note that Wang et al [78] reported a similar 
approach to that described here, based on the initial 
posting of the present manuscript [79], cited as ref-
erence [19] in [78] and applied it to silkworm silk. 
This demonstrates that our approach is reproducible 
in other biological systems. However, Wang et al [78] 
achieved far inferior mechanical properties to those 
reported here. Indeed, in the best case we get here a 
strength ~5.4 GPa and toughness modulus ~1567 J 
g−1, whilst Wang et al [78] achieves maximum values 
~0.6 GPa and ~400 J g−1, respectively. This is mainly 
due to lower mechanical properties of silkworm silk 
with respect to spider silk [1–4].

Discussion

Figure 5 compares the strength and toughness of 
various natural and artificial materials. The best 
fibre obtained in this study displays higher strength 
than high-performance polymeric fibres like Zylon 
or Endumax [52, 53], or SWNT/carbon-reinforced 
polymeric fibres [80–82], and is surpassed only by 
T1000® Carbon fibres [83] or goethite nanofibers 
found in limpet teeth [27]. At the same time, its 
toughness is significantly higher than the toughest 
spider silks found in nature [62, 75] or high-toughness 
SWNT/PVA fibres [80]. Indeed, it exceeds the previous 
largest recorded toughness value for synthetic polymer 
fibres or CNT microfibres with integrated knots as 
energy dissipators [54].

Molecular Dynamics simulations reported in the 
SI show that CNTs have the strongest interaction with 
the mannose-associated serine protease 1 (MASP1) 
spider silk fibers, in the amorphous region where 

Figure 5. Toughness modulus and strength of different materials and composites.

2D Mater. 4 (2017) 031013
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they affect the structure of the bundle. The measured 
strength and stiffness data can be compared to ana-
lytical predictions for the reinforcing effect of gra-
phene or CNTs on silk using the direct and inverse 
rule of mixtures [84] and simulations using the Hier-
archical Fibre Bundle Model [85] (see SI). These can 
estimate the concentration of reinforcements by fit-
ting the corre sponding experimental strength values, 
giving equivalent volume fractions in GS and CNTS 
between 1% (spider 15) and 15% (spider 7), with an 
average ~7%.

Graphene flakes appear to be a less effective rein-
forcement than CNTs (figure 4(c)). This could be due to 
the shape of the flakes. The lateral characteristic dimen-
sions of our flakes (~200–300 nm), two orders of magni-
tude larger than the characteristic CNT diameter, could 
give rise to less efficient load transfer, since their longitu-
dinal dimension could be smaller than the critical length 
(of the order of microns and dependent on the interface 
properties) predicted by the shear lag theory for opti-
mal load transfer [86]. Inefficient load transfer could 
also be due to the crumpled configuration of the flakes 
or a larger misalignment with respect to CNTs. Finding 
solutions for these problems could potentially enable GS 
with mechanical properties superior to CNTS, thanks to 
the two surfaces available for load transfer in flakes [86]. 
Tuning the constitutive law of the silk could also maxi-
mize the robustness of an entire structure [87].

Conclusions

Spiders placed in an environment with water solutions 
containing nanotubes or graphene may produce dragline 
silk with enhanced mechanical properties, realizing the 
highest fibre toughness to date, combined with a strength 
comparable to that of the strongest carbon fibres or of 
limpet teeth. Our proof-of-concept experiment paves 
the way to exploiting the naturally efficient spider 
spinning process to produce reinforced silk fibres, 
thus further improving one of the most promising silk 
materials, as compared to synthetic recombinant silks. 
This procedure of natural integration of reinforcements 
in biological structural materials could also be applied 
to other animals and plants, leading to a new class of 
‘bionicomposites’ for innovative applications.
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In the Discussion on page 6 the definition of MASP 
1 was ‘mannose-associated serine protease 1 (MASP 
1)’. It should be ‘major ampullate silk protein 1 
(MASP 1)’.
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S1. Collection of spiders 

We randomly collected 21 Pholcidae spiders (male and female of different ages). The sampling site 

was Torrente Chisone, between Macello and Garzigliana, Province of Torino, Italy (Geographical 

coordinates: 44.844 North, 7.385 East). Each spider was gently and individually segregated in a box 

of 19 x 12.5 x 7.5 cm3 with four air inlets, a transparent top, white bottom and lateral sides. Spiders 

were transferred within 3 days from capture under an extractor fan with controlled ambient condition 

temperature and humidity (21.0 ± 0.2 °C and 54.3 ± 0.7 %) where they were kept during the entire 

experimental procedure. The procedure employed in the present study is in accordance with the Italian 

regulations on animal protection [1], with the relevant EU legislation and guidelines on the ethical 

use of animals and is approved by the local Authority Veterinary Service. 

 After 5 days RS samples were collected from 15 spiders. Subsequently, spiders were exposed 

to aqueous dispersions of graphene and CNTs, as schematically shown in Fig S1 and detailed in Table 

S1. We used sodium deoxycholate as surfactant for both exfoliation and dispersion of graphite and 

for the de-bundling of CNTs. Sodium deoxycholate is a natural bile salt [2]. Its acid, i.e., the 

deoxycholic acid, is one of the secondary bile acids produced in the intestine from the salts of 

glycocholic and taurocholic acid by means of bacterial enzymes [3]. Less than half of the sodium 

deoxycholate is reabsorbed by the intestine and is returned to the liver where it is conjugated and 

released into the gall bladder [4]. Sodium deoxycholate is often used as a biological detergent to 

solubilize cellular and membrane components and lyse cells [2]. Sodium deoxycholate mixed with 

phosphatidylcholine is used in mesotherapy injections to produce lipolysis, and has been used as an 

alternative to surgical excision in the treatment of lipomas [5]. Thus, we assume, due to the nature 

and the biological use of the surfactant, that sodium deoxycholate is not harmful for the spiders. 

Nine spiders (1, 4, 5, 7, 9, 11, 13, 14, 15) started to spin silk after 2 days, while six took 12 days (2, 

3, 6, 8, 10, 12). The dragline silk was then collected. Spiders 1-6 were treated with SWNT-1, 7-10 

with SWNT-2, and 11-15 with graphene, as shown in Fig. S1c and Fig. S1d. After 42 days, dragline 

silk was collected for the second time. The silk is in the form of a single fiber composed of multiple 

threads. Multiple samples are obtained by cutting the fiber into 20mm-length strands for tensile tests 

and for the measurement of the cross-sectional area, following the procedure described in [6]. This 



suggested to take adjacent samples to ensure reproducibility of fiber properties and to use one out of 

five samples (instead of three as here) as control to measure the fiber cross-sectional area by Field 

Emission Scanning Electron Microscopy (FESEM). In our work, the cross-sectional area of the fiber 

is determined using a FESEM without sputter coating.  

 

ID Family Genus Species sex Material 

1 Pholcidae Holocnemus pluchei M SWNT-1 

2 Pholcidae Holocnemus pluchei M SWNT-1 

3 Pholcidae Pholcus opilionoides M SWNT-1 

4 Pholcidae Pholcus phalangioides M SWNT-1 

5 Therididae Steatoda sp. M SWNT-1 

6 Therididae Steatoda triangulosa F SWNT-1 

7 Pholcidae Pholcus opilionoides M SWNT-2 

8 Pholcidae Holocnemus pluchei M SWNT-2 

9 Therididae Steatoda sp. M SWNT-2 

10 Pholcidae Holocnemus pluchei M SWNT-2 

11 Pholcidae Holocnemus pluchei M GRAPHENE 

12 Pholcidae Holocnemus pluchei M GRAPHENE 

13 Pholcidae Holocnemus pluchei M GRAPHENE 

14 Pholcidae Holocnemus pluchei M GRAPHENE 

15 Pholcidae Holocnemus pluchei M GRAPHENE 

 

Table S1: Spider types used in experiments and nanomaterial solution they were exposed to. 

 



 

Figure S1: Schematic illustration of the experimental procedure. (a) Sampling site and 

experimental box for the collection of (b) RS samples and, after spraying with (c) CNTs or (d) 

graphene dispersions. (e) Collection of silk in the form of a single fibre, composed of multiple threads, 

from which multiple samples are obtained by fixing the ends of the fibre to 15 x 10 mm2 “c” shaped 

double adhesive cardboard holders and (f) cutting the fibre into four shorter pieces, (g) mounted on 

nanotensile machine clamps (h) for nanotensile tests and (i) for measuring the fibre cross-sectional 

surface area with a FESEM. Scale bar 5 m. 

  



S3. Characterization  

S3.1 Optical absorption Spectroscopy 

S3.1.1 Optical absorption spectroscopy of SWNTs 

Optical absorption spectroscopy (OAS) reveals various properties of SWNT dispersions such as 

transition energies [7, 8] bundling [9] and concentration [10]. 

 Spectra are acquired in a Perkin Elmer 950 with 1nm resolution. Measurements are carried 

out in the range 400-1300nm, limited by the strong absorption features of water [11]. However, this 

range is sufficient to cover the first and second excitonic transitions of s-SWNTs [12, 13] and the first 

transition of m-SWNTs, for CoMoCAT [12, 13] and the second and third transitions of s-SWNTs and 

first of m-SWNTs [14, 15] for the P2 samples. Absorption from solvent and surfactants is subtracted, 

by measuring solutions with only solvent and surfactant.  

 The assignment of the optical transitions is based on the empirical Kataura plot of Ref. [15]. 

This gives values of optical transition frequencies versus chirality for SWNTs in aqueous surfactant 

dispersions, and is more appropriate than Kataura plots theoretically derived from tight binding and 

other models [16].  

 The OAS of SWNT-1 and SWNT-2 are reported in Fig. S2. SWNT-1 have sharper peaks with 

respect to SWNT-2 sample. The OAS of SWNT-1 shows the M11 region as well as the eh11 and eh11 

regions, while  SWNT-2 shows the M11 region as well as the eh22 and eh33 regions. 

 
Figure S2: Absorption spectra of SWNT-1 (black curve) and SWNT-2 (red curve). The labels eh11, 

eh22, eh33 and M11 refer to the first, second, third semiconducting and the first metallic excitonic 

transition, and are a guide to the eye, since overlap between different excitonic transitions exists [14, 

15]. The spectra are normalized for a clear visualization. 

 

S3.1.1 Optical absorption spectroscopy of graphitic flakes 

Fig. S3 report the absorption spectrum of the graphene dispersion. The peak at ~266 nm is a signature 

of the van Hove singularity in the graphene density of states [17]. OAS used to evaluate the 

concentration of graphitic material in dispersion, using the experimentally derived absorption 

coefficient of 1390Lg−1m−1 at 660nm [18, 19], we estimate concentration ~0.03mg/ml. 

 



 
Figure S3: Optical absorption spectrum of graphene dispersion in water with SDC surfactant.  

 

S3.2 Raman Spectroscopy 

S3.2.1 Pristine SWNTs  

 

Raman spectroscopy can be used to probe SWNTs within dispersions. In the low frequency region, 

the Radial Breathing Modes (RBMs) are observed [20]. Their position, Pos(RBM), is inversely related 

to SWNT diameter, d  [21-23], as given by: 

1
2( )

C
Pos RBM C

d
 

. 

Combining Pos(RBM), with excitation wavelength and the ‘Kataura plot’ [15], it is, in principle, 

possible to derive the SWNT chirality [24, 25].  

 Matching the diameter with excitation wavelength in the Kataura plot also gives information on 

the semiconducting or metallic character. A variety of C1 and C2 were proposed for this relation [7, 

8, 14, 26]. Here we use the C1 = 214.4 cm-1 nm and C2 = 18.7 cm-1, from Ref [27]. These were derived 

by plotting the resonance energy as a function of inverse RBM frequency without additional 

assumptions. We also validated our results by using the parameters proposed in Refs. [7, 10], [28]. 



 
 

Figure S4: Raman spectra of SWNTs at different excitation wavelengths: 514.5nm (green curve), 

633nm (red curve) and 785nm (brown curve) (a) RBM and (b) G region for SWNT-1 and (c) RBM 

and (d) G region for SWNT-2. The Raman spectra of the starting materials (powders) are reported 

in light grey dashed lines below each curve for comparison. 

 

Raman spectroscopy also probes possible damage via the D peak [29]. The D peak is due to the 

breathing modes of sp2 rings and requires a defect for its activation by double resonance (DR) [30, 

31]. The typical Raman spectrum of SWNTs in the 1500-1600 cm-1 region consists of the G+ and G- 

bands. In s-SWNTs, they originate from the longitudinal (LO) and tangential (TO) modes, 

respectively, derived from the splitting of the E2g phonon of graphene at the Brillouin zone centre 

[32-34]. The positions of the G+ and G- peaks, Pos(G+), Pos(G-), are diameter dependent and their 

separation increases with decreasing diameter [35, 36]. In m-SWNTs, the assignment of the G+ and 

G- bands is the opposite, and the FWHM of the G- peak, FWHM(G-), is larger and Pos(G-) down-

shifted with respect to the semiconducting counterpart [20, 37]. Thus, a wide, low frequency G- is a 

fingerprint of m-SWNTs. On the other hand, the absence of such a feature does not necessarily imply 

that only s-SWNTs are present, but could signify that m-SWNTs are off-resonance.  



 Doping could also modify positions and FWHMs [38, 39]. In m-SWNTs, a Pos(G-) 

blueshift, accompanied by a FWHM(G-) decrease is observed with electron or hole doping[40, 41]. 

In s-SWNTs, doping upshifts Pos(G+), but does not affect FWHM(G+) [14, 23]. 

 Thus, a large number of excitation wavelengths are necessary for a complete 

characterization of SWNTs [18, 42]. Nevertheless, useful information can be derived even with few 

excitation wavelengths. 

 Raman spectra are taken on both the starting materials (powder) and the dispersions, 

deposited by drop-casting onto an aluminium substrate to avoid any Raman background, with a 

Renishaw system at 514.5 nm (2.41 eV) 633 nm (1.96 eV) and 785 nm (1.58 eV), using a 100X 

objective and a less than 1 mW on the sample. The RBM detection is limited by the cut-off of the 

notch and edge filters. These are at 120, 100 and 110 cm-1 for 514, 633 and 785nm, respectively, 

limiting the detection to diameters up to ~1.9nm.  

 The RBM spectra of the SWNT-1 in Fig. S4(a) show a distribution, spanning the 175–370 

cm−1 range both for the starting material and the dispersion, considering the peaks for the three 

excitation wavelengths. This RBM range corresponds to SWNTs with ~0.6–1.35nm diameter. Fig. 

S4(b) plots the spectra in the G region of SWNT-1. A weak D band is observed [I(D)/I(G)~0.13], 

indicating small number of defects [15, 16]. These defects could be induced by the ultrasonication 

process because the I(D)/I(G)~0.05 of the powder is lower with respect to the dispersion.  

 The RBM spectra of the SWNT-2 in Fig. S4(c) show a similar distribution but peaked at 

lower wavenumbers with respect to SWNT-1. Indeed, the RBMs span the 150–215 cm−1 range both 

for the starting material and the dispersion, considering the peaks for the three excitation wavelengths. 

This corresponds to SWNTs with ~1.05–1.65nm diameter. Fig. S4(d) plots the spectra in the G region 

of SWNT-1. A weak D band is also observed [I(D)/I(G)~0.18] for the SWNT-2 sample, indicating 

small number of defects [15, 16]. As for the SWNT-1, also in the case of the SWNT-2 sample, these 

defects could be induced by the ultrasonication process because the I(D)/I(G) ~0.08 of the powder is 

lower with respect to the one of the dispersion. 

 

S3.3 Pristine flakes and dispersions  

 

The ultracentrifuged dispersions are drop-cast onto a Si wafer with 300nm thermally grown SiO2 

(LDB Technologies Ltd.). These samples are then used for Raman measurements at 488, 514.5, and 

633nm. The G peak dispersion is defined as Disp(G) =ΔPos(G)/ΔλL, where λL is the laser excitation 

wavelength.  

Fig. S5a plots a typical Raman spectrum of the flakes prepared on Si/SiO2  substrates.  



 
 

Figure S5: a) Raman spectrum measured at 514.5nm excitation for a representative flake obtained 

via LPE of graphite. Distribution of b) Pos(2D), c) FWHM(2D), d) Pos(G), e) FWHM(G), f) 

I(D)/I(G), g) I(2D)/I(G), and h) distribution of I(D)/I(G) as a function of Disp(G). 

 

Besides the G and 2D peaks, this spectrum shows significant D and D’ intensities and the combination 

mode D+D’. Statistical analysis of the spectra shows that Pos(G) (Fig. S5b) and FWHM(G) (Fig. 

S5c) are ~1582 and ~27cm−1. Pos(2D) peaks ~2695cm−1 (Fig. S5d), while FWHM(2D) varies from 



50 to 80cm−1 (Fig. S5e) with a peak at 57cm-1. This is consistent with the samples being a combination 

of single- (SLG) and few-layer (FLG) graphene flakes. The Raman spectra show significant D and 

D’ intensities, with the intensity ratio I(D)/I(G) having a maximum at 2.25 (Fig. S5f). This high 

I(D)/I(G) is attributed to the edges of our sub-micrometer flakes [43], rather than to the presence of a 

large amount of structural defects within the flakes. This observation is supported by the low 

Disp(G)<0.06 cm-1/nm, much lower than what expected for disordered carbon [31]. Combining 

I(D)/I(G) with Disp(G) allows us to discriminate between disorder localized at the edges and disorder 

in the bulk. In the latter case, a higher I(D)/I(G) would correspond to higher Disp(G). Fig. S5h show 

that Disp(G) and I(D)/I(G) are not correlated, an indication that the major contribution to the D peak 

comes from the edges of the sample. 

 

S.4 High Resolution Transmission Electron Microscopy 

We analysed the samples with High Resolution Transmission Electron Microscopy (HR-TEM) using 

a FEI Tecnai F20 equipped with a Schottky emitter and operated at 200 keV, to determine the spatial 

distribution of the carbon nanoreinforcements. As shown in Fig. S6, carbonaceous material was 

observed between different fibers. Some crystalline graphitic material was observed in this area. 

However, from Fig. S6 it is not possible to observe the spatial ordering of individual CNTs or 

graphene inside the silk matrix. We note that Ref. [44] shows a very similar TEM image that also 

fails to provide evidence of the structure at nanoscale. The authors claim that “silk fibers show regions 

with highly ordered graphitic structures”, but this ordering is not at all apparent in these images, nor 

is the deep integration of the nano-reinforcements in the silk amourphous matrix.  

 

Figure S6: HR-TEM images of the Graphene-reinforced silk at two different magnification levels.  

 

S.4 Nanotensile Tests 

Nanotensile tests are performed under controlled laboratory conditions, since any change in 

temperature and humidity may affect the mechanical characteristics of the silk threads [45-48].  

 We monitor the experimental ambient conditions with a datalogger (EL-USB-2, Lascar 

Electronics): the air temperature and the relative humidity were recorded to be 22.8 ± 1.3 °C and 59.1 

± 5.0 %. We fixed silk fibre ends to 15 x 10 mm2 “c” shaped cardboard holders, with double adhesive 

faces. These allowed the fibre to be suspended and mounted on the nanotensile testing machine, while 

maintaining its original tension without damage (Fig. S1g). The tests are conducted using a 



nanotensile testing system (T150, Agilent, Santa Clara, USA), equipped with 500 mN maximum cell 

load. This can generate load-extension data with a load resolution of 50 nN and a 0.1nm displacement 

resolution. Cardboard holders are placed between the clamps. Once the holders are in place, the 

clamps are closed and one side of the holders is cut (Fig. S1h), leaving the fibre free between the 

clamps. We perform a continuous dynamic analysis of the silk by imposing an oscillating dynamic 

strain up to failure of the thread. We use a dynamic strain oscillation with a 20Hz frequency and a 

0.1mN dynamic force amplitude, which enable mechanical properties to be determined continuously. 

Typical stress-strain results for tests on various silk samples from the first 14 spiders are 

shown in Fig. S6 before and after exposure to the nanomaterial dispersions. The results are discussed 

in the Main Text. 

We do not consider the effect of the nano-reinforcement volume fraction on the variation of 

density, since this is negligible for the considered volume fractions. In CNTs, the density CNT is 

between 1.3 and 1.4 g/cm3 [49], similar to that of silk (1.34 g/cm3 [50]). In the case of graphene, the 

density is close to that of graphite, i.e. G ~2.1 g/cm3 [51-53], so the effect would be a slight increase 

in the overall density, and thus a small reduction in toughness modulus. For a very high f = 12% 

volume fraction of nano-reinforcements (usually the onset of agglomeration effects determining a 

deterioration of reinforcement properties occurs below 10%), there is an increase in density from S 

= 1.34 g/cm3 for the pristine silk to TOT = 1.34 g/cm3 and TOT = 1.43 g/cm3 when CNTs or graphene 

are added (estimated using a simple rule of mixtures:   GCNTSTOT ff /1   ) corresponding to 

a 0.1% and 6.7% decrease of toughness modulus, respectively. Should CNTs and graphene 

additionally cause an increase in volume, this would contribute to a reduction in the overall density, 

therefore an increase of the toughness modulus. In any case, it is likely that these limited silk density 

variations would be smaller than the variations due to humidity mentioned in the main text [54], and 

can thus be neglected in the estimation of toughness moduli. 
 



 
Figure S7: Stress-strain curves. Stress-strain curves for silk produced by spiders after first (RDS_1) 

or second (RDS_2) ingestion of a-g) SWNT-1, SWNT-2 or h-m) graphene dispersions. The symbol 

“**” specifies enhanced mechanical properties (fracture strength and Young’s modulus) after first 

collection. The symbol “*” specifies that spiders died before the second collection. 

 

A further collection of silk was carried out after a few days, but the corresponding samples 

did not display mechanical improvements with respect to the first or to RS, probably due to a 

physiological spider weakening during segregation, since neither additional food nor water were 

available during the experimental period, except SWNTs and graphene dispersions. Results are 



reported in Table S2. In the cases marked with an asterisk in Figs. S6, the second collection was 

impossible since the corresponding spiders died. Note that spider 5 died after the first treated dragline 

silk collection, but was able to spin the silk with the maximum increment in mechanical performance, 

whereas spider 7 spun the silk with the highest absolute values and survived. 

 

Spider 

n. 

Diameter 

(μm) 

Number 

of 

threads 

Reinforc

ement 

Young’s 

Modulus 

(GPa) 

Ultimate 

Strain 

(mm/mm) 

Fracture 

Strength 

(MPa) 

Toughness 

Modulus 

(MPa) 

1 
0.658±0.063 73 SWNT-1 

2.8±1.1 

0.423±0.1

42 275.1±65.5 55.3±26.9 

2 
0.410±0.023 27 SWNT-1 

9.5±6.4 

0.368±0.2

74 906.2±338.5 168.1±36.5 

3 
0.587±0.041 96 SWNT-1 

5.1±0.7 

0.753±0.2

58 562.5±178.5 157.4±10.4 

4 - - SWNT-1 - - - - 

5 - - SWNT-1 - - - - 

6 
1.071±0.140 160 SWNT-1 

3.6±2.4 

1.325±0.7

81 507.6±429.8 

198.1±115.

1 

7 
1.013±0.150 330 SWNT-2 

3.6±1.8 

0.818±0.3

86 473.1±273.0 

195.6±163.

6 

8 
0.180±0.020 58 SWNT-2 

9.9±3.1 

0.509±0.2

72 1222.8±341.9 196.9±41.1 

9 - - SWNT-2 - - - - 

10 
0.550±0.162 114 SWNT-2 

1.4±0.9 

1.055±0.3

25 211.2±171.0 99.6±95.8 

11 
0.413±0.056 89 GS 

8.6±2.2 

0.540±0.1

53 1102.5±255.7 241.4±69.4 

12 
0.640±0.056 240 GS 

5.6±2.1 

1.082±0.5

54 716.7±216.2 286.7±24.4 

13 
0.586±0.074 144 GS 

5.6±1.4 

0.577±0.1

71 499.6±240.3 125.7±85.8 

14 - - GS - - - - 

15 
0.533±0.118 153 GS 

2.5±1.8 

1.138±0.4

65 216.9±132.0 

110.4±101.

4 

Table S2. Mechanical properties (average values) of the second collection of silk samples produced 

after exposure of the spiders to the SWNT and graphene dispersions. 26% of the spiders died between 

the first and second collections, thus the corresponding data are absent. 

 

Table S3 shows average values for similar types of silk found in the literature [55-57], and their 

corresponding standard deviations, showing that uncertainties are in many cases comparable to those 

in this work. 

Source Young’s 

Modulus 

(GPa) 

Ultimate 

Strain 

(mm/mm) 

Fracture 

Strength 

(MPa) 

Toughness 

Modulus 

(MPa) 

This work 10.73±4.84 0.70±0.35 1082.94±504.48 313.70±204.78 

Ref  [55]  11.11±3.67 0.22±0.05 1095.17±296.12 125.49±42.87 

Ref [56]  10.08±1.32 0.30±0.02 986.5±107.25 194.8±23.2 

Ref [57]  11.50±3.85 0.62±0.15 1634.00±323.67 217.00±84.33 

Table S3. Average mechanical properties for spider silks in the literature, compared to those found 

in this work 



 

S.6 Statistical data analysis and numerical HFBM simulations 

 

Analysis of experimental data discussed in the Main Text and in the “Nanotensile Tests” Section 

indicates that there is a large statistical spread in the measured mechanical properties of RS as well 

as CNTS and GS. In the case of GS and CNTS it is not possible to compare samples from different 

spiders, since their concentrations are different, so that samples belong to different statistical 

populations. On the RS samples, a statistical analysis of the experimental data is performed to verify 

if they belong to the same statistical population, despite deriving from different spider species. To do 

this, we adopt the Weibull distribution, which is widely used in fracture mechanics and particularly 

suitable to describe dispersion of mechanical properties [58], and fit the data relative to RS. The 

resulting 2-parameter Weibull distributions are shown in Fig. S8. The parameters for the 

corresponding Weibull distributions of RS are summarized in Table S4. Scale parameters are 

indicative of average values, whilst shape parameters are correlated to the dispersion of the 

distributions.  

 

RS Mean     STD        Shape parameter Scale parameter  

Young’s Modulus (GPa) 10.73 10.43 1.19 11.06 

Strength (MPa) 1082.94 1082.94 1.27 1126.55 

Ultimate Strain 0.70 0.40 2.09 0.79 

 

Table S4. Mean Young’s modulus, strength and ultimate strain of RS and corresponding Weibull 

parameters. 



 

Figure S8: Weibull fits for mechanical data on RS. Weibull fits (Probability Density Functions, 

PDF) on experimental data for a) Young’s modulus, b) strength and c) ultimate strain of RS. 

Numerical simulations of deformation and fracture are performed using the Hierarchical Fibre 

Bundle Model (HFBM) [59], whereby the macroscopic fibres are modelled as networks of 

microfibres and/or reinforcements arranged in parallel and in series, subjected to uniaxial tension. 

The microfibers are treated as elastic springs with statistically distributed fracture strengths, according 

to measured or known input parameters for the constituents (i.e. the experimentally-determined 

Weibull parameters from Table S.4 for the silk, and known mechanical properties from the literature 

for CNTs and graphene). As in all fibre bundle models, interfacial interaction between threads in a 

bundle is neglected, apart from load redistribution after failure of a single thread. This is akin to 

neglecting shear effects. However, this was shown to be a reasonable approximation in the case of 

tensile testing of this type of fibre as discussed in Ref. [59]. The statistical distribution of strengths in 

the fibres forming a bundle reproduces correctly the fracture behaviour of individual macroscopic 

fibres due to microcracking. Simulations are carried out in a multiscale procedure, from single SWNT 

(diameter ~1.5 nm, length 250 nm) scale to the macroscopic scale of specimens used in experimental 

tests (diameter ~ 5 m, length 1 cm). The silk/silk and silk/nanoparticle interaction (in terms of load 

redistribution) is modelled only at the lowest hierarchical level. At higher hierarchical levels the fibre 



is considered as consisting of homogeneous threads. The typical number of fibres used in upper 

hierarchical level simulations is 103 (this is to be interpreted as a discretization parameter used to 

simulate damage progression). We consider typical values for SWNT and graphene properties, 

respectively: Young’s modulus ECNT = ESLG = 1 TPa [60, 61] and strengthCNT = 45 GPa [60], SLG 

= 130 GPa [61]. The experimentally obtained RS Weibull distributions are used as input properties. 

Figure 9 shows typical simulations results for stress-strain curves with different SWNT volume 

fractions Vf, assuming a uniform SWNT dispersion at the lowest hierarchical simulation level (i.e. 

that at which individual SWNTs coincide with springs in the bundle). Figure S10 indicates that there 

is an overall strength and modulus increase with increasing Vf, while there is a corresponding ultimate 

strain reduction. As a reference, comparisons are made with rules of mixtures (RM, see Fig. S10). As 

expected, HFBM predictions for strength lie between direct and inverse rule of mixtures predictions. 

 

 

Figure S9: HFBM simulations. a) Schematic of the model and b) examples of stress-strain results 

for different volume ratios.  



 

Figure S10: Comparison of experiments with HFBM simulations and direct or indirect rules of 

mixture (RM). RM predictions are shown as blue lines (direct RM law, taken as an upper bound for 

predictions) and as red lines (inverse RM law, taken as lower bound for the predictions). 

Experimental data are plotted as green triangles, with corresponding sample numbers, and with error 

bars corresponding to the experimental standard deviations (with Vf values estimated from RM or 

HFBM, as explained below), while HFBM data are shown as hollow diamonds, with error bars 

corresponding to uncertainties due to statistical variations in the simulations. Only experimental data 

compatible with a rule of mixtures Vf estimation. i.e., with improved properties with respect to RS, 

are shown. These values are “effective” in the sense that they consider also the expected sik 

modification around the nanoparticles. For ab initio simulations see [62]. 

 



S.7 Atomistic simulations of the mechanical properties of spider silk 

 

We perform classical molecular dynamics simulations in order to obtain a qualitative understanding 

of the CNT and graphene's interaction with the silk proteins. We generate a model of the MASP1 

spider silk protein as in Refs. [63, 64]. We use the CHARMM27 force field implemented in 

GROMACS (v. 4.6.7) [65] to model the molecular interactions. In order to have a charge-neutral 

system we substitute arginine with glutamine (the neutral aminoacid with the closest structure). The 

final aminoacid sequence of the fiber is: 

GGAGQGGYGGLGSQGAGQGGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGQGGLGGGAG.  

From this, we generate a fully extended MASP1 fiber using OpenBabel (v. 2.3.2) [66], from which a 

bundle of 15 fibers (aligned along the x direction) is prepared by translation and inversion to facilitate 

the formation of the central ordered region. Initially, the fibers are kept separate (1 to 2 nm), so as to 

be able to insert graphene or CNTs in the amorphous region and to prevent the disruption of the 

crystalline poly-alanine core. In simulations, we used capped nanotubes with a diameter of ~0.8 nm, 

which is comparable to the experimental value of ~0.6–1.35 nm for SWNT-1 and ~1.05–1.65 nm for 

SWNT-2. The length of 1.8 nm of the CNTs in simulations was chosen so to have dimensions 

smaller/comparable to the disordered part of the modelled fiber (around 3.5 nm over a total fiber 

length of about 11 nm, see Fig. S11 a). This is much smaller than the experimental value. Within the 

accuracy of the chosen silk model [63, 64], the interaction between CNTs and fiber scales linearly 

with the CNT length since the adopted interatomic potential is pair-wise and the CNTs can be 

considered essentially one-dimensional. Based on this argument, the interaction per unit cell can be 

considered nearly invariant with the CNT length, and in our investigation, we take a CNT length that 

reproduces a characteristic CNT volume fraction of f = 12% (see macroscopic simulations in section 

S6, where the CNT length is taken to be 250 nm). The same arguments apply for the graphene flakes, 

which are thus modeled as square-shaped sheets with a lateral dimensions of ~2 nm (much smaller 

than the experimental dimensions). CNTs and graphene are modeled using the DREIDING force field 

to account for their flexibility and the interaction with the protein’s atoms. This initial configuration 

is equilibrated using the following procedure: after a conjugate-gradient local minimization, we 

perform 150 ps molecular dynamics (MD) at low (T=10 K) temperature, similar to the procedure 

developed in Refs. [63, 64], adding a harmonic force with constant k = 100 kJ mol-1 nm-2 in the yz 

plane to drive the fiber formation. The choice of low temperature for this equilibration part is dictated 

by the need to keep the well-ordered central region, responsible for the rigid beta-sheet structure of 

the actual protein [63, 64]. The resulting configurations are used as starting points for 500 ps MD 

runs at T=300 K. All calculations are performed using the Generalized-Born Surface-Accessible 

implicit solvent model [67] to mimic a wet environment surrounding the silk assuming a continuum 

model of water. Fig.S11a shows the spider-silk protein, with a β-sheet rich crystalline region and an 

α-helix-rich amorphous region, in good agreement with Refs. [63, 64]. Graphene does not 

qualitatively change this, Fig.S11b. The simulations show that graphene tends to slide out of the 

protein, while remaining anchored to the amorphous part. Fig.S11c indicates that CNTs tend to 

remain trapped within the amorphous region with two structural consequences: a slight disruption of 

the crystalline order of the β-sheet region, and a tendency to increase the amount of disorder in the α-

helix. 

 



 

Figure S11: Representative structures of (a) pristine MASP1 bundle, and after (b) graphene and (c) 

CNT incorporation. Beta sheet: yellow, alpha helix: purple, 3-10 helix: blue. Graphene is represented 

in green and CNTs in orange. 
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