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Abstract. Vocal cord nodules represent a pathological condition for which the growth 
of unnatural masses on vocal folds affects the patients. Among other effects, changes 
in the vocal cords' overall mass and stiffness alter their vibratory behaviour, thus 
changing the vocal emission generated by them. This causes dysphonia, i.e. 
abnormalities in the patients' voice, which can be analysed and inspected via audio 
signals. However, the evaluation of voice condition through speech processing is not a 
trivial task, as standard methods based on the Fourier Transform, fail to fit the non-
stationary nature of vocal signals. In this study, four audio tracks, provided by a 
volunteer patient, whose vocal fold nodules have been surgically removed, were 
analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via 
Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN 
(Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been 
applied here to speech signals, which were recorded before removal surgery and 
during convalescence, to investigate specific trends. Possibilities offered by the HHT 
are exposed, but also some limitations of decomposing the signals into so-called 
intrinsic mode functions (IMFs) are highlighted. The results of these preliminary 
studies are intended to be a basis for the development of new viable alternatives to the 
softwares currently used for the analysis and evaluation of pathological voice.  

  



2

1234567890

12th International Conference on Damage Assessment of Structures   IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012025  doi :10.1088/1742-6596/842/1/012025

 
 
 
 
 
 

1.  Introduction. 
Healthy condition of vocal cords is of paramount importance, as their mucosal vibration is the source 
of the human vocal emissions [1]. Thus, studies about the vibratory mechanisms of vocal folds have 
been conducted for over twenty years [2][3], as well as research about the frequency content of the 
acoustic output generated by them [4]. Both of these are nontrivial tasks, as human speech represents a 
complex issue, mainly due to its well-known nonlinearity and non-stationarity [5][6]. Also, the 
acoustics of human speech has been studied and modelled at least since the 1960s [7] and progress is 
still in development nowadays, especially for the realisation of naturally-sounding synthesised voices 
[8]. 

 The Discrete Fourier Transform (DFT), which is traditionally the preferred and most used signal 
processing tool, is limited by its assumption of stationarity of the given signal; in the case of human 
voice, this supposition does not hold true, as the mean, variance and other statistical parameters 
change with time [9]. Algorithms currently used for the extraction of fundamental frequencies in voice 
recordings generally assume the signal to be generated by a linear source (which is not), and to be 
locally stationary [10]. These assumptions are too oversimplified in the case of pathological vocal 
emissions, which, even more than normal speech signals, are characterised by nonlinearities due to 
incomplete closure of the vocal cords and aperiodic vibrations. As a result, alternative methods should 
be tested, in order to verify their capacity to properly address the topic. 

In this study, four voice recordings, originated by an unique patient before and after surgical 
remove of vocal cord nodules, have been analysed by applying a technique of signal processing - the 
Hilbert-Huang Transform (HHT) - to Intrinsic Mode Functions (IMFs), obtained through the 
Complete Ensemble EMD with Adaptive Noise (CEEMDAN). This algorithm has been proposed by 
Colominas, Schlotthauer and Torres [11] in its current form and applied to electroglottograms, 
electrocardiograms and electroencephalograms [12]. However, previous versions of the algorithm 
have been studied by the same authors since 2011 [13]. The EMD has also been applied to the 
identification of pathological voices and for the classification of patients with Adductor Spasmodic 
Dysphonia (AdsD) and Muscular Tension Dysphonia (MTD) [14], as a tool for differential diagnosis. 
Here, the viability of this relatively novel approach is tested for the analysis of healing processes 
during convalesce and for the estimation of the immediate effects of surgery removal of nodules. In 
more detail, the HHT disclosed some well-defined trends during the convalescence time, even if it 
showed also some limitations, mainly due to its being an empirical decomposition. The investigated 
method could bring to light new non-invasive tools for healing process monitoring, if the identified 
trends could be systematically observed in a large sample of patients. 

The paper is organised as follows: in Section 2, vocal cords nodules are briefly described. Some 
hint about epistemology, symptoms, signs and treatment are presented, too, in order to provide a 
global background of this research. An overview of the techniques currently used for the diagnosis 
concludes this part. In Section 3, the case report is introduced. In Sections 4, the investigated methods, 
based on Hilbert-Huang Transform, are employed to disclose trends of the frequency response of the 
given signals; Hilbert Spectra for Time-Frequency Analysis and Marginal Hilbert Spectra for Energy 
Content Analysis, as obtained from the input signals, are presented and commented. In Section 5 
obtained results are shown.  Finally, in Section 6 the paper concludes with some overall discussion. 

2.  Vocal Cords Nodules. 
Vocal cords nodules are localised, benign (i.e., noncancerous) and callous-like masses, present on both 
folds although not necessary symmetrical, and located within the lamina propria. Their onset, 
development and – if medically treated – removal and/or regression alter the mechanical and vibratory 
properties of the vocal folds. In most of the cases, no other functions than phonation are compromised; 
also, for milder cases, lesions may resolve naturally by reducing voice use. 
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2.1.  Causes, Early Signs and Symptoms 
Growth of pathological masses in vocal folds is generally caused by excessive and repeated 
mechanical stress. In fact, vocal cords are subject to collision forces at each vibratory cycle. Moreover, 
the air forced through the small gap between the folds during voice modulation causes also drying. 
Therefore, nodules arise from vocal cords tissue trauma, which in turn is due to chronic vocal overuse 
or misuse. Over time, these vocal abuses generate firstly soft and swollen spots, which then evolve 
into nodules and become bigger and stiffer if the incorrect vocal use persists.   

Ordinarily, the first symptoms noticed by people affected are difficulties to produce sounds 
belonging to the upper vocal pitch range [15] [16]. Nevertheless, the definition of “healthy” vocal 
range is still not well defined, and changes according to the field of interest. Conventionally, the limits 
of “regular” vocal emissions reach as low as 50 Hz (at least) and up to 20 kHz [17]; differences in 
vocal fold size, due to gender, genetics, age and other causes, makes the definition of “physiological” 
vocal range quite vague. 

However, since nodules interfere more or less markedly – depending on their size – with the 
vibrational behaviour of the vocal cords, differences between frequency responses of healthy vs. 
pathological conditions are known and documented in the literature [18], even if the vibrational 
behaviour of vocal folds is not at all easy to understand nor to reproduce, mainly due to its known 
nonlinearity [5] [19]. Generally, nodules cause frequency and intensity ranges to be reduced, but 
fundamental frequencies and intensity often do not undergo any dramatic change when these masses 
develop [15] [16]. Other prominent signs of vocal fold nodules are breathiness and hoarseness. The 
latter is a sign due to aperiodic vibrations of vocal fold, while the former results from the incomplete 
closure of folds upon phonation [15]. The patient's voice may also be perceived as more harsh and 
rough than usual. 

Another common symptom that may arise is a sensation of pain or soreness in the neck, lateral to 
the larynx. This generally happens because of the increased effort required to produce the voice [15] 
[16]. As will be discussed in more detail in Sections 4 and 5, this point represents also a great 
limitation to the usefulness of audio recordings as they are currently performed for vocal cord nodules 
estimation. Indeed, the patients, more or less involuntarily, arrange their vocal emission in order to 
provide the requested tone; speech production is a closed loop process – and so patients will adjust in 
order to produce the correct sound if possible. This means that some parameters, especially volume 
(and so, energy content of the signal) become meaningless when compared between different audio 
tracks, as the input (i.e., air pressure as produced by the lungs) is out of control. 

2.2.  Diagnostic Methods  
In the current state of knowledge, a kaleidoscope of techniques is available for the diagnosis of vocal 
fold nodules. By simplifying, they can be sorted into two main groups: methods that depend on the 
direct observation of vocal cords and the so-called “non-invasive” ones, based on vocal emissions 
analysis. It should be remember that “vocal emissions” include all kinds of vocal output – voiced, 
unvoiced and plosive sounds. Furthermore, non-invasive methods can be divided between the ones 
based on acoustic measurements – therefore, objective and quantitative approaches – and the ones that 
rely on perceptual evaluation (a subjective measure of voice, performed by specialists). These two 
approaches dominate the current state of clinical evaluation of voice quality, not only regarding 
nodules, but also for all kinds of voice disorders. Even more, perceptual methods can be further 
divided into clinician-based (e.g., GRBAS/GIRBAS and CAPE-V) and patient-based ones, such as V-
RQOL and IPVI. Attempts have been made in order to link objective and subjective estimations [20], 
while the effectiveness and reliability of subjective tests has been amply discussed in literature 
[21][22]. 

In this case, the pre-operative conditions and the follow-ups over convalescence time were 
investigated through the application of a computerised tool for acoustic voice analysis, the Multi-
Dimensional Voice Program (MDVP™). First introduced in 1993, MDVP™ software has been 
applied in several contexts [23]; its validity has been analysed and compared to other available 
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software in recent years [24]. At least, more than 33 acoustic parameters are currently inspected in a 
quantitative way thanks to MDVP™ [25]. This has been made possible by the introduction in last 
decades of new digital instruments, such as the first digital spectrograph (DSP Sonograph), introduced 
by Kay Elemetrics ® in the late 70s.  

Also perceptual evaluation was performed as a first assessment of patient’s condition, according to 
the GIRBAS scale. This method works simply by rating six parameters of the voice, ranging from 1 
(non-pathological) to 5 (strongly affected). In its first definition [26], the scale was known as GRBAS, 
where the five elements considered were the Grade, Roughness, Breathiness, Aesthenia and Strain of 
vocal emissions. The “I” parameter stands for the Instability of voice and was added at a later stage by 
[27], making it in its current definition. The GRBAS/GIRBAS scale is currently accepted as standard 
by the European Group on the Larynx and by the Japanese Society of Logopedics and Phoniatrics and 
represents the most commonly used perceptual methodology. 

2.3.  Treatments 
In some cases, surgery is not needed, nor recommended, for the treatment of vocal cord nodules 

[28] [29]. Non-surgical techniques, such as behavioural voice therapy, ordinarily performed by 
speech-language pathologists, are generally able to produce a reduction in the size and severity of 
nodules, even if traumatic injuries are unlikely to heal completely without any aftermath [28] [30]. 
However, removal surgery may be necessary when behavioural interventions are not effective. 
Nevertheless, it is not impossible that the vocal range will be permanently altered post surgery [31].  
In the particular case reported here, the patient underwent a clinical surgery removal, as voice therapy 
alone proved to be insufficient. 

3.  Case Report. 
The patient, an Italian male adult (one of the Authors), started to suffer from voice disorders in 

April 2013, probably due to the overuse of voice. The clinical picture showed an upper phlogosis and 
was mainly characterised by hoarseness worsening as a result of vocal strain; an endoscopic evaluation 
indicated a haemorrhagic vocal cord polyp and some signs of vocal stress.  

Two months later, on 11th June 2013, the patient underwent the removal of the right vocal cord 
polyp, under analgosedation with remifentanil, according to the technique of Target Controlled 
Infusion (TCI) and local anaesthesia. The procedure was conducted in an awake setting and the patient 
was dismissed on the same day.  

The patient received one session of preoperative counselling, targeting vocal hygiene instruction 
and surgery preparation; he also followed a course of postoperative therapy. 

On perceptual evaluation, GIRBAS decreased from 1-1-1-1-2-1 to all zeros 5 months 
postoperatively. A voice handicap index (VHI) was also administered before and 5 months after the 
operation to evaluate the patients’ perceived satisfaction with his voice and it went from mild deficit 
(score 12) to normal results (score 1 point).  

In the acoustic analysis carried out by MDVP™ model, an improvement of the parameters (jitter, 
shimmer, NHR, high pitch range) were also obtained, as will be explained in more depth later.  

Since treatment, the patient has not presented any dysphonia recurrence even if he continues to use 
the voice intensively, mainly due to his work, which is highly demanding in terms of voice use.   

The recordings have been all realised at ENT Unit, Santa Chiara Hospital, Trento, Italy. The 
microphone and instrumentations are produced by KAYPENTAX, provided by default for MDVP™ 
analysis. 

3.1.  Speech Records 
Each speech record comes from the same patient, is 3.75 seconds long and is composed by a single 
emission of a sustained vowel ‘a’ according to Italian pronunciation (/a/ as defined by the International 
Phonetic Alphabet). Sampling frequency (i.e., the samples of sounds per second to represent the 
speech recorded digitally) is 44100 Hz, resulting in 165375 elements inside each digital record. This 
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sampling rate has been set in order to cover the entire 20 – 20000 Hz range of human hearing. The 
audio tracks have been labelled this way: (I) track #1: 11th June 2013, pre-operative (day of surgery, 
immediately before operation with pathological voice); (II) track #2: 25th September 2013 (103 days 
since surgical intervention – i.e. circa three months and a half later); (III) track #3: 26th November 
2013 (166 days or circa five months and a half later); (IV) track #4: 24th June 2014 (378 days – i.e. 
circa one year since surgery; 210 days since previous record). They can be seen in Figure 1. By 
comparing the first two records, it is possible to have direct insight into the surgical intervention 
results and the immediate aftermath, while evolution of specific trends between tracks #2, #3 and #4 
have also provided knowledge about follow-ups and healing process of voice condition during 
convalescence. 

 

  

(a) (b) 

  

(c) (d) 

Figure 1. Audio tracks of the patient vocal emission (sustained /a/). (a) track #1 (pathological voice). (b) track #2 (circa three 
months after removal surgery). (c) track #3 (circa five months since operation). (d) track #4 (one year since operation). For 

all figures, the signal is stopped at 0.5 seconds. 

 

3.2.  MDVP Clinical Reports 
Four medical reports have been filed from the analysis of all tracks via MDVP™. Among all the 
parameters considered, average fundamental frequency (F0) is the most commonly used for the 
evaluation of voice disorders; ordinarily, fundamental frequencies will fall between 85 to 180 Hz for 
male adults, and between 165 to 255 Hz for the same-aged females [32]. F0 can be automatically 
tracked by using peak picking strategies, autocorrelation techniques or other equivalent methods [33]. 
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It represents, obviously, the inverse of the fundamental period T0, that is to say, the elapsed time 
between two successive laryngeal pulses [10]. Nevertheless, as stated before, T0 is defined in a speech 
signal according to the assumptions of linearity and local stationarity, which can be a problem if used 
to approximate a pathological voice. As it will be discussed later in this paper, HHT-based frequency 
related parameters bypass these limitations. 

It results from these reports that pathological voice is not subject to any impressive shift in 
fundamental frequency, as expected ([15] [16]). 

In Figure 2, some results from MDVP™ Reports are reproduced. The 11 indicated parameters are 
(clockwise moving from the top) the Jitter percent (Jitt); the Fundamental Frequency variation (vF0); 
the Shimmer percent (Shim); the Peak-to-Peak Amplitude Variation (vAm); the Noise-to-Harmonic 
Ratio (NHR); the Voice Perturbation Index (VTI); the Soft Phonation Index (SPI); the F0-Tremor 
Intensity Index (FTRI); the Amplitude  Tremor Intensity Index (ATRI); the Degree of Voice Break 
(DVB); and the Degree of Sub-Harmonics (DSH). The green circle encloses the threshold of healthy 
conditions (every parameter has a different scale).  

These parameters are not the only ones produced by MDVP™ analysis, but represent those 
generally most taken into account, as they are considered the most important objective measures for 
assessment of several voice disorders [23]. 

On this particular case, the parameters of interest – the ones which exceed the respective thresholds 
– are the Jitt, the vF0, the Shim and vAm. In more detail, vF0 exceeds its threshold (1.100 %) before 
removal, but decreases and stabilises since then; Also Jitt falls drastically just after operation (from 
1.655 %, with a threshold of 1.040 %, to 0.379 %) and remains inside the limits afterwards. On the 
other hand, Shim, which is just slightly over the limit before the intervention (3.851 % respect to 3.810 
%), increases in the first months of convalescence (to 5.139 %) and then starts to decrease (to 4.003 % 
and 2.467 %, respectively for track #3 and #4). Also vAm, which was not above the limit before – for 
pathological conditions –, went beyond the 8.200 % threshold after operation, reaching a maximum of 
10.427 % (track #2) and then declining to 6.341 % (track #3) and to 5.255 % (track #4).  

 

  

(a) (b) 

Figure 2. MDVP Clinical Reports. (a) 11th June 2013 (track #1) and (b) 24th June 2014 (track #4).  

By considering these data, it is possible to deduce that a transient effect of removal surgery was a 
temporary increase in variability of the amplitude, which affected both the parameters linked with it, 
ie. Shimmer and vAm (that is to say, the amplitudes of consecutive periods, divided by the average 
amplitude, and the Peak-to-Peak Amplitude). Instead, Jitter, which represents the cycle-to-cycle 
variation of F0, and other F0-related parameters were positively affected by the surgery and suffered 
no transient worsening. However, these reports do not provide any information about which 
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frequencies were afflicted the most by the nodules’ presence and removal. This information was 
provided by the EMD-based analysis described here in the next Section. 

 

4.  Hilbert-Huang Transform for Speech Processing. 
The Hilbert-Huang Transform (HHT) was proposed for the first time in its current form by Huang et al 
[6]; it represents a suitable option for representing data from nonlinear, non-stationary processes 
without losing any time-domain information. Essentially, the HHT is made up by two parts: Empirical 
Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA). Although the HHT is being used 
more and more often in the signal-processing context, some background theory will be provided here 
in order to make this paper a little more self-contained. Much deeper explanations can be found in 
Huang’s original papers [34][6][35], as well as in his recent book [36].  

For an arbitrary time series, we can define the Hilbert Transform as 
 

 
𝐻𝑇 𝑔 𝑡 = 𝑔  (𝑡) =

1
𝜋

𝑔 𝜏
𝑡 − 𝜏

!!

!!

𝑑𝜏 

 

(1) 

This way, the generic time series g(τ) is convoluted with the function 1/πt. This emphasises the 
local properties of the signal analysed. The tilde  ̃ is used here to denote the transformed function, 
which is still a function of time, as the HT maps function of time or frequency into the same domain, 
in contrast to the DFT. It should be remarked that the HT, if applied to some dataset, could return 
physically meaningless results – that is to say, negative frequencies. In order to avoid these problems, 
two conditions must be applied to the input data: (1) the function must be symmetrical respect to the 
local zero mean (2) function must have the same number of zero crossing and extrema, or differ at 
most by one.  

Empirical Mode Decomposition provides “modes” that satisfy both these restrictions. These modes 
– the so-called Intrinsic Mode Functions (IMFs) – can be regarded as the oscillations embedded in the 
original signal [37]; differently from the harmonics obtained through Fourier Transform, their 
amplitude and frequency is not constant over time. The process by which they are extracted from the 
signal can be found in [12]; this step-by-step method is also known as the sifting process.  
The process is quite straightforward:  

(1) for k = 0, all the extrema (local maxima and minima) of the analysed data  (i.e., of 𝑟! = 𝑥) are 
identified;  

(2) local maxima of 𝑟! are connected by a cubic spline line, defining e!"#(𝑡); likewise, local minima 
of the same function are linked revolving to the same kind of spline interpolation, thus obtaining 
e!"#(𝑡).These two lines form, respectively, the upper and the lower envelops for the given data, 
which all stand between them;  

(3) local mean m(𝑡) is evaluated as the mean between e!"# 𝑡   and  e!"#(𝑡);  

(4) IMF candidate d!!!(𝑡) is extracted as d!!! 𝑡 = 𝑟! 𝑡 −m 𝑡     ∀𝑡;  

(5) the properties of d!!! 𝑡  are checked: if d!!! 𝑡 is an IMF, for that instant '  𝑡 ' x 𝑡  is replaced by 
d!!! 𝑡  , the residue 𝑟!!! = 𝑥 − 𝑑!  !

!!! is computed, flag 𝑘 is increased by one (𝑘 = 𝑘 + 1) and 𝑟! is 
treated as input data for step (2). If d!!! 𝑡  is not an IMF, d!!! 𝑡  itself is treated as input data for 
step (2). 

Iteration process ends when the residual 𝑟!  satisfies a predefined stopping criterion. In this work, the 
decomposition has been stopped when, for the n-th iteration, the residual r! 𝑡  became a monotonic 
function, from which no more IMFs can be extracted, or when the set number of maximum iterations 
was reached, whichever came first. Once computed, the IMFs form a complete and nearly orthogonal 
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basis for the original signal; each group is formed by data which have, at any point, zero mean for both 
the maxima and the minima envelopes [38], as they are – by definition – monocomponent signals. 

For this study, the MatLab ® script ‘ceemdan.m’ has been used. This code has been developed by 
Marcelo Colominas and was introduced in the current version in  [12]. CEEMDAN, or the Complete 
Ensemble EMD with Adaptive Noise algorithm, is an improvement of the basic EMD algorithm, 
which is affected by the problem of the so-called “mode mixing”, the overlap between different modes 
that have so small differences that they can led to misaddressing of their components. This causes an 
alias in the frequency-time distribution, leading to a loss of physical meaning of the decomposed data. 
To solve this issue, Ensemble EMD was first proposed. To keep the discussion brief, the idea is to add 
white Gaussian noise at each stage of decomposition; then, the generic k-th IMF is computed as the 
mean over an ensemble of trials (𝐼𝑀𝐹!) of the corresponding 𝐼𝑀𝐹! obtained via EMD. Step-by-step, 
the algorithm can be defined so: 
(1) departing from the original signal 𝑥[𝑛], 𝑥![𝑛] is generated, as 𝑥! 𝑛 = 𝑥 𝑛 + 𝑤![𝑛], where 𝑤![𝑛] 
are different realisations of white Gaussian noise for  𝑖 = (1,… , 𝐼);  

(2) each 𝑥![𝑛] is decomposed by classic EMD, obtaining the modes 𝐼𝑀𝐹!![𝑛] for the i-th Gaussian 
noise and the k-th mode, where 𝑘 = (1,… ,𝐾);   

(3) k-th IMF is assigned as 𝐼𝑀𝐹! 𝑛 = !
!

𝐼𝑀𝐹!![𝑛]!
!!! . 

A much more detailed description of the EEMD can be found in [13] and [14].  CEEMDAN, 
instead, uses each mode for the computation of the next one, sequentially, in a deflationary scheme; 
basically, in CEEMDAN the several modes are computed as the difference between the current 
residual and the average of its local means (considering also the noise added to the signal), while in 
EEMD each 𝑥! 𝑛  is decomposed independently from the other, thus generating I different residuals 
𝑟!! 𝑛  for each mode.  

Again, it is possible to describe also the CEEMDAN algorithm in subsequent steps: 
(1) I realisation of white Gaussian noise (𝑤![𝑛]) are used to define 𝑥! 𝑛 = 𝑥 𝑛 + ϵ!𝑤![𝑛], with 
ϵ!  representing the arbitrary value of noise standard deviation for the first step. Then, first modes are 
computed exactly as for EEMD: 𝐼𝑀𝐹![𝑛] = 𝐼𝑀𝐹! 𝑛 = !

!
𝐼𝑀𝐹!![𝑛]!

!!! ; 

(2) for k = 1, the first residual is calculated as 𝑟! 𝑛 = 𝑥 𝑛 − 𝐼𝑀𝐹![𝑛];   

(3) departing from the first residual 𝑟! 𝑛 , 𝑟!![𝑛] is generated, as 𝑟!![𝑛] = 𝑟! 𝑛 + ϵ!𝐸!(𝑤![𝑛]), where 
𝑤![𝑛] are different realisations of white Gaussian noise for  𝑖 = (1,… , 𝐼) and the operator 𝐸!(∙) 
indicate the whole process that, given a signal, produces the j-th mode by EMD. Then, the second 
mode is defined as 𝐼𝑀𝐹! 𝑛 = !

!
𝐸!(𝑟! 𝑛 + ϵ!𝐸!(𝑤![𝑛])!

!!! ); 

(4) for k = 2 onwards, the k-th residuals are computed as 𝑟! 𝑛 = 𝑟!!! 𝑛 − 𝐼𝑀𝐹! 𝑛 ;  

(5) 𝑟!! 𝑛 = 𝑟! 𝑛 + ϵ!𝐸!(𝑤![𝑛]) realisations are decomposed. Then, the (𝑘 + 1)-th mode is defined 
as 𝐼𝑀𝐹!!! 𝑛 = !

!
𝐸!(𝑟! 𝑛 + ϵ!𝐸!(𝑤![𝑛])!

!!! ); 

(6) steps (4) and (5) are reiterated until k = K. 

The process is relatively time-consuming, as a large number of iterations are generally required, but 
reduces substantially the risk of mode mixing. In this work, the initial noise standard deviation ϵ! has 
been set to 0.2; the number of realisations (NR) to 15; and the maximum number of sifting iterations 
allowed to 3000. The code was also required to automatically increase the SNR for every stage. 

It is also important to state that all the data from the four audio tracks have been filtered before 
being decomposed into IMFs. In more detail, a Butterworth low-pass filter of order 10 has been 
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applied in both the forward and reverse directions, to ensure zero-phase distortion. Filtering was 
needed in order to reduce the effects of background noise from the audio recordings. 

From each track, a set of IMFs has been obtained. From these four sets, in order to speed up the 
comparison process, four subsets have been extracted, considering only IMFs 7 to 11 (Figure 3). The 
IMFs chosen for the subset have their Mean Frequencies, 𝑓!, close to the estimated fundamental 
frequencies of each track, as supplied by the MDVP™ clinical reports. 

 It must be remarked that the four tracks did not provide the same number of IMFs when 
decomposed, and that this represents a great limitation to the analysed technique, as explained before. 
In fact, EMD is a purely empirical decomposition – as the name itself states, obviously – and performs 
blind signal separation. Hence, no physical interpretation can be provided to justify the obtained 
number of IMFs. In detail, decomposition of track #1 and track #3 produced both 18 Intrinsic Mode 
Functions, while 19 functions were extracted from track #2 and track #4. In this particular case, the 
Authors were able to state that IMFs 7 to 11 include, with small differences, the same data for all the 
tracks; this was only possible by supervising the EMD operations at any iteration, keeping track of the 
whole process. However, this is a serious limit to any further attempt to generalise the method, as this 
distinction can be not always enough evident or easy to oversee. 

 

 

Figure 3. Selected subset (IMFs #7 to #11) for track #1 (11th June 2013).  
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5.  Results. 
From each one of the subsets previously described, four parameters have been considered and 
analysed, in order to test their capability as indices of pathological conditions and/or improvement in 
healing: the IMF Mean Frequency (𝑓!), the IMF Standard Deviation (SD), the Total Energy Content 
(𝐸!"!) and the IMF Content Energy (𝐸!). The first two will be addressed hereinafter as time-frequency 
parameters, while the latter two as energetic parameters. These features can be defined as follow: 
 

 

𝑓![𝑛] = 𝑓!

!

!!!

[𝑛] 

 

 

(3) 

where N stands for the number of elements inside the investigated signal (here 165375, as the signal is 
3.75 seconds long with a sampling rate of 44100 Hz) and 𝑓![𝑛]  are the several instantaneous 
frequencies of the n-th mode. 
 

 

𝑆𝐷[𝑛] =
(𝑓! 𝑛 − 𝑓![𝑛])!  !

!!!
𝑛 − 1

 

 

 

(4) 

where 𝑆𝐷[𝑛] simply represents the standard deviation between the several instantaneous frequencies 𝑓! 
and the mean frequency 𝑓! of the n-th mode. 
 

 

𝐸![𝑛] = 𝑐!
!

!!!

[𝑛] 

 

 

(5) 

where 𝑐[𝑛] is the amplitude, and hence the energy, of the n-th mode, computed for any element, as it is 
not constant in time. 
 

 

𝐸!"! = 𝐸![𝑛]
!

!!!

 

 

 

(6) 

where M is the total of the IMFs that compose the original signal (18 for tracks #1 and #3, 19 for 
tracks #2 and #4).  

5.1.  The Hilbert Spectrum and Time-Frequency Analysis  
The Hilbert Spectrum is the graphical representation of the instantaneous frequency over time, 
computed separately by applying the Hilbert Transform at each one of the IMFs included into the four 
subsets defined previously. As one can see in Figure 4, the signal taken before removal surgery shows 
much more often, high frequency peaks, than in the tracks recorded post-operation.  

 



11

1234567890

12th International Conference on Damage Assessment of Structures   IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012025  doi :10.1088/1742-6596/842/1/012025

 
 
 
 
 
 

 

Figure 4. Hilbert Spectra of IMF #7 for all tracks. 

By tracking the evolution of both 𝑓!  and SD over time, it is possible to recognise some distinct 
trends. These results, described later, can be seen in the graphs shown in Figure 5. 𝑓! shows a peak 
corresponding to the post-operative record closest to the surgical intervention (25th September 2013). 
This reflects the trend of the average fundamental frequency F0 between track #1 and track #2, 
discussed before in Section 3. Nevertheless, F0 rebounded slightly after a local minimum occurred 
corresponding to track #3 and reassessed to values close to the peak for track #4 (mostly the same, 
circa 134 Hz). Instead, 𝑓! keeps on decreasing for all IMFs, with the sole exception of IMF 8. 
However, even the 8th mode does not reach again its peak value; overall, all modes seems to tend to 
stabilising. The exact cause of this behaviour cannot be ascertained with absolute sureness, but could 
be explained by the fact that surgery is a traumatic event for vocal fold tissues, which change their 
vibratory characteristics suddenly. A plausible explanation would be scarification and/or swelling. 
What is certain, is that, since natural frequency is directly proportional to the stiffness and inversely 
proportional to the mass, any explanation for the immediate post-operative peak will be related to (1) 
an obvious decrease in mass, due to the nodules’ removal; (2) a sudden increase in stiffness, maybe 
linked to immediate effects of scarification; (3) a combination of these two factors and/or other effects, 
maybe not related directly to the vocal folds, but to other components of the voice-production 
mechanisms. Successively, the observed assessment could be most probably due to the healing 
processes, with scarified tissues reabsorbed over time and a reduction in overall stiffness. 

The standard deviation (SD) shows a trend that is strongly related with the one of F0. Indeed, since 
in track #4 the mean frequencies of IMFs 7, 9, 10 and 11 (just to cite the ones reported here) tend to 
stabilise, while instead F0 tends to increase, a higher value of variability is understandable. As 
mentioned several times earlier, non-pathological voice is supposed to be more coherent and to have a 
larger range of frequency; both these factors contribute to increase variability of the frequencies 
contained into the IMFs.  Noteworthy is the very high value of SD for IMF 7 in track #1. Most 
probably, this mode is much more sensitive to the pathological conditions of the pre-operative voice, 
somehow. A possible explication is that non-homogeneity induced by nodules’ presence affects more 
the modes that are related to higher frequencies, like IMF 7; after surgical intervention, this 
disturbance is greatly attenuated and this mode starts to behave as its companions do. 
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(a) (b) 

Figure 5. (a) Trends of mean frequencies along time. (b) Trends of instantaneous frequency standard deviations along time.  
 

5.2.  Marginal Hilbert Spectra and Energy Content Analysis 
Given the Hilbert Spectrum as 𝐻(𝜔, 𝑡)  – being, by definition, a portrayal of instantaneous frequency 
over time  – Marginal Hilbert Spectrum can be written as  
 

 

ℎ 𝜔 =    𝐻(𝜔, 𝑡)
!

!
     

 

 

(7) 

 
Thus, Marginal Hilbert Spectra (MHS), as shown in Figure 6, permit an immediate visual 

inspection of the amplitude (i.e., energy) contribution of each frequency.  
As can be seen also in Figure 7, each IMF evolves along time according to its own manner, but all 

of them can be related to the trend of Total Energy 𝐸!"!. 
The pre-intervention record (track #1) presents a spectrum generally composed of frequencies 

lower than those preeminent in the post-operative tracks. This evidence agrees with two of the 
symptoms generally associated with vocal cord nodules, the shrinking of voice range extension and 
the difficulty to perform the highest frequencies. 

It is also possible to notice in Table 1 that no comparison between the IMFs is possible in terms of 
Energy Content. The values of 𝐸! fluctuate from one record to the other in a fashion that gives no 
noticeable trends. Only two prominent results can be clearly seen here. Firstly, if IMF 11 is excluded, 
all the other modes seem to reproduce, broadly speaking, the behaviour of the total energetic content, 
𝐸!"!. As mentioned before, it has been noticed that nodules seem to affect more the IMFs that contain 
higher frequencies. Thus, IMF 11 should be the least affected of them all; furthermore, its contribution 
to the 𝐸!"! is negligible (always less than 1%), both in general and when compared to the other modes 
included in the subset. Secondly, it is possible to observe that before surgery, the Energy Content was 
very different between different modes. These differences results strongly attenuated nine months after 
the operation; the vertical bands in Figure 10 show this plainly. This can be seen as evidence that, 
when voice is healed and back to physiological condition, the energy is distributed between modes in a 
more uniform fashion.  However, it has been evaluated that 𝐸!, as well as 𝐸!"! and any other possible 
energy-related index, is too affected by variations of the voice volume to produce any reliable result 
when different tracks are compared; mean frequencies and standard deviations of instantaneous 
frequencies provided results that look much more reliable. 
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  Figure 6. Marginal Hilbert Spectra, IMFs #7 to #11, for all tracks. 

 
 

Table 1. 𝐸!   for IMFs 7 to 11, all tracks. 𝐸!"! reported for comparison. 

 Track #1 

(11th June 2013) 

Track #2 

(25th September 
2013) 

Track #3 

(26th November 
2013) 

Track #4 

(24th June 2014) 

IMF 7 [-] 0.970 12.809 54.026 19.361 

IMF 8 [-] 25.583 22.236 60.544 7.301 

IMF 9 [-] 50.930 32.406 36.188 10.488 

IMF 10 [-] 0.053 39.246 25.023 3.133 

IMF 11 [-] 0.032 1.22 0.578 0.186 

𝐸!"! [-] 88.795 139.972 477.692 312.09 
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Figure 7. Trends of IMFs Energy Content (Total Energy Content shown for comparison). 
 

6.  Conclusions. 
The main aim of this research was to investigate the viability of the HHT and CEEMDAN algorithms 
to track the healing process of vocal cord tissues over convalescence time, as well as to define the 
immediate aftermath of the removal surgery. A subset has been extracted by the decomposition of the 
audio tracks into IMFs, specifically IMFs 7 to 11; evolution of these five modes has been studied 
along the four audio tracks provided. In particular, four parameters have been investigated: the IMF 
Mean Frequency (𝑓!), the IMF instantaneous frequency Standard Deviation (SD), the Total Energy 
Content (𝐸!"!) and the IMFs Content Energy (𝐸!). Some speculations have been drawn from the 
observed results. 

Regarding the trend of 𝑓! over time, all IMFs produced similar result: peak values just after 
surgery, followed by a stabilisation to values not distant from the pre-operative ones. This proves that 
vocal cords nodules do not affect substantially the frequency content of voice, as expected, while 
surgery does, even if for a limited period of time. Higher-numbered modes, which are related to lower 
frequencies, show to be less affected by the surgery in the short run. Post-operative peaks can be 
related to a decrease in mass, due to the nodules’ removal; to an increase in stiffness, due to tissue 
scarification; or to a combination of both these effects plus some other mechanisms. The assessment of 
𝑓! in the long run, after one year from surgery removal, is almost surely due to an overall reduction of 
stiffness, which can be related to the healing of scars. 

IMFs 8, 9, 10 and 11 showed a higher value of Standard Deviation SD in healed conditions than in 
pathological ones. This increment is sensibly less marked for higher-numbered modes, as they show 
again to be less influenced by both nodules’ presence and surgery aftermaths. This larger variability of 
the instantaneous frequencies could be a consequence of the broader range of frequency of the healed 
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voice. IMF 7 counterintuitive behaviour may be a result of the non-homogeneous effects of nodules, 
as lower-numbered modes proved to be more affected and this “deviation” from the otherwise regular 
trend is limited only to the pre-operative first record. 

It was observed that the range of 𝐸!  values among the five IMFs reduced noticeably after 
convalescence, demonstrating how the energy is more uniformly distributed between modes in healthy 
vocal conditions. Moreover, the Marginal Hilbert Spectrum of track #1 showed also a composition 
made mostly by frequencies much lower than those prominent in the following records, thus 
highlighting the reduction of vocal range to lower-than-usual frequencies that ordinarily occurs with 
the onset of vocal fold nodules. However, apart these two speculations, energy-related features were 
considered not to be reliable. Overall amplitude of the four signals resulted to be too heavy influenced 
by voice volume, a parameter that was not taken in account during the several recording operation. 
Thus, 𝐸!"! and 𝐸! cannot be completely trustworthy parameters. By comparing SD (which rebounds 
slightly or stabilises for all the investigated IMFs between track #3 and track #4) with 𝐸!"! and 𝐸!, 
which instead decrease in all cases, it is also possible to state that removing nodule masses from the 
vocal cords allows them to vibrate much freely, producing a wider range of frequencies, spending less 
energy.  

To sum up, some points become clear from the investigation performed: 
(1) The Hilbert-Huang Transform works, as expected, for the analysis of non-stationary data 

originated by a nonlinear source, as in the case of human voice; theoretically speaking, the 
tool is perfectly suited for the non-invasive analysis of vocal fold conditions through speech 
processing. Different to other current methodologies, the HHT performs time-frequency 
analysis without requiring any assumption of stationarity of the signal or linearity of the 
system, thus avoiding the risks inherent in the oversimplifications that other techniques are 
restrained by. 

(2) The EMD-based approach allows analysis of the different frequencies separately, even if the 
decomposition itself, being empirical, is not free from issues. Since there are no guarantees 
that the decomposition will produce the same amount of IMFs, if the content of this Mode 
Functions is not – by chance – clearly similar, as in this particular case, the Hilbert-Huang 
Transform would be itself viable, but results would be much more difficult, or even 
impossible, to compare. 

(3) Energy Content, both for the overall signal (𝐸!"!) and for each one IMF inspected (𝐸!), is 
too much influenced by the volume of the patient's voice. Some information can nonetheless 
be extracted from their trends, but it seems that this results must be handled with great care 
and not uncritically. 

(4) IMF mean frequency (𝑓!) and instantaneous frequency standard deviation (SD) showed 
clear trends, both during post-operative convalescence time (long run, tracks #2, #3 and #4) 
and immediately after surgery (short run, tracks #1 and #2). These results are by far the 
most interesting ones and explain all the possibilities offered by time-frequency analysis for 
health monitoring the follow-ups after surgical intervention through speech processing. 

 
With all the difficulties and limitations encountered, the authors find that the HHT proved to be 

feasible, technically speaking, for the proposed aim. 𝑓! and SD can be easily included as additional 
parameters to MDVP™or to any other software for Acoustic Voice Analysis. Nevertheless, the 
technical obstacles given by the need to have comparable IMFs between different tracks may be just 
too extended to make the method advantageous in economical terms. Even more, all the results should 
be identified in a large, statistically valid population before being accepted definitely. Comparing them 
with records of patients affected by other voice disorders will also help to discern if the patterns 
encountered are typical of the pathology studied or detectable for other kinds of disease, too. Even so, 
the results are encouraging, as trends in time-frequency analysis are evident, and exhort the authors to 
test other options, especially Wavelets, which could probably overcome the technical problematics 
that afflict HHT and EMD and provide more crystalline answers. 
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