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A B S T R A C T

Stress concentration factor concept has been developed for single-layered graphene sheets (SLGSs) with circular
holes through an atomistic point of view by the application of molecular structural mechanics (MSM) approach.
In this approach the response of SLGSs against unidirectional tensile loading is matched to the response of a
frame-like macro structure containing beam elements by making an equivalence between strain energies of
beam elements in MSM and potential energies of chemical bonds of SLGSs. Both chirality and size effects are
considered and the atomistic evaluation of stress concentration factor is performed for different sizes of circular
holes. Also, molecular dynamics simulations are implemented to verify the existence and location of the
predicted stress concentration. The results reveal that size effects and the diameters of circular holes have a
significant influence on the stress concentration factor of SLGSs and armchair SLGSs show a larger value of
stress concentration than zigzag ones.

1. Introduction

Graphene, thanks to its all-surface nature, has been considered as a
main candidate for overcoming future technology challenges in nano-
technology. The potential application of graphene is extensively
investigated in various domains like health and environment, electro-
nic devices, spintronics, photonics and optoelectronics, sensors and
actuators, flexible electronics, energy storage and conversion, nano-
composites, and biomedical applications [1]. Because of the wide
application of graphene in nanotechnology, theoretical and experi-
mental evaluations of its unique mechanical properties have been of
great interest [2–4]. Besides, the mechanical behaviors of graphene
under different loading conditions, such as vibration, bending, buckling
and fatigue, have been studied [5–8].

Implementation of continuum mechanics in order to analyze the
behavior of nanostructures bearing mechanical loads has received a
notable attraction owing to its computational advantages; however, due
to elimination of structural discreteness the obtained results are not
realistic enough. To overcome this limitation, an atomistic point of
view needs to be adopted to take into account the discrete nature of
nanostructures. In spite of successful implementation of computational
physics methods, i.e. ab initio [9], Monte Carlo simulations [10], and

molecular dynamics (MD) simulations [11], the computational cost has
always been a noteworthy deficiency. Accordingly, many attempts have
been conducted to find semi-atomistic methods which include not only
the computational advantages and simplicity of the continuum view,
but also the realistic standpoint of atomistic approaches.

Li and Chou introduced Molecular structural mechanics (MSM) as a
semi-atomistic approach by establishing a linkage between structural
and molecular mechanics [12]. The concept of this approach is to
consider a nanostructure as a frame-like structure and the chemical
bonds between two nearest-neighboring atoms acting like structural
members. MSM has attracted the attention in the field of nanostruc-
tures and many researchers have applied this approach for investigat-
ing the behavior of nanostructures and some modifications are
proposed to improve its versatility for special cases of study.

Using MSM, Sakhaee-Pour et al. [13] studied the potential applica-
tion of defect-free single-layered graphene sheets (SLGSs) as mass
sensors for detection of atomistic dusts. Both zigzag and armchair
configurations with cantilever or bridge boundary conditions were
considered. The results revealed that the frequency of graphene was
highly sensitive to an added mass of the order of 10−6 fg. Vibrational
analysis of carbon nanotubes and graphene sheets by using MSM
approach was conducted by Hashemnia et al. [14]. They certified that
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the vibration frequencies obtained by MSM were in good agreement
with the literature. A study on the elastic buckling of SLGSs was done
by Sakhaee-Pour [15]. The elastic buckling forces of the cantilever and
bridge zigzag and armchair SLGSs with different side lengths and
aspect ratios were calculated. The atomistic simulation results based on
MSM were also used to develop predictive equations via a statistical
nonlinear regression model. Wang et al. [16] evaluated the influence of
Stone–Wales defects on elastic properties of graphene nanofilms
applying MSM based finite element method. They considered several
possible influencing factors, including the number and types of Stone–
Wales defects, the distance between two defects and the position of
defects in the graphene, to evaluate Young's moduli and Poisson's
ratios of armchair and zigzag monolayer graphene nanofilms. Wang
et al. [17] analyzed vibration characteristics of wrinkled SLGSs. Based
on the MSM simulation results and the continuum thin plate model, a
prediction model was proposed to obtain the natural frequency of
wrinkled SLGS. Firouz-Abadi et al. [18] proposed a modified MSM
model to improve the accuracy of this approach for the analysis of
transverse deformations. To this aim, a sample SLGS under a uniform
pressure was modeled by both MD and MSM methods. The sectional
properties of the beam element of MSM were modified such that the
difference between the results of the molecular mechanic's model and
the molecular dynamics simulation was minimized. Using this modified
model, the buckling behavior of graphene under a uniform edge
pressure was investigated subjected to different boundary conditions
for both zigzag and armchair chirality. Surveying the literature reveals
that MSM has been effectively implemented by the researchers to study
the mechanical properties and characteristics of nanostructures and
specially carbon nanostructures, i.e. SWCNTs and SLGSs.

Carbon atoms of graphene are ideally arranged on a perfect
hexagonal lattice. However, it is reported experimentally [19] and
theoretically [20] that inevitable defects exist that occur in graphene
structure during its fabrication process which make significant drastic
changes in its physical, mechanical, and electrical properties [21].
Missing carbon atoms from the hexagonal lattice known as vacancies is
a common defect in graphene sheets. Vacancies, having diverse sizes,
shapes, and distributions, have been extensively examined in the
literature in order to investigate their influence on the mechanical
characterization of graphene sheets [22–28].

In classical structural engineering, the influence of geometrical
discontinuities like holes, cavities and cracks is taken into account by
introducing the concept of stress concentration [29]. This concept is
employed by designers to account for the localized increase in stress at
a point with geometrical sudden changes, with the nominal stress being
multiplied by a stress concentration factor to obtain an estimate of the
local stress at the critical point [30]. Recently, the production of large-
scale graphene sheets is reported [31] which can be considered as a
herald of wide application of this nanostructure in future nanotechnol-
ogy products. Hence, as a mechanical planar structural member, an
engineering point of view to graphene sheets may be valuable [25–
28,32]. In this way, the graphene sheets with circular-shaped vacancies
may be considered as panels having circular holes. The present work
aims to develop the classical concept of stress concentration factor for
studying the influence of vacancies on the failure analysis of graphene
sheets under tensile load conditions. To take into account the discrete
nature of SLGSs, the MSM approach is adopted and the stress
concentration factor is calculated and compared with the stress
concentration factor predicted by classical elasticity for thin panel with
circular holes.

2. Definition of stress concentration factor

In classical elasticity, the presence of sudden changes in the
geometry of cross section results in local modification of the stress
distribution. A localized high stress is known as stress concentration,
measured by the stress concentration factor, K, which is defined as the

ratio of the peak stress, σmax, to a reference stress in the body, σref :

K σ
σ

= max

ref (1)

The most well-known case of a sudden change in the geometry is
the existence of holes in structures. Consider a thin panel of finite width
h, and thickness t , containing a single circular hole of diameter d ,
subjected to an uniaxial tension stress, σ , caused by an applied load, P
(See Fig. 1). Based on the classical theory of elasticity [29], the
maximum stress, σmax, occurs at point M. There are two options for
reference stress, σref , corresponding to two ways of definition of the
cross sectional area.

Option one: The nominal area, also named as gross cross-
sectional area, is considered and the associated stress concentration
factor Kg is defined as:

K σ
σ

σ P
ht

= , =g
max

(2)

Option two: The effective area, also named as net cross-sectional
area, is considered and the associated stress concentration factor Kn is
defined as:

K σ
σ

σ P
h d t

= , =
( − )n

max

n
n

(3)

Using Eq. (2) and Eq. (3), one can easily obtain the relationship
between gross and net stress concentration factors as follows:

K K d
h

= (1 − )n g (4)

Although calculation of the maximum stress can be performed by
either Kn or Kg, in the present work, the gross factor, Kg, is considered.
Theoretical approaches, like theory of elasticity and numerical methods
as well as experimental ones like photo elasticity, are widely imple-
mented to determine the stress concentration factor. An analytical
solution for a panel of finite width having a single circular hole, as
shown in Fig. 1 is reported in [29] as follows:

K
α

α α

α d h

= 0.284 + 2
1 −

− 0.6(1 − ) + 1.32(1 − ) ,

= /

g
2

(5)

where α is the dimensionless hole parameter, which indicates the
relative size of the circular hole with respect to the width of the panel.

3. Atomistic simulation of SLGSs

3.1. MSM approach for SLGSs

The MSM approach [12] is implemented for atomistic evaluation of
stress concentration factor of SLGSs having circular-shaped vacancies.
The main idea of MSM is to match the response of a nanostructure

Fig. 1. A thin panel of finite width having a single circular hole subjected to uniform
uniaxial tension.
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against a load condition to the response of a frame-like macro structure
containing beam and bar elements. The geometry of frame-like
structure is constructed similar to the lattice arrangement of the
associated nanostructure. The key point for matching the response is
to make a coequality between strain energies of structural element in
MSM and potential energies of chemical bonds. Implementing this
energy equivalency, one can obtain the stiffness and cross section of the
equivalent structural element.

For the present SLGSs having circular holes, a frame-like structure
composed of connecting beams similar to hexagonal lattice of carbon
atoms is defined. The length of beams, L, is considered equals to the
carbon-carbon covalent bond length, i.e. 1.421Å [12]. The strain energy
of a beam can be calculated by three well-known deformations, i.e.
stretching energy, Ur , bending energy, Uθ, and torsional energy, ,Uφ as
follows:

U r

U θ

U φ

= (∆ ) ,

= (∆ ) ,

= (∆ )

r
EA

L

θ
EI
L

φ
GJ

L

2
2

2
2

2
2

(6)

where E and G are the elastic and shear modulus, A, I , and J are the
area, the moment of inertia, and the polar moment of inertia of the
cross section of the equivalent beam, respectively. Also, r∆ , θ∆ , and φ∆
are the stretching displacement and bending and torsional rotations,
respectively. The potential energy of covalent bond for carbon atoms in
the hexagonal lattice of SLGSs can be evaluated as follows [12]:

U k r

U k θ

U k φ

= 0.5 (∆ ) ,

= 0.5 (∆ ) ,

= 0.5 (∆ )

r r

θ θ

φ φ

2

2

2 (7)

By equating Eq. (6) and Eq. (7) one may obtain the tensile rigidity,
EA k L= r , the flexural rigidity, EI k L= θ , and the torsional rigidity,
GJ k L= φ . Also, considering a circular cross section, the elastic
modulus, E , the shear modulus, G, and the diameter dc of the
equivalent beam can be obtained as:

d k k E
k L
πk

G
k k L

πk
= 4 / , =

4
, =

8c θ r
r

θ

r φ

θ

2 2

2 (8)

In the present study, among computational approaches in structur-
al mechanics for stress analysis, finite element method (FEM), which
has been suggested by various researchers, is selected. It should be
noted that as attributing material properties to carbon chemical bonds
may not make a physical sense and cause negative bulk modulus in
FEM analysis, the tensile, the flexural, and the torsional rigidity are
directly used to define the mechanical properties of the beam elements.

In MSM model of SLGS, a 2D hexagonal lattice of equivalent beams
corresponding to SLGS dimensions is constructed. Each covalent bond
is discretized using three linearly interpolated beam elements. In order
to form a circular shaped hole, a circle whose center coordinate
matches the coordinate of nearest carbon atom to the center of SLGS
is defined and all the atoms located inside the circle are removed. The
reported radius for holes is the radius of this cutting circle. It is noted
that due to discrete nature of hexagonal lattice, increasing the radius
may not change the size of holes until some other atoms come to the
circle. Therefore, in the steps of increasing the radius, the maximum
radius which causes a change in the size of hole is reported. Dangling
bonds are kept. For nodes located at the left edges, the movements
along x direction and rotations are fixed, while, upper and lower edges
are allowed to be free. The loading is applied in form of concentrated
nodal force which is equally dispersed at the nodes of the right edge. It
is noted that the value of nodal force is not the matter as the solution is
linear under the proportional limit. The maximum and average stresses
are proportionally related to the applied force and consequently the

stress concentration factor is not affected by the value of force. The
force-displacement equation of an equivalent beam is introduced as:

K u f[ ]{ } = { }i i i (9)

in which, K[ ]i , u{ }i , and f{ }i are respectively the stiffness matrix, the
nodal displacement vector, and the nodal force vector of the beam
element. The component of K[ ]i can be calculated in terms of stiffness
and cross section parameters of equivalent beam [12]. The governing
differential equations of motion for the entire system of the frame-like
structure can be constructed by assembling the local element matrices
as follows:

K u f[ ]{ } = { } (10)

in which, K[ ] is the global stiffness matrix, u{ } is the global nodal
displacement vector, and {f} is the nodal external force vector. By
solving Eq. (10), one can calculate the displacements, strains and
stresses in a SLGSs to calculate the stress concentration factor. Then,
based on Eq. (2) the gross stress concentration factor, Kg, can be
calculated by dividing the maximum axial stress of beam elements to
the average stress far from the circular boundaries (Fig. 2).

3.2. MD simulation for SLGSs

MD simulation has been performed by means of the open source
MD simulator, i.e. large-scale atomic/molecular massively parallel
simulator (LAMMPS), using a velocity-Verlet algorithm with a time
step of 0.5 fs, in order to make an insight to the influence of circular
holes on the tensile strength of SLGSs. The adaptive intermolecular
reactive empirical bond order potential (AIREBO) [33] through the
Nose-Hoover thermostat [34] is applied. As the present MSM model
does not take into account thermal effects, MD simulations are also
carried out at low temperature conditions, 1 K, to avoid thermal
fluctuations. Dangling bonds are also kept in MD simulations.
Boundary conditions are implemented by fixing motion of one layer
of carbon atoms along x direction on the left edges of SLGSs and a
stepwise strain is applied incrementally.

4. Results and discussion

Atomistic evaluation of stress concentration factor, Kg, is performed
by MSM. The introduced force constants in Eq. (7) are considered as
[12]: k E= 6.52 Nnmr

−7 −1, k E= 8.76 Nnmθ
−10 , k E= 2.78 Nnmφ

−10 . To take
into account the chirality effects, SLGSs with either armchair or zigzag
configurations are considered.

At first, the validation of proposed MSM approach is performed by
comparing the present results with those reported by Pugno and Ruoff
[25] introducing quantized fracture mechanics (QFM). As an energy-
based theory, QFM modifies continuum-based fracture mechanics by

Fig. 2. (a) MSM frame-like beam model of SLGSs having circular holes. (b) An example
of stress distribution obtained by MSM which is used for investigating the stress
concentration factor.
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substituting the differentials in Griffith's criterion with finite differ-
ences. Fig. 3 represents the stress concentration versus number of
omitted atoms. In the QFM results, it is considered that the width of
the SLGS tends to infinity (h → ∞), however, the MSM results have
been depicted for zigzag SLGSs with three finite widths. MSM results
reveal that the stress concentration factor is size dependent. One can
see that the MSM acts as an upper limit for QFM and when h increases
the difference between MSM and QFM fades away. It confirms that the
application of the presented MSM approach is reliable for atomistic
evaluation of stress concentration factor of SLGSs with circular holes.

It is meaningful to figure out the dependence of stress concentra-
tion factor to the chirality, the width and the relative size of the circular
hole. Fig. 4 illustrates the variation of stress concentration factor, Kg,
versus variation of dimensionless hole size, α d h= / , for a series of
armchair and zigzag SLGSs. In order to investigate the size effect, the
width of SLGSs is varied between the range of h = 10nm to h = 25nm. It
is seen that, similar to the classical stress concentration factor in Eq.
(5), increasing the dimensionless parameter of the hole, α, causes a rise
in stress concentration factor, Kg. It should be noted that due to
discrete nature of SLGSs removing a circular region at its center makes
an almost circular-shaped hole and therefore a fluctuated ascending
trend for Kg is observed. To enhance the usability of results, a
relationship between the stress concentration factor and the dimen-
sionless size of hole is derived by means of a curve fitting procedure for
either armchair or zigzag SLGSs as follows:

⎛
⎝
⎜⎜

⎞
⎠⎟K α α α h

nm
= (27.47 − 22.69 + 9.19 + 1.12)g

Zigzag 3 2
0.08

(11)

⎛
⎝
⎜⎜

⎞
⎠⎟K α α α h

nm
= (30.83 − 26.38 + 10.08 + 0.8)g

Armchair 3 2
0.19

(12)

where h is the width of SLGS in nm and consequently the stress
concentration factor is size dependent. Eq. (11) and Eq. (12) are used
for the evaluation of stress concentration factor in subsequent MSM
results.

One can generally observe that armchair SLGSs show a larger value
of stress concentration than zigzag ones. It means that for a similar
load condition they are subjected to higher values of stresses. In the
other words the armchair SLGSs with circular holes have lower

Fig. 3. Comparison between stress concentration factors obtained by MSM for finite h
and QFM in the limit of h→∞.

Fig. 4. Stress concentration factors evaluated by MSM for both zigzag and armchair
SLGSs of various widths.

Fig. 5. Relative increase in stress concentration due to chirality effect.

Fig. 6. Comparison between stress concentration factors of SLGSs predicted by classical
elasticity theory and obtained by MSM approach for (a) zigzag, (b) armchair.
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strength than zigzag ones. This behavior is in agreement with the
results reported in the literature which reveals that zigzag SLGSs are
stronger against tensile loads than the armchair ones [35]. In armchair
configuration, due to the geometrical arrangement of the lattice against
the tensile load, the axial forces endured by the equivalent beams are
larger than in the zigzag configuration which causes the weaker
structural nature of the armchair SLGSs against tension. This is the
reason for the larger value of the stress concentration factor in
armchair SLGSs. To quantify the chirality effect, the relative increase
in the stress concentration due to chirality, K͠g, is defined as:

K
K K

K
=

( − )
×100͠ g

g
Armchair

g
Zigzag

g
Zigzag

(13)

Fig. 5 illustrates the relative increase in stress concentration factor
due to armchair configuration versus dimensionless hole parameter, α,
for three sizes of SLGSs. It is observed that regardless of SLGS size, for
circular holes with α < 0.2, the effect of chirality on stress concentra-
tion is rapidly increased and for α0.2 < < 0.5 the relative increase in
stress concentration is almost constant. However, it should be noticed
that the increase in stress concentration factor due to armchair
configuration is size dependent and, in the range of presented simula-
tions (h = 10nm to h = 25nm), SLGSs with larger sizes have larger
relative increase in stress concentration factor.

In Fig. 6, a comparison between the stress concentration factor
obtained by MSM and the predicted one by Eq. (5) is depicted to
investigate if the classical elasticity is extensible to nano-sized SLGSs.
Generally, one can apperceive that for small values of dimensionless
hole parameter, α, the MSM and classical elasticity results behave
completely different so that the classical elasticity start from 3 while the
MSM starts around 1.7. It means that for the circular hole whose
diameter is small, the application of classical elasticity causes a
significant overestimation for both zigzag and armchair configurations.
However, for larger values of α the trend of MSM and classical elasticity
get closer. By increasingα for zigzag configuration, the classical
elasticity and MSM results are almost the same, however, for armchair
one the MSM results are significantly larger than those predicted by
classical elasticity. Besides, it should be noticed that unlike classical
elasticity, the stress concentration factor of nano-sized SLGSs is also
size dependent and in the range of the presented simulations
(h = 10nm to h = 25nm) by increasing the size of SLGS the stress
concentration factor is increased, however, this effect reduces by
increasing the width of SLGS.

Finally, a comparison between MD and MSM is presented in Fig. 7.
Computation of stresses in MD is performed based on viral stress
theory [36] which is used in LAMMPS. One can see that the distribu-
tions of stresses are similar. It shows that the predicted increasing
effect by MSM around circular holes is in good agreement with those

predicted by MD simulations. It is noted that due to different view
points of stress definition by these two approaches, the values of
stresses are not the same, however, the stress concentration factors
which reveals the pattern of stress distribution are in good agreement.
As a case of comparison, for a zigzag SLGS with h=10mm and
dimensionless parameter of hole, α = 0.5 the stress concentration
factors obtained by MD and MSM are 4.04 and 3.97, respectively.

5. Conclusion

In the present study, the atomistic evaluation of stress concentra-
tion factor for SLGSs having circular holes under unidirectional tensile
loading is investigated by application of MSM approach and are
validated with those obtained by QFM and MD simulations. The
conclusions are listed as follows:

• It is confirmed that the application of presented MSM approach is
reliable for atomistic evaluation of stress concentration factor of
SLGSs with circular holes.

• Increasing the size of circular hole causes an increase in stress
concentration factor for both armchair and zigzag configurations.

• For small values of dimensionless hole parameter, α, the MSM
predicts Kg around 1.7 in contrast to the factor of 3 of elasticity.
However, for larger values of α, MSM converges to the prediction of
classical elasticity.

• Regardless of SLGSs size, stress concentration factor is larger for
armchair configuration than zigzag one, which means that armchair
SLGSs with circular holes have less strength under tensile loadings.

• For circular holes with α < 0.2, the increasing effect on stress
concentration due to armchair configuration is rapidly raised and
for α0.2 < < 0.5 it is almost constant.
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