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A B S T R A C T

Macroscopic friction coefficients observed in experiments are the result of various types of complex multiscale
interactions between sliding surfaces. Therefore, there are several ways to modify them depending on the physical
phenomena involved. Recently, it has been demonstrated that surface structure, e.g. artificial patterning, can be
used to tune frictional properties. In this paper, we show how the global friction coefficients can also be
manipulated using composite surfaces with varying roughness or stiffness values, i.e. by combining geometrical
features with the modification of local friction coefficients or stiffnesses. We show that a remarkable reduction of
static friction can be achieved by introducing hierarchical arrangements of varying local roughness values, or by
introducing controlled material stiffness variations.
1. Introduction

The constitutive laws of friction appear to be very simple at the
macroscopic scale, indeed they were already formulated by Leonardo da
Vinci, and later introduced in the context of classical mechanics with the
so called Amonton's-Coulomb (AC) law: the friction force is proportional
to the applied normal load and is independent of the apparent contact
surface and of the sliding velocity [1]. The proportionality constants are
called friction coefficients, which are different in the static and the dy-
namic sliding phase. Although some violations have been observed [2],
this is a good approximate description of the macroscopic frictional force
between two solid sliding surfaces [3].

However, the origin of this behaviour turns out to be much more
complicated, since friction coefficients are effective values, enclosing all
the interactions occurring from atomic length scales, involving “dry” or
chemical adhesion forces, to macroscopic scales, involving forces due to
solid deformation and surface roughness. Moreover, friction coefficients
are not a specific feature of the specific material, rather they are the result
of the complex interplay between the contact surfaces occurring at
various length scales in that material and involving different basic
physical mechanisms [4,5]. Thus, in order to modify the macroscopic
emergent behaviour, one can intervene on the single mechanisms
involved. For example, it is possible to modify the interactions at the
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microscopic level by means of lubrication between surfaces, so that solid-
solid molecular forces are switched to liquid-solid interactions and fric-
tion is reduced. At the macroscopic level, friction can be reduced by
means of smoothing or polishing procedures, in order to remove surface
asperities hindering relative motion. Thus, problems related to friction,
which is a complex multiscale phenomenon, can be addressed with
different methods, from a practical and a theoretical point of view [6].

Another way to modify frictional properties is to manufacture sliding
surfaces with artificial patterning, frommicrometric to millimetric scales,
e.g. grooves and pawls perpendicular to the direction of motion. The
effects of these structures have been studied both numerically [7] and
experimentally [8,9], and recently their hierarchical arrangement has
also been investigated by means of numerical simulations [10]: results
show that by changing the architecture of the contact surface only, the
global static friction coefficients can be tuned without changing the
chemical or physical properties of the material. This is because by
exploiting patterning it is possible to modify mesoscopic features, i.e. the
effective contact area and the stress concentrations occurring in the static
phase, providing a way to modify macroscopic friction coefficients.

In this paper, we show that this approach can be combined with the
local variation of friction coefficients, corresponding to a local change of
material properties or of local surface roughness, in order to reduce static
friction. We consider only roughness modifications occurring at the
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mesoscopic scale, using a statistical description based on a one-
dimensional version of the spring-block model [11]. This approach al-
lows to address the problem of friction in composite materials, which are
widely used in practical applications [12–16] but whose frictional
behaviour is still scarcely studied from a theoretical and numerical point
of view. Moreover, we consider local hierarchical arrangements of sur-
face properties on different characteristic length scales. This allows us to
highlight the main mechanisms taking place in the presence of different
length scales, which could be exploited to design artificial surfaces with
specific tribologic properties.

Finally, we also consider a composite material with varying elastic
properties, i.e. in which the elastic modulus is characterized by a linear
grading. This can be found for example in functionally-graded composite
materials, i.e. inhomogeneous materials whose physical properties are
designed to vary stepwise or continuously [17,18] to manipulate global
properties such as elasticity, thermal conductivity, hardness etc. These
types of composite materials are widely adopted in practical applications,
so that it is useful to investigate their frictional properties. A linear
grading of elastic properties can be also combined with a local change of
surface roughness in order to exploit both effects.

2. Spring-block model

In order to study the effect of varying local friction coefficients on a
surface, we adopt the one-dimensional spring-block model [19,20],
which is schematically represented in Fig. 1: the material is discretized in
N blocks of mass m along the direction of motion, connected by means of
springs of stiffness Kint and rest length lx. Each block is also attached by
means of shear springs of stiffness Ks to a slider which is moving at
constant velocity v. A normal pressure P is uniformly applied on the
surface, so that the same normal pressure is acting on all blocks. A viscous
force with damping coefficient γ in the underdamped regime is also
added, in order to eliminate artificial block oscillations. Despite its
simplicity, this model has already been used in many studies to investi-
gate the frictional properties of elastic materials [11,21–30].

The blocks, representing a region of characteristic length lx on the
surface of the material, are in contact with an infinitely rigid plane.
Friction at the block scale is introduced through the classical AC friction
force: each block is characterized by microscopic static and dynamic
friction coefficients, respectively μsi, μdi, extracted from a Gaussian sta-
tistical distribution. In the following, we will drop the subscripts s or d of
the friction coefficients every time the considerations apply to both the
coefficients.

This distribution does not necessarily represent the statistics of the
contact points due to the surface roughness, rather it is a distribution of
force thresholds for an elementary surface unit, used to provide an
effective statistical description of the AC friction force at larger length
scales than those relative to micro-scale phenomena. Though others can
also be appropriate, the Gaussian distribution is a conventional
choice that can be used to approximate any peaked distribution with
parameters that are easily associated with the mean value and the stan-
dard deviation. The probability distribution is pðμiÞ ¼ ð ffiffiffiffiffiffi

2π
p

σÞ�1exp½�
ðμi � ðμÞmÞ2=ð2σ2Þ�, where ðμÞm is the average microscopic coefficient
Fig. 1. Schematic of the spring-block mod
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and σ is its standard deviation. This distribution is adopted for both the
coefficients but with different parameters.

The global friction coefficients, obtained from the sum of all the
friction forces on the blocks, will be denoted withM, i.e. ðμÞM . The global
dynamic friction coefficient is calculated from the time average during
the dynamic phase. The model does not include any wear phenomena or
other long term effects occurring after the onset of macroscopic sliding.
Results regarding the dynamic friction are to be intended within the
limits of this approximation. The global static friction coefficient is
calculated from the maximum of the total friction force during the initial
static phase, identified using the absolute maximum of the number of
moving blocks, representing a macroscopic sliding event. In most cases,
this coincides with the maximum of the total friction force over time.

In summary, the forces acting of each block are: the shear elastic force
due to the slider uniform motion, Fs ¼ Ks⋅ðvtþ li� xiÞ, where xi is the
position of the block i and li is its starting rest position; the internal elastic
restoring force between blocks Fint ¼ Kint ⋅ðxiþ1þ xi�1� 2xiÞ; the normal
force Fn ¼ P lxly and the viscous force Fd ¼�mγ _xi; finally, the AC friction
force Ffr : if the block i is at rest, the friction force is equal and opposite to
the resulting driving force, i.e. Ffr ¼ � ðFsþ FintÞ up to the threshold Ffr ¼
μsi Fn. When this limit is exceeded, a constant dynamic friction force
opposes the motion, i.e. Ffr ¼ � μdi Fn. Thus, the equation of the motion
for the block i along the sliding direction x is obtained fromNewton's law:
m€xi ¼ Fintþ Fs� mγ _xiþ Ffr .

The friction coefficients are fixed at the beginning of the simulation
by extracting their values from the chosen distribution with a pseudo-
random number generator. We have adopted a generator based on the
Mersenne-Twister algorithm [31]. The overall system of ordinary dif-
ferential equations can be solved numerically with a fourth-order Runge-
Kutta algorithm with constant time step integration [32]. Since the
friction coefficients of the blocks are assigned after generating them with
a pseudo-random number generator from the chosen distribution at each
run, the final result of any observable consists on an average of various
repetitions of the simulation. Usually, we assume an elementary inte-
gration time step h ¼ 10�4 ms and we repeat the simulation about twenty
times for statistical reliability.

The values of the parameters can be assigned by relating them to the
macroscopic properties of the material, such as the Young's modulus E,
the shear modulus G, the mass density ρ, the transversal dimensions ly , lz
and the total length Lx ¼ Nlx. The mass is m ¼ ρ lxly lz, the stiffnesses are
Kint ¼ E⋅ðN� 1Þly lz=Lx and Ks ¼ G⋅ly lx=lz. The stiffnesses are assumed
constant for all the blocks, also in presence of different roughnesses,
unless grading is explicitly introduced (see Section 6). This choice is
made to reduce the number of free parameters of the model, but other
formulations are equally valid (e.g. with constant friction coefficients and
a statistical dispersion on the stiffnesses) and would not significantly
affect the qualitative behaviour. We choose the global shear modulus as
G ¼ 5MPa, the Young's modulus E ¼ 15MPa, the mass density ρ ¼ 1:2 g/
cm3, which are typical values for a rubber-like material with Poisson
ratio ν ¼ 0:5.

The length lx is an arbitrary parameter representing the elementary
discretization of the material and, consequently, the smallest surface
feature that can be described in the model. We have fixed lx ¼ 0:05 mm,
el with the notation used in the text.



Fig. 3. Example of a pattern alternating rough and smooth zones of length lg , with local
friction coefficients respectively ðμÞm1, ðμÞm2.
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corresponding to a size larger thanmicro-scale structures, like the surface
roughness [33,34] or microscopic patterns [35–37]. In any case, quali-
tative results are not affected by changing this parameter by an order of
magnitude. The transversal lengths are fixed to lz ¼ 0:05 mm, ly ¼
1:0 mm. The damping coefficient γ is an arbitrary parameter which is
tuned in the underdamped regime so that it is smaller than the charac-
teristic frequencies of system [24]. We fix γ ¼ 100 ms�1, N ¼ 480, v ¼
0:05 cm/s, P ¼ 0:1 MPa. The microscopic friction coefficients are spec-
ified for each considered case.

3. Friction on uniform surfaces

The spring-block model described in Section 2 requires that micro-
scopic friction coefficients be assigned to each block, extracting them
from a statistical distribution, while the global friction coefficients are
deduced by solving the equation of motion of the whole system. In this
section, we investigate how the global friction coefficients are affected by
these microscopic distributions of the friction coefficients, while other
parameters are unchanged from Section 2. This is useful to derive the
behaviour of the model as a benchmark for the next sections, where more
complex statistical distributions are introduced for the blocks. Here and
in the next sections we will focus on the static friction coefficient, since
the dynamic one has already been studied in Ref. [10].

In general, the numerical simulation of static friction is similar to that
in a fracture mechanics problem [38]. The static friction coefficient
distribution, corresponding to the threshold forces for block motion, are
analogous to the thresholds for breaking bonds in fiber bundle or lattice
spring models [39,40]. Hence, we expect the global friction coefficient to
decrease with a wider static statistical distribution, since the presence of
weaker elements can trigger avalanche ruptures leading to a macroscopic
sliding event. This is confirmed by numerical simulations in Fig. 2a: for
narrow statistical distributions, the relative reduction from ðμsÞm to ðμsÞM
depends only on the ratio between microscopic static and dynamic co-
efficients. For a larger variance this is correct only as first approximation.
This behaviour is taken as a reference for the cases considered in the
following, when variations of the local coefficient distributions are
introduced along the surface to model a spatially varying surface
roughness. Fig. 2b shows that the local dynamic coefficient influences the
global static coefficient only for large variance values of the local static
coefficients. This is because the macroscopic detachment phase (i.e.
when some blocks are already in motion while others are still attached to
Fig. 2. a) Global static friction coefficients ðμsÞM as a function of the statistical dispersion of the
ðμsÞm , respectively). At first order the results do not depend on the values of the local static coeffi
local static one). For small variance values, the global static coefficient becomes insensitive to
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the substrate) is longer with larger variances, so that the dynamic friction
forces due to the moving blocks influence the total friction.

4. Friction on variable-roughness patterned surfaces

For the sake of simplicity, let us assume that our system can display
two types of surface roughnesses (Fig. 3): for simplicity we will call them
“rough” and “smooth” regions, although both have non negligible fric-
tion. In the rough regions of the surface the local friction coefficients are
extracted from a probability distribution with ðμsÞm1 ¼ 1:0ð1Þ and
ðμdÞm1 ¼ 0:60ð4Þ, while in the smooth ones ðμsÞm2 ¼ 0:50ð5Þ and ðμdÞm2 ¼
0:30ð2Þ. The global friction coefficients for a uniform surface with these
coefficients are ðμsÞM1 ¼ 0:788ð2Þ, ðμdÞM1 ¼ 0:616ð4Þ for rough regions,
and ðμsÞM2 ¼ 0:398ð2Þ, ðμdÞM2 ¼ 308ð3Þ for smooth ones. As expected
from Section 3, their ratio is about one half.

Let us consider pattern of alternating rough and smooth regions with
a characteristic length lg , as depicted in Fig. 3. All other parameters of the
system are fixed. In this configuration half of the surface is rough, and
half is smooth. The number of blocks in a length lg is indicated as ng , so
that lg ¼ nglx. Thus, the number of blocks in a rough zone nr or a smooth
one ns are nr ¼ ns ¼ N=ð2ngÞ.

The structure considered in Fig. 3 is similar to a patterned surface
local ones σμs (with a fixed ratio between microscopic dynamic and static values ðμdÞm and
cients. b) Global static coefficients as a function the local dynamic coefficient (with a fixed
the local dynamic coefficient value.
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with grooves, in which the friction coefficient is assumed to be zero. In
this case, it is known both from numerical studies [7] and experimental
results [41,42] that static friction decreases with the width of the
grooves. In our previous work [10] we have also shown that this is due to
the increase of the shear stress concentrations at the edge of the grooves.
In the present situation, instead, the whole surface is in contact with the
rigid substrate, but the mean value of the static friction coefficient varies
periodically along the slider.

In this case, the resulting global coefficient is expected to be included
between the mean values of the two areas: ðμÞM2 < μM < ðμÞM1. In
particular one could trivially think that the result for the global coeffi-
cient should be close to that obtained by setting as microscopic average
ðμÞm3 ¼ ððμÞm1þ ðμÞm2Þ=2, i.e. the arithmetic mean between the micro-
scopic coefficients of the rough and smooth zones. Instead, as shown in
Fig. 4, this is true only for the dynamic coefficient, while the static one
always displays a reduction with respect to the average value. In
particular, if we extract the microscopic coefficients of the blocks from a
single Gaussian distribution corresponding to the arithmetic mean,
ðμsÞm3 ¼ 0:75ð7Þ and ðμdÞm3 ¼ 0:45ð3Þ, we obtain ðμsÞM3 ¼ 0:592ð3Þ and
ðμdÞM3 ¼ 0:462ð1Þ, while the coefficients obtained with a pattern of
rough and smooth zones are always smaller. These results are consistent
with those obtained with a multiscale version of the model, whose
implementation is conceptually different, but applied to the same
structure [43].

This effect is due to the different variance between a single Gaussian
distribution for all the surface and two separate Gaussian distributions:
although the mean value is the same, the global static coefficient is
reduced when a wider statistical dispersion is present, as shown in Sec-
tion 3. If we extract all the local coefficients from a bimodal Gaussian
distribution (i.e. double peaked around ðμÞm1 and ðμÞm2), the result is
ðμsÞMB ¼ 0:501ð2Þ, i.e. twenty percent less than that of a single Gaussian.
This configuration corresponds to a random arrangement of rough and
smooth regions, as could be realized by a composite material, whose two
component materials have different statistically distributed frictional
properties.

The resulting global friction properties are not only dependent on
statistical effects, since there is also an influence due to geometry: as
shown in Fig. 4, the size lg of the regions influences the global static
coefficient similarly to what is observed with a patterning of grooves and
pawls. The fundamental difference is that, in the present case, all blocks
are always in contact, and the normal load is equally distributed along
the whole surface, but a similar mechanism takes place: when the contact
points of the surface in the smooth zones (typically with smaller
Fig. 4. Global friction coefficients as a function of the ratio between the widths of rough
and smooth zones ng ¼ lg=lx . For comparison, we also show the global friction coefficients
of a uniform surface, whose microscopic coefficients are extracted from a single Gaussian
distribution with mean value corresponding to the arithmetic mean of the rough and
smooth zones (the continuous lines, indicated with ðμÞM3 in the text). The dotted line
indicates the static coefficient ðμsÞMB obtained with a bimodal Gaussian distribution.
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threshold forces) begin to slide, they lead to an increase in the force
exerted on the points still at rest in the rough zones, so that static friction
is reduced with respect to ðμsÞM3 for any lg . Moreover, the resulting global
static coefficient can be either be tuned to be greater or smaller than
ðμsÞMB, depending on the length lg .

This example shows how the geometric organization of rough and
smooth zones along the surface allows to modify static friction. In the
following, we show that by combining this idea with a hierarchical
structure, it is possible to obtain an even more consistent static fric-
tion reduction.

5. Friction on surfaces with hierarchically patterned roughness

In this section, we investigate the effects on global friction coefficients
induced by hierarchical organization of the regions with different
roughnesses, as shown for example in Fig. 5. This configuration is hier-
archical in the sense that there are two different length scales for the
smooth regions (blue in the figure), that are included between the rough
ones (red in the figure). To compare the results with those of Section 4,
we choose a hierarchical pattern in which half of the overall surface area
is smooth and the other is rough, so that the mean value of the distri-
butions of the microscopic coefficients is still ðμÞm3.

We identify such configurations by indicating the length of the

smooth zones and the rough ones, respectively lðiÞs and lðiÞr , ordered with
the index i increasing for the larger length scale. For example, the

configuration shown in Fig. 5 is characterized by the parameters lð1Þs , lð2Þs

and lð1Þr , i.e. there are large smooth zones of size lð2Þs , and then smaller

rough and smooth zones of sizes lð1Þr and , respectively lð1Þr . We can express

these quantities using the adimensional ratios nðiÞs ≡ lðiÞs =lx and nðiÞr ≡lðiÞs =lx,
representing the number of blocks for each region. Results for these
configurations are shown in Fig. 6.

A complementary configuration to that shown in Fig. 5 can be ob-
tained by exchanging the rough regions with the smooth ones, i.e. the
subscript s with r. In this case the statistics of the detachment thresholds
for the configuration are exactly the same, but the geometry is different.
In the case of a single level of patterning, as in Section 4, there is no effect
by exchanging rough and smooth zones, while with a hierarchical
arrangement the results are not symmetric and differ by up to ten
percent. Since the statistics is the same, this effect is purely geometric.
Thus, we have found a peculiar feature which can be obtained by means
of hierarchical structures. We will call “data set S” that obtained with two
length scales for the smooth regions (exactly as in Fig. 5) and “data set R”
the complementary one, i.e. with two length scales for rough regions.
Fig. 5. Example of a surface with a hierarchical arrangement of smooth zones alternating
with rough ones. The ratio between the sizes indicated in the figure are lð2Þs =lð1Þs ¼ 33, lð1Þr =

lð1Þs ¼ 3, where the subscript s denotes the smooth zones and r the rough ones. The pattern
is designed in such way that exactly half of the total surface is covered by rough zones and
the other half by smooth zones.



Fig. 6. Global static friction coefficients for hierarchical configurations such as the one shown in Fig. 5, as a function of the larger length scale, that is nð2Þs for data set S and nð2Þr for data set
R. The smaller length scales are reported in the legends. The dashed line indicates the case of a uniform surface with local friction coefficients ðμÞMB extracted from the bimodal Gaussian
distribution.
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As we can see in Fig. 6, there are two different regimes leading to an
increase or a decrease of the static friction with respect to the case of a
uniform surface with local coefficients extracted from the bimodal
Gaussian distribution: for data set S, static friction is greater for larger
separations between length scales, i.e. for a large asymmetry between
rough and smooth regions. Hence, configurations similar to data set R are
preferable to reduce static friction and to “flatten” the transition between
the static and kinetic phase. This is because of the interplay between
microscopic degrees of freedom during the transition from static to ki-
netic friction, as shown in Fig. 7, where the total friction force as a
function of time is compared for both the data sets.

Thus, it is possible to tune the static friction bymeans of a hierarchical
organization of zones with different roughnesses, and to obtain a friction
coefficient close to the lower nominal limit ðμÞM2, but with only half the
surface smoothed. From this we can conclude that to reduce the static
friction of a material it is sufficient to smooth only part of the surface as
long as it is in a “smart” way.

6. Friction on surfaces with graded stiffness

In this section, we investigate the modification of static friction due to
the introduction of a linear grading of the elastic modulus, as occurs in a
Fig. 7. Comparison of the total normalized friction force, as a function of time, between
the data set S (case nð1Þs ¼ 2, nð1Þr ¼ 1, nð2Þs ¼ 25), data set R (case nð1Þr ¼ 2, nð1Þs ¼ 1, nð2Þr ¼
25) and the uniform case with the same arithmetic mean of the local friction coefficient.
The difference in the structure of the local friction coefficients of the illustrated cases
causes a different qualitative transition between the static and dynamic sliding phase. On
the right axis, the time evolution of the number of moving blocks is reported.
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functionally graded composite material. We consider a linear increase (or
decrease) of the elastic modulus along the longitudinal direction of the
material, i.e. the sliding direction. In the spring-block model, this means
that Kint and Ks depend on the block index i. In order to compare the
results, the overall stiffness value ðKsÞtot ≡

P

i
ðKsÞi is fixed, and similarly

for Kint . Then, we introduce the relative maximum variation at the edges,
namely Δ, so that Δ ¼ 0:2 means, for example, that for both the stiff-
nesses the maximum difference at the edge is twenty percent above/
below their average. In symbols, ðKsÞi ¼ Ksð1þ Δð2i=ðN� 1Þ� 1ÞÞ where
Ks is the value without grading, and the same holds for Kint .

In the spring-block model, variations of Kint turn out to be irrelevant,
so that the effect can be studied by setting the grading only on the springs
Ks. Results are shown in Fig. 8. In the presence of grading ,the static
friction coefficient is considerably reduced. The explanation for this is
that in this case the local rupture/sliding thresholds are exceeded sooner
than in the case with no grading in the region where the stiffnesses are
increased, so that an avalanche of ruptures is triggered in the neigh-
bouring contact points, until the whole surface detaches. We observe no
dependence on the orientation of the grading. Also, the dynamic friction
coefficient is left unchanged.

The exact amount of change of the static friction depends on the
system parameters, but we may expect this effect on every configuration,
Fig. 8. Decrease of the macroscopic static friction coefficient as a function of the elastic
modulus grading level for a uniform surface with microscopic coefficients ðμÞm1 (red
points), and for two cases of periodic patterning of the local roughness, as in Section 4,
with ng ¼ 2 (blue points) and ng ¼ 8 (green points).
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because the grading always induces a stress distribution on the surface
that favors avalanche phenomena. Indeed, a reduction of the static fric-
tion is also observed in the case of patterning of the local surface
roughness. In these simulations, only a linear grading has been consid-
ered, but similar effects are expected with a generic functional shape.
Thus, we have shown that a further reduction of the static friction can be
obtained with a grading on the elastic properties of the material, i.e. in a
composite material with a functionally-graded elastic modulus.

7. Conclusions

In this paper, we have investigated bymeans of numerical simulations
the variation of the friction coefficients of a material characterized by
two distinct surface roughnesses and local friction coefficients, as found
in composite materials, or in materials whose surfaces have different
degrees of smoothing. For this purpose, we have adopted a one-
dimensional version of the spring-block model, which is particularly
appropriate for parametric studies on the frictional behaviour of a
structured elastic material.

First, we have studied the effects due to statistical variations in sur-
face roughness of a composite surface: the presence of a double-peaked
distribution of the local friction coefficients implies that the variance is
typically larger than for a single peak distribution, so that static friction is
reduced. This effect also occurs without any surface patterning.

Secondly, we have evaluated the influence of the geometry on these
composite systems. If the surface is divided into rough and smooth re-
gions of the same size, the global static friction coefficient depends on
their length scale, similarly to the case of a surface with a patterning of
grooves and pawls. This effect is purely due to structure, since the sta-
tistics is the same, and the patterning can be used either to reduce the
static friction or to increase it depending on the length scale of the
different roughness zones. Thus, in order to considerably reduce static
friction, it is sufficient to smooth only a part surface, as long as this is
done in a “smart” way.

If instead we introduce different length scales for rough and smooth
regions, i.e. we adopt a hierarchical organization of the zones with
different roughnesses, we obtain opposite results depending on the
ordering between rough and smooth zones, i.e. the surface is no longer
symmetric under the exchange of the smooth and rough zones. Thus, the
geometric and multiscale arrangement is crucial to determine measur-
able variations of static friction, even when the statistical properties of
the local coefficients are the same. This example suggests a possible
mechanism for modifying the static friction properties of a surface by
combining different mesoscopic roughness and geometric parameters.
Additionally, it is possible to modify not only the numerical value of the
static coefficient, but also the qualitative behaviour of the transition from
static to dynamic friction.

Finally, we have considered a composite material with a graded
elastic modulus by considering linearly varying stiffnesses in the spring-
block model. Results show that this provides the possibility of a further
reduction of the static friction, both in the case of a smooth surface and of
patterning of the local roughness.

All of these results can be relevant for a large number of applications
where maximization or minimization of friction is crucial. One example
could be the friction performance of vehicle tires that are typically pro-
duced in reinforced rubber composites with various levels of patterning
or roughnesses. The large level of tunability of properties obtained
exploiting composite material composition, stiffness, roughness and
patterning provide an attractive way to reach desired properties, and the
presented model a useful tool in the design of optimal solutions.
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