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Abstract

When considering a structural element with a re-entrant corner, the experimental analysis shows how the fracture

strength increases with the angle of the corner. Thus, the strength increases with a decrease of the mass of the structure,

in contrast to what we are used to observe in different kind of collapses, e.g., plasticity. To predict this behaviour, a non-

local theory, basically based on the Novozhilov�s hypothesis of existence of a fracture quantum, is herein presented.

Theoretical predictions for the strength of finite structures (e.g., finite plates under tension or beams under bending)

by varying both angle and relative depth of the corner are presented: accordingly, simple formulas, useful in the design

of such structures, are provided. The theory is then compared with experimental and numerical results, showing a

relevant agreement.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-local fracture criteria are powerful methods in the study of crack propagation. In [1] Novozhilov

presents a non-local tensional criterion based on the existence of a fracture quantum. He identified the frac-

ture quantum with the atomic size of the crystalline lattice. On the other, his criterion is basically a non-
local stress criterion, and can treat also materials in which the link to the atomic structures is absent, as

shown by the Novozhilov�s apprentices and recently emphasized in [2]. We apply this method to study ana-

lytically the problem of the strength against fracture of structures containing re-entrant corners.
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Nomenclature

rij stress-field
r far-field stress

rf stress of failure

ru strength of the material

KI stress-intensity factor for the Mode I

KIC critical stress-intensity factor for the Mode I

r and u the polar co-ordinates

a power of the stress singularity

Sij function describing the angular profile of the stress-field
f shape function

g generalized shape function for c = p
b structure width

a defect length

c re-entrant corner angle

l structure length (of the three-point bending)

t structure thickness

P applied load (on the three-point bending specimen)
PCR critical load

s brittleness number

d0 fracture quantum

Superscript * refers to generalized quantities for re-entrant-corners

Superscript p refers to generalized quantities evaluated for c = p
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Since the pioneer paper [3] the problem of stress intensification at the vertex of re-entrant corners has not

been sufficiently addressed if compared with its considerable practical importance. Shapes and sizes of

notches or re-entrant corners in structural components are studied more frequently than shapes and sizes

of cracks. In spite of this, fracture mechanics applied to (long) sharp cracks [4,5] has been broadly devel-

oped in the last three decades, even if only as a special case of the more general problem of re-entrant

corners.

The investigation on stress intensification at the vertex of re-entrant corners carried out at CSIRO Aus-

tralian Forest Production Laboratory, Division of Building Research is very notable. In [6] the size scale
effects in structures with re-entrant corners due to the presence of a stress-singularity were investigated

and noted that they occur only when the member sizes are sufficiently large. Consequently, such scale effects

may not appear in scaled-down laboratory testing. The work presented in [6] was continued in [7] extending

conventional finite element procedures to non-zero angle notch problems. The author considered also the

problem of crack initiation at corners of openings in walls and examined the effect of beam size on the sharp

crack propagation in concrete [8].

In [9] the determination of realistic measures for the peak local stresses occurring at sharp re-entrant cor-

ners in plates under remote transverse loading has been considered. The authors took up the singular char-
acter of re-entrant corners and carried out experimental investigation on classical stress concentration.

Then, the Reciprocal Work Contour Integral Method was used to obtain the stress singularity at the tip

of corner configurations [10]. In this way, the numerical analysis of a lap joint with p/2 corner angles in

mixed mode loading has been performed.
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In [11] the expression of the brittleness number to study the transition between brittle and ductile col-

lapses [12–14] and the stress-intensity factor at the vertex of a re-entrant corner applying Buckingham�s
Theorem has been generalized. In the same paper a shape function for generalized stress-intensity factor,

assuming a combination of LEFM and ultimate strength function, is defined. According to the last hypoth-

esis and to the results of an experimental investigation, the values of stress-intensity factors varying the cor-
ner angle are reported.

More recently some authors [15] have obtained numerically, by FEM, the shape function for a re-entrant

corner with particular angles (0, p/2, 2p/3). In Ref. [2] a relation between the stress-intensity factor for a

corner and that for a crack, obtained from the Novozhilov�s brittle fracture criterion [1], is presented. This

criterion is based on the hypothesis that the fracture of solids is a discrete process: the destruction of the

connection between just one pair of atoms will be a fracture quantum. In [16] the stress and strain fields

at the vertex of a corner subjected to different boundary conditions, in plane problems of elasticity, have

been studied. In reference [17] the relation presented in [2] for the generalization of the stress-intensity fac-
tor is taken into account. In [18] the problem of evaluating linear elastic stress fields in the area of cracks

and notches by Muskhelishvili�s method based on complex functions has been consider. The stress-intensity

factors of angular corners have been also calculated for various geometrical and loading conditions by

numerical solutions of singular integral equations [19].

Purpose of the present paper is the prediction of the failure load for a structural member with a re-

entrant corner [20,21]. An interesting study on this topic is presented in [22]. By focusing attention on

an element of material ahead of the notch, failure by yielding and/or fracture has been predicted from

the stationary values of the volume energy density regardless of the order of the notch tip stress singularity.
Fracture initiation is associated with the critical value of the volume energy density being characteristic of

the material. As the stress singularity increases with decreasing notch angle, the critical applied stress to

initiate failure decreases.

The theory presented herein agree with the results obtained by the different approaches presented in [23–

25] and with the experimental results of the investigation reported in [11]. In addition, the paper solves an

old problem posed several years ago in [11], regarding the shape functions for structures with re-entrant

corners. The solution is based on the fracture criterion examined in [1] and on the generalized stress-inten-

sity factor obtained in [2]. Tanks to the last expression it has been possible to obtain analytically the gen-
eralized shape function defined in [11] and therefore the stress-intensity factor and strength of the structure.
2. Finite plate under tension

Considering a linear elastic plate with a boundary crack (Fig. 1, with c = 0), the symmetrical stress field

around the tip of the crack can be written as:
Fig. 1. Finite plate under tension with a re-entrant corner.
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rij ¼ KIr�1=2SijðuÞ ð1Þ

where KI is the stress-intensity factor for the Mode I, r and u are the polar co-ordinates represented in Fig.

1 and Sij is a function describing the angular profile of the stress field.

For every structure it is possible to express the stress intensity factor as:
KI ¼ rb1=2f ða=bÞ ð2Þ

where r is the nominal stress, b is a characteristic size of the structure, a is the crack length and f is a shape

function depending on the structural geometry and on the ratio a/b. The stress of failure rf is achieved when

KI is equal to its critical value KIC:
KIC ¼ rfb
1=2f ða=bÞ ð3Þ
The equations presented can be generalized to the case of re-entrant corner with angle c (Fig. 1).

When both the notch surfaces are free, the symmetrical stress field at the notch tip is [3]:
rij ¼ K�
I ðcÞr�aðcÞSðcÞ

ij ðuÞ ð4Þ
where the power a of the stress singularity is provided by the eigen-equation:
ð1� aÞ sinð2p� cÞ ¼ sin½ð1� aÞð2p� cÞ� ð5Þ

and ranges between 1/2 (when c = 0) and zero (when c = p).

If Buckingham�s Theorem for physical similitude and scale modelling is applied and stress and linear size

are assumed as fundamental quantities [11] it is possible to write an equation analogous to Eq. (2):
K�
I ðcÞ ¼ rbaðcÞf �ðc; a=bÞ; ½K�

I � ¼ ½F �½L�a�2 ð6Þ

When the angle c vanishes, Eq. (6) coincides with Eq. (2), whereas when c = p the stress-singularity disap-

pears and the generalized stress intensity factor K�
I assumes the physical dimensions of stress and becomes

proportional to the nominal stress r. As experimentally demonstrated in [6], the stress of failure rf is
achieved when the K�

I is equal to its critical value K�
IC:
K�
ICðcÞ ¼ r�

f b
aðcÞf �ðc; a=bÞ ð7Þ
If the angle is close to zero the corner becomes a crack and Eq. (7) becomes Eq. (3), where f is the following

polynomial function (a/b < 0.6):
f
a
b

� �
¼ 2

a
b

� �1=2

� 0:4
a
b

� �3=2

þ 18:7
a
b

� �5=2

� 38:5
a
b

� �7=2

þ 53:9
a
b

� �9=2

ð8Þ
In the opposite case of angle close to p, Eq. (7) becomes:
K�
ICðc ¼ pÞ ¼ Kp

IC ¼ ru ¼ rp
f gða=bÞ ð9Þ
where the function g takes into account the reduction of the resisting cross section:
g
a
b

� �
¼ 1

1� a=b
ð10Þ
3. Beam under three point bending

A three point bending specimen with a re-entrant corner (Fig. 2) is now considered. The stress-intensity

factor can be expressed as (Fig. 2):
K�
I ðcÞ ¼

Pl

tb2�aðcÞ f
�ðc; a=bÞ ð11Þ



Fig. 2. Three point bending beam with a re-entrant corner.
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which, in the critical condition, becomes:
K�
ICðcÞ ¼

P �
CRl

tb2�aðcÞ f
�ðc; a=bÞ ð12Þ
where f * is the unknown generalized shape function. For a crack Eq. (12) assumes the following form:
KIC ¼ K�
ICðc ¼ 0Þ ¼ PCRl

tb3=2
f ða=bÞ ð13Þ
where the function f can be expressed as follows (a/b < 0.6):
f
a
b

� �
¼ 2:9

a
b

� �1=2

� 4:6
a
b

� �3=2

þ 21:8
a
b

� �5=2

� 37:6
a
b

� �7=2

þ 38:7
a
b

� �9=2

ð14Þ
If the angle becomes flat the generalized stress-intensity factor becomes:
K�
ICðc ¼ pÞ ¼ Kp

IC ¼ ru ¼
P p
CRl

tb2
gða=bÞ ð15Þ
where the function g describes the reduction of the resisting cross section:
g
a
b

� �
¼ 3=2

ð1� a=bÞ2
ð16Þ
4. A non-local fracture stress criterion: fracture quantum and generalized stress-intensity factor

In [2] a relation between the stress-intensity factor for a re-entrant corner and that for a crack is obtained

from the non-local brittle fracture criterion [1].

The stress field in a cracked plate subject to tension tends to infinity at the crack tip. If it is supposed that

the failure occurs when the maximum stress becomes equal to a strength characteristic value, the plate

would collapse subject to an infinitesimal external load. In reality, the external load necessary to propagate
the crack in the plate is finite, as the energy criterion shows [4]. The paradox between the tensional and the

energy approaches can be explained changing the failure criterion assumed above, as done in [1]. This cri-

terion is based on the hypothesis that fracture in solids is a discrete process, i.e., a fracture quantum can be

considered. The crack will propagate not when the stress reaches a critical value but when its integral along

a quantum of ligament reaches a certain threshold. Accordingly, the brittle fracture criterion [1] should be

written in the following integral form:
Z d0

0

ryðxÞdx P rud0 ð17Þ



Fig. 3. Discrete fracture propagation in fracture quanta, here represented as spheres.
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where ru is a strength characteristic value for the material without defects and d0 is the fracture quantum

(Fig. 3). Note that in [1] Novozhilov identified the fracture quantum with the atomic size of the crystalline

lattice. However, if this hypothesis is relaxed, a more general non-local criterion is obtained, without any

link to the atomic dimension, as shown by the Novozhilov�s apprentices and recently reconsidered in [2].

Substituting the stress field around the vertex of the corner (4) into Eq. (17), we can rewrite the condition
for brittle propagation as:
K�
I ðcÞ P ½1� aðcÞ�ð2pd0ÞaðcÞru ð18Þ
where the right part of the inequality represents the critical value of the stress-intensity factor:
K�
ICðcÞ ¼ ½1� aðcÞ�ð2pd0ÞaðcÞru ð19Þ
Evaluating Eq. (19) for a crack we obtain d0 (it is interesting to emphasize how the quantum d0 coincides
with Irwin�s estimate of the plastic zone diameter):
d0 ¼
2

p
K2

IC

r2
u

ð20Þ
Substituting d0 into Eq. (19) we can find the relationship presented in [2]:
K�
ICðcÞ ¼ ð1� aðcÞÞru

2KIC

ru

� �2aðcÞ

ð21Þ
5. Generalized brittleness number, shape function and strength

The embrittlement of the structural response produced by the decrease in fracture toughness and/or by

the increase in strength ru and/or in the size b, can be described in a unitary and synthetic manner via the

variation in the following dimensionless number [11,12]:
s�ðcÞ ¼ K�
ICðcÞ

rub
aðcÞ ð22Þ
Larger the brittleness number s*(c), larger the structure ductility. If it is over than a characteristic number

s�0ðcÞ the ductile collapse (r = ru) precedes the generalized brittle collapse ðK�
I ðcÞ ¼ K�

ICðcÞÞ for any relative

corner depth a/b. Eq. (22) shows that the brittleness and the ductility are structure-characteristics more than

material-characteristics: increasing the size b of the structure its embrittlement increases.

Taking into account Eq. (21), relation (22) may be reformulated in a generalized form:
s�ðcÞ ¼ ð1� aðcÞÞð2sÞ2aðcÞ ð23Þ
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In the opposite cases of crack or corner angle close to p (flat angle) we respectively have:
s ¼ s�ðc ¼ 0Þ KIC

ru

ffiffiffi
b

p ð24aÞ

s�ðc ¼ pÞ ¼ 1 ð24bÞ

The last trivial equation has the meaning that for an uncracked structure the generalized brittle and the

ductile collapses are coincident.

Considering a three point bending specimen and substituting Eq. (22) into Eq. (12) we obtain the dimen-

sionless failure load as a function of the generalized brittleness number and of the shape function:
P �
CRl

tb2ru

¼ s�ðcÞ
f �ðc; a=bÞ ð25Þ
This kind of collapse, when K�
I ðcÞ ¼ K�

ICðcÞ, is always intermediate between brittle [KI = KIC] and ductile

[r = ru] collapses. Eq. (25) can be evaluated for a crack:
PCRl

tb2ru

¼ s
f ða=bÞ ð26Þ
and for a flat angle:
P p
CRl

tb2ru

¼ 1

gða=bÞ ð27Þ
For a structural element with a crack of a given relative depth, the transition between brittle and ductile

collapse [14] arises when the failure loads (26) and (27) are equal, i.e., when:
s0 ¼
f ða=bÞ
gða=bÞ ð28Þ
If the angle is different from zero, the crack becomes a re-entrant corner and the transition arises when the

failure loads (25) and (27) are equal, i.e., when:
s�0ðcÞ ¼
f �ðc; a=bÞ
gða=bÞ ð29Þ
This competition between the two kinds of collapses (25) and (27) is shown in the diagrams of Fig. 4. The

value of the brittleness number for which the corresponding generalized fracture curve (25) is tangential to

the curve of ductile collapse (27) represents its characteristic value; for higher values of s* the ductile col-

lapse precedes the generalized brittle collapse for any relative corner depth.
Substituting Eqs. (28) and (29) into Eq. (23) we obtain the generalized shape function for the re-entrant

corner (Fig. 5):
f �ðc; a=bÞ ¼ ð1� aðcÞÞgða=bÞ 2
f ða=bÞ
gða=bÞ

� �2aðcÞ

ð30Þ
This interesting result allows, via Eqs. (12) and (21), to obtain the strength for a structure with a re-entrant

corner.
The critical stress-intensity factor (for a crack) and the ultimate tensile strength of the material of the

element, can be obtained as functions of the failure loads in the cases of angle equal to zero (13) and flat

angle (15). Substituting the generalized stress-intensity factor (21) and the shape function (30) into Eq. (12),

we can predict the strength for a member with a re-entrant corner:
P �
CR

P p
CR

¼ PCR

P p
CR

� �2aðcÞ

ð31Þ



Fig. 4. (a) Competition between brittle (thin lines) and ductile (thick line) collapses, in the case of three point bending beam with edge

crack (c = 0�). (b) Competition between generalized brittle (thin lines) and ductile (thick line) collapses, in the case of three point

bending with re-entrant corner (c = 70�).

Fig. 5. Generalized shape function for the three point bending beam.
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This interesting result allows to predict in a very simple manner the strength of structures with a re-entrant

corners. Eqs. (30) and (31) are true also for different schemes such as the finite plate in tension already



Fig. 6. (a) Competition between brittle (thin lines) and ductile (thick line) collapses, in the case of plate in tension with edge crack

(c = 0�). (b) Competition between generalized brittle (thin lines) and ductile (thick line) collapses, in the case of plate in tension with re-

entrant corner (c = 70�).
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described, where the failure loads are equal to the failure stresses multiplied by a characteristic area, i.e.,

P �
CR / r�

CR. In Figs. 4, 5 the dimensionless strength of a three-point bending beam is reported (on the basis

of the shape functions (14) and (16)), whereas in Figs. 6, 7 the plate in tension is considered (shape functions
of Eqs. (8) and (10)).
6. Size-effects

Introducing a characteristic maximum value bmax of the structure, from the generalized brittleness num-

ber (22), we can rewrite Eq. (7) emphasizing the attenuation of the size effects on the failure load when

increasing the angle of the corner:
ln
r�
f

ru

¼ ln
s�ðbmaxÞ
f �ða=bÞ � aðcÞ ln b

bmax

ð32Þ



Fig. 8. Attenuation of the size effects increasing the angle of the corner.

Fig. 7. Generalized shape function for the plate in tension.
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If we consider self-similar structures, a/b = constant and as a consequence ln r�
f is proportional to �a lnb.

In other words, for a 5 0, the failure load decreases with size b. For structure (a = 0) without (or with a

flat) re-entrant corner the size effects vanish (Fig. 8).
7. Simplified results

Eqs. (21), (23) and (30) allow to obtain the generalized stress-intensity factor, the brittleness number and
the shape function for a structure with a re-entrant corner. All these generalized quantities G* can be writ-

ten in a unitary manner with reference to their known values for an angle equal to zero, G, or for a flat

angle, Gp:
G�ðcÞ
Gp ¼ 22aðcÞð1� aðcÞÞ G

Gp

� �2aðcÞ

¼ bðaðcÞÞ G
Gp

� �2aðcÞ

ð33Þ



Fig. 9. Quasi-unitary value of the b coefficient.
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where coefficient b is approximately constant and equal to one, as Fig. 9 shows. Its maximum divergence

from one is 6%. If we put b = 1 in Eq. (33) we can obtain the following simplified equation:
G�ðcÞ
Gp ¼ G

Gp

� �2aðcÞ

ð34Þ
This equation allows to describe also the generalized failure load (31) and can be defined as the fundamental

equation to generalize any quantity for a re-entrant corner. The theory is applicable to different schemes

and also with re-entrant corners not subjected only to Mode I; actually the approach proposed in Section

4 remains valid for crack propagation Mode II or III, considering the corresponding stress-intensity factors

and the shearing stresses instead of the normal ones.
8. Experimental and numerical assessments

The theory presented has been validated experimentally. Three point bending specimens of PMMA with

two different relative depths of the re-entrant corner (a = 1.2 cm, b = 5 cm, t = 5 cm, l = 19 cm) and six dif-

ferent angles, for a total of twelve specimens, have been tested. The results of their failure loads are reported

in [11]. From Eq. (31) we can obtain the corresponding theoretical predictions. The comparison between

theoretical and experimental results is shown in Fig. 10 by varying both the angle and relative depth of

the re-entrant corner. The results show basically a relevant agreement between the theoretical and the

experimental approaches.
In addition to the previous experimental assessment, a comparison with the numerical results on re-en-

trant corners reported in [23–25] and [26] is considered. In [25] the predictions reported in [23,24] were com-

pared, demonstrating their equivalence. A good correspondence between the results in [24] and in [26] is

emphasized in [24]. Thus, references [23–25] and [26] are equivalent to make a comparison. We consider

the numerical FEM results reported in [24]. The analysed case is a finite plate under tension containing

a re-entrant corner. From Eqs. (6), (8), (10) and (30) we can analytically predict the values of the stress-

intensity factors K�
I . Note that, according to our approach and to the definition for the stress-intensity fac-

tor K�
I ðnumÞ given in [24], we have to compare K�

I ðnumÞ with K�
I ðtheoÞ ¼ kðcÞK�

I , where kðcÞ ¼
1
2
ð2� a� ð1� aÞ cosðcÞ � cos½ð2p� cÞð1� aÞ�Þ, satisfying k(c = 0) = 1. The comparison between theory

and numerical solutions is reported in Tables 1 and 2, by varying respectively the angle and the relative



Fig. 10. (a) Experimental-theoretical comparison for the strengths of a three point bending specimen with corner of relative depth 0.2.

(b) Experimental and theoretical comparison for the strengths of a three point bending specimen with corner of relative depth 0.4.

Table 2

Numerical-theoretical comparison for the generalized stress-intensity factor by varying the relative depth of the corner (corner angle

equal to 90�)

Relative depth K�
I ðnumÞ
r

ffiffiffi
p

p
aa

K�
I ðtheoÞ
r

ffiffiffi
p

p
aa

0.2 1.60 1.59

0.3 1.94 1.91

0.4 2.46 2.40

0.5 3.32 3.19

0.6 4.79 4.49

Table 1

Numerical-theoretical comparison for the generalized stress-intensity factor by varying the angle of the corner (relative depth equal to

0.4)

Angle (degree) K�
I ðnumÞ
r

ffiffiffi
p

p
aa

K�
I ðtheoÞ
r

ffiffiffi
p

p
aa

0 2.10 2.11

10 2.11 2.12

30 2.12 2.15

60 2.23 2.25

90 2.46 2.40
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depth of the corner. Also in this case a good agreement is found. Note that the comparison does not involve

a best-fit parameter.

Additional results on re-entrant corners in similar but different contexts can be found in [27], where strips

are analysed, and in [28], the Murakami�s handbook, where the problem of a crack originating from a re-

entrant corner in a semi-infinite plate under bending is reported.
9. Conclusions

In this paper we have proposed an analytical solution for the problem of the prediction of the strength

for structures containing re-entrant corners. It is based on a non-local stress failure criterion. Even if the

theoretical approach is not trivial, the final result, i.e., Eq. (31), is very simple and can be easily applied

in the design of mechanical and civil components. A simplified equation, i.e., Eq. (34), is finally proposed
to generalize for a given corner angle its main quantities such as strength, stress-intensity factor, shape func-

tion, brittleness number and fracture toughness or material strength, starting from their well-known values

for flat angle (describing a cross-section reduction) and for vanishing angle (describing a crack). The meth-

od is sufficiently general and can be applied to different schemes and failure modes. Finally, we have shown

that our approach agrees with experimental and numerical analyses by varying both angle and relative

depth of the corner.
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