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Abstract: In recent years, experimental evidences have suggested important direct implications of viscoelasticity of human cells and cell
cytoskeleton dynamics on some relevant collective and single-cell behaviors such as migration, adhesion, and morphogenesis. Consequently,
the mechanical properties of single cells and how cells respond to mechanical stimuli have been at the center of a vivid debate in the scientific
community. By referencing important experimental findings from the literature that have shown that human metastatic tumor cells are ap-
proximately 70% softer than benign cells, independently from the cell lines examined, the present authors have very recently theoretically
demonstrated that these differences in stiffness might be exploited to mechanically discriminate healthy and cancer cells, for example, through
low-intensity therapeutic ultrasound. In particular, by using a generalized viscoelastic paradigm combining classical and fractional derivative–
based models, it has been found that selected frequencies (from tens to hundreds of kilohertz) are associated with resonancelike phenomena
that are prevailing on thermal fluctuations and hence could be, at least in principle, helpfully utilized for both targeting and selectively
attacking tumor cells. With the aim of investigating the effect of the prestress (for instance, induced in protein filaments during cell adhesion)
on the overall cell stiffness and, in turn, on its in-frequency response, a simple multiscale scheme is proposed in this paper to bottom-up enrich
the spring-pot-based viscoelastic single-cell models by incorporating finite elasticity and thereby determining through sensitivity analyses the
role played by the stretched state of the cytoskeletal elements on the cell vibration. DOI: 10.1061/(ASCE)EM.1943-7889.0001178. © 2016
American Society of Civil Engineers.

Introduction

From the mechanical point of view, single human cells can be seen
as viscoelastic systems (Del Piero and Deseri 1997; Deseri et al.
2006; Fraldi et al. 2015; Haase and Pelling 2015; Tschoegl

1989). However, unlike inorganic materials, living soft matter is
inhomogeneous and generally hierarchically organized (Chen
and Pugno 2013; Fraldi 2014; Fraldi and Cowin 2004; Huang et al.
2014; Pugno et al. 2012) and thus reacts, over different timescales,
to mechanical stimuli by simultaneously involving protein fila-
ments and supramolecular and molecular structures present at
different scale levels. In fact, the cell hierarchical organization
works as a complex transducer device that converts mechanical sig-
nals in biochemical and physical coordinated events, which govern
the mechanobiology and the mechanosensing of the whole cell,
regulating differentiation, growth, morphogenesis, and (through
polymerization/depolymerization-based cytoskeleton structural re-
arrangements) migration and adhesion phenomena at the single-cell
and macroscopic (tissue) levels (Delsanto et al. 2008; DuFort et al.
2011; Guiot et al. 2006; Paszek et al. 2014).

Three main mechanically relevant structural systems can be rec-
ognized in a human cell, a complex factory that makes proteins and
tissue materials (Cowin and Doty 2007): the 10-nm-thick, very de-
formable (0.1–1 kPa) lipid bilayer (the cell membrane); the
gel-like viscoelastic cytosol; and the cytoskeleton, the main bearing
cell structure constituted by a network of elastic protein filaments
that are embedded within the cytosol and anchored to both the nu-
cleus and the cell membrane, which mediates mechanical signals,
regulates cell shapes during migration and adhesion, and somehow
protects the cell. Microtubules (tubes with diameters of approxi-
mately 25 nm made up of two subunits of spiraling tubulin), actin,
and intermediate filaments (7- and 10-nm-diameter twisted double-
woven and interwoven rope strands of actin) are the main cytoske-
letal filaments, whose assembling/disassembling (polymerization/
depolymerization) drives cell motility and spreading (Bao and
Suresh 2003; Brunner et al. 2009).

A significant number of scientific works have been dedicated to
the analysis of the response of human cells to mechanical stimuli in
recent years and, because of the complexity of the systems, several
behaviors still remain not completely understood. Recently, it has
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also been experimentally observed that the response of cells to
ultrasound strongly depends on the associated applied energy
and on the related frequencies (Schuster et al. 2013). Furthermore,
cell membrane damage was observed in leukemic blood cells and in
blood cells after ultrasound treatment (Ellwart et al. 1988), with
laboratory evidences showing that tumor cells were often more
prone to be killed than healthy ones when exposed ultrasound
(Lejbkowicz and Salzberg 1997; Lejbkowicz et al. 1993). More-
over, adequately modulated ultrasounds seem to be additionally
capable of decreasing malignant cell growth, inhibiting cell prolif-
eration (Chumakova et al. 2006; Honda et al. 2004), and stimulat-
ing or increasing wound healing (Schuster et al. 2013), although
the authors of these works admit that “the molecular mechanism
of ultrasound-induced apoptosis has not yet been clearly under-
stood.” In this framework, Mizrahi et al. (2012) have recently ex-
perimentally observed relevant dynamics involving cytoskeleton
remodeling of human airway smooth muscle cells undergoing
low-intensity ultrasounds administered both at small strains (10−5)
and ultrasonic frequencies (106 Hz) and at moderately large
deformation regimes (10−1) and low (physiological) frequencies
(100 Hz).

Although describing the underlying mechanisms through which
cells perceive and transduce mechanical vibrations is still a chal-
lenging task, theoretical studies (Fraldi et al. 2015; Or and Kimmel
2009) have recently explored the possibility that the relative dis-
placement between cell organelles and cytoplasm induced by ultra-
sonic waves and caused by the different inertia of the media plays a
key role in the resonancelike phenomena, suggesting that ultra-
sound (US)-induced mechanical oscillations greater than thermal
maximal fluctuations can actually kindle strain regimes at high
frequency and hence fatiguelike phenomena, thereby altering sig-
naling pathways within the cell and thus inducing multimolecular
complexes conformational shift or disrupting at critical frequencies
found both approximately 45 and 1 MHz (Johns 2002).

The interest on the analysis of the in-frequency response of
single-cell systems is further increased by some experimental
studies performed in recent years on individual cancer and healthy
cells of different types, which have demonstrated that the former
were approximately 70% softer than the latter (Cross et al. 2008,
2007; Faria et al. 2008; Ketene et al. 2012; Lekka et al. 2012a, b,
1999; Li et al. 2008; Nikkhah et al. 2010; Prabhune et al. 2012;
Rebelo et al. 2013), regardless of the cell lines examined and inde-
pendently from the specific measurement technique used for deter-
mining the mechanical properties (e.g., atomic force microscopy
and optical tweezers). These results could be in fact helpfully
utilized, at least in principle, for mechanically targeting and selec-
tively attacking cancer cells, leading to envisage possible new ap-
plications in diagnoses and therapies of cancer diseases (Fraldi
et al. 2015; Jonieztz 2012).

Therefore, motivated by the aforementioned literature findings
and aiming to enrich the modeling of single-cell systems, the
present work investigated the effect of the prestress (for instance,
induced in protein filaments during cell adhesion) on the overall
cell stiffness, finally determining its influence on the in-frequency
response of the cell. A simple multiscale scheme that incorporates
finite elasticity is first proposed to include, by using a bottom-up
homogenization procedure, suitable prestress-modified stiffness
values into the viscoelastic single-cell models. Once the analytical
expression of the overall elastic stiffness of an adherent cell has
been obtained, some key model parameters (i.e., prestretch and
number of “active” filaments) are identified and determined to fit
the realistic stiffness moduli experimentally measured in the liter-
ature for several cell types. Finally, after a short presentation of new
generalized spring-pot (fractional derivative–based) viscoelastic

models, the role played by the stretched state of the cytoskeletal
elements on the cell vibration is studied in detail through sensitivity
analyses.

Elemental Nonlinear Elastic Model of Adherent Cell

Influence of Prestress and Number of Cytoskeleton
Filaments on Single-Cell Stiffness

To derive the effect of the prestretch accumulated in the cytoske-
leton filaments on the overall single-cell stiffness, this section
presents a simple nonlinear elastic model of the cell structure, in
which the essential features responsible for the mechanical re-
sponse of the ensemble [e.g., cytoskeleton protein filaments, cell
nucleus, and interface conditions with a rigid substrate, such as
the extracellular matrix (ECM)] are taken into account, thus deter-
mining the cell elasticity through a bottom-up procedure.

Fig. 1 shows that, starting from a generally unknown initial
stress-free configuration [Fig. 1(a)], the cell is assumed to be in
an actual prestretched configuration [i.e., adherent to the ECM,
as shown in Fig. 1(b)] and then subjected to a small displacement
of its nucleus [Fig. 1(c)]. In this scheme, as highlighted in the lateral
view (Fig. 1), the cell cytoskeleton is modeled through a structure
made of symmetrically and radially placed nonlinear elastic fila-
ments (or filament strands) anchored to the central nucleus and
to the substrate through the focal adhesion points, thus implicitly
assuming that the cell membrane follows the overall geometry of
the model. Also, for the sake of simplicity, the entire kinematics is
projected in the horizontal plane (i.e., the plane defined by the focal
adhesion points), thereby neglecting the minor effects of stress and
strain aliquots associated to the out-of-plane filament elongations
caused by the cell stretching. In particular, a reference prestretch
(denoted by λp) characterizes the deformed configuration in which
the nucleus is constrained by n elastic strings (representing the actin
filaments) arranged uniformly around the nucleus and identified by
an angle ϕj0 ¼ jð2π=nÞ.

To find how the cell structure influences the overall cell stiffness
when its filaments are prestressed, by referencing a small-on-large
approach, the nucleus is displaced of u in an arbitrary (e.g., hori-
zontal) direction: as a consequence, maintaining prescribed the
focal adhesion points, each filament will result to be stressed to
follow the nucleus, and the corresponding Piola-Kirchhoff stress
tensor can be generally written as

Pj ¼
0
@PLj 0 0

0 PTj 0

0 0 PTj

1
A ð1Þ

where, for the jth filament, PLj = longitudinal stress component
and PTj = transverse stress component, which in this case is to
be set equal to zero. Once the force fu to be applied to the nucleus
for obtaining the displacement u is determined, the related equiv-
alent tangent stiffness can be formally derived as follows:

Keq ¼
∂fu
∂u

����
u¼0

ð2Þ

Obviously, the force fu [the resultant of the axial forces of the n
filaments (Fig. 2)] will depend on u, the prestretch λp of each single
filament, the initial stiffness (related to the stress-free configura-
tion), the geometrical parameters, the number n of filaments,
and the constitutive assumption, for example, the type of hypere-
lastic law chosen for the strings. Therefore, one has

© ASCE D4016009-2 J. Eng. Mech.
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fu þ
Xn
j¼1

Nj cosðϕjÞ ¼ 0 ð3Þ

where Nj ¼ PLjA = contribution of the jth filament attributed
to the longitudinal stress times the reference cross-section
area A ¼ Aj and ϕj = angle of the jth filament in its current
configuration.

The constitutive model for the strings is fixed by following
Holzapfel (2000), in the case of compressible Neo-Hookean solids
in which the strain energy density function (SEDF) is written in
terms of the first invariant, I1, of the right Cauchy-Green tensor
C ¼ FTF (chosen as measure of the deformation), which in the
so-called coupled form—in which the isochoric and volumetric
parts are interacting—is given by

ΨNH ¼ G
2
ðI1 − 3Þ þ G

2β
ðJ−2β − 1Þ with β ¼ ν

1 − 2ν
ð4Þ

where J ¼ det F; and G and ν = shear modulus and the Poisson’s
ratio, respectively. The principal stresses will hence depend on the
principal stretches in the form

Pj ¼
∂ΨNH

∂λj
ð5Þ

and

PLj ¼ G

"
λLj − ðλLjλ2

TjÞ2ν=2ν−1
λLj

#
ð6Þ

PTj ¼ 2G

"
λTj − ðλLjλ2TjÞ2ν=2ν−1

λTj

#
ð7Þ

Algebraic manipulations reveal that prescribing uniaxial stress
states in each filament (PTj ¼ 0) reduces to impose λT ¼ λ−νL ,
finally obtaining the longitudinal stress as follows:

PLj ¼ GλLj½1 − λ−2ð1þνÞ
Lj � ð8Þ

The total stretch in the generic jth filament strand can be multi-
plicatively written as

λLj ¼ λpλuj ð9Þ

where λp ¼ L=L0 = initial prestretch related to the current filament
length L referred to the initial configuration L0, whose values are in
this paper assumed to be the same for all the elements because of

(a) (b) (c)

Fig. 1. Plan and lateral views of the elemental cell cytoskeleton structure: (a) initial (stress-free) unknown configuration; (b) adherent cell with
nonlinearly prestretched/prestressed filaments (reference configuration); (c) small-on-large cell deformation induced by nucleus displacement
(current configuration)

Fig. 2. How the axial forces kindled in each string contribute to
the equilibrium of the nucleus; ϕj angles are referred to the actual
(displaced) nucleus position

© ASCE D4016009-3 J. Eng. Mech.
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the symmetry of the initial cell shape; and λuj = stretch of the jth
string caused by the displacement u and explicitly given by

λuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2sin2ϕj þ ðL cosϕj − uÞ2

q
L

ð10Þ

where

sinϕj ¼
L sinϕj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2sin2ϕj0 þ ðL cosϕj0 − uÞ2
q ;

cosϕj ¼
L cosϕj0 − uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2sin2ϕj0 þ ðL cosϕj0 − uÞ2
q ð11Þ

Finally, by substituting Eqs. (8) and (3) into Eq. (2), after some
further algebraic manipulations, the stiffness K is obtained, which
varies with the displacement u as follows:

K ¼ −GAλp
Xn
j¼1

�h
1þ ð1þ 2νÞλ−ð1þ2νÞ

p λ−2ð1þνÞ
uj

i
cosϕj

∂λuj
∂u

−
�
λuj − λ−2ð1þνÞ

p λ−ð1þ2νÞ
uj

�
sinϕj

∂ϕj

∂u
�

ð12Þ

from which one finally has

Keq ¼ Kju¼0

¼ GAL−1λp
Xn
j¼1

f1þ λ−2ð1þνÞ
p ½ν þ ð1þ νÞ cos 2ϕj0�g ð13Þ

which represents the analytical form—explicitly depending on
both the geometrical and mechanical parameters—of the tangent
stiffness of the adherent single-cell structure, associated with the
imposed displacement u. From Eq. (13) and for an arbitrary couple
of filaments with prescribed angles ϕj0 and ϕj0 þ π, respectively,
the prestretch influences the stiffness in a nonlinear way, whose
form depends on Poisson’s ratio ν. It is then natural to ask whether
the stiffness is monotonic with the prestretch. By calculating the
derivative of the jth addend (and its coaxial) in Keq, that is, Keqj,
with respect to λp and equating it to zero, one finds

∂Keqj

∂λp ¼ GAL−1 cosϕj0λp
h
1þ ð1þ 2νÞλ−2ð1þνÞ

p

i
¼ 0 ð14Þ

whose closed-form solution is

λp ¼ j1þ 2νj1=1þν ð15Þ

which gives compatible (positive) stretches for any angle ϕj0 and
Poisson’s ratios belonging to the classical thermodynamically
consistent range � − 1; 1=2 ½.

From the biomechanical point of view, this counterintuitive re-
sult implies that, as the stiffness varies with increasing prestretches,
a minimummust be found (Fig. 3); thus, at least in principle, during
a monotonic stretching of the substrate or in searching optimal
cytoskeleton configuration, an adherent cell could find minimal
energy positions at nonzero strains as well.

Identification of Model Parameters to Describe
Actual Cell Stiffness

The aforementioned nonlinear elastic model has been introduced to
quantitatively estimate the effect of prestress and number of fila-
ments on the overall stiffness of an adherent (prestretched) single

cell. With reference to the experimentally measured cell stiffness
values [see for a synoptic frame the tables in Fraldi et al. (2015)]
and by using Eq. (13), it is possible to determine the equivalent
overall elastic Young’s modulus of the cell in an arbitrary pre-
stretched configuration, Eeq, by considering an incompressibility
condition, that is, G ≃ E=3, with G = first Lamé modulus, as
follows (C0G ¼ 6πGR will be used afterward for the stiffness):

Eeq ≃ 3Keq

6πR
ð16Þ

where R = cell nucleus radius, as reported by Or and Kimmel
(2009). This expression, which will be used in the following vis-
coelastic schemes, implicitly takes into account the prestretch and
the number of filaments, all these parameters being included inKeq.
As a consequence, the formula furnishes a direct first estimation of
the equivalent cell Young’s modulus Eeq once all the mechanical
and geometrical parameters are known. However, because of its
elementary structure, it can be also used to identify the number of
“active” cytoskeleton elements in an experimental measurement
and to determine the average prestress of an adherent cell.

Fig. 4 illustrates the results of the parametric analyses conducted
on the equivalent stiffness for three values of the Poisson’s ratio of
the filaments (ν ¼ 0, 0.25, 0.5), initial filament length L0 ¼
50 μm, and circular cross sections with diameters of 7 nm, all these
values being coherent with the literature. In particular, the equiv-
alent cell Young’s moduli of a cell have been carried out by both
considering 75 active protein filaments for a single cell strand,
varying the prestretch [Fig. 4(a)], and complementarily prescribing
a prestretch (λp ¼ 1.3), thus plotting the cell stiffness against the
number of filaments [Fig. 4(b)]. Both the graphics show how the
whole range of elastic moduli measured through different tech-
niques and reported in the literature for a vast class of cell lines
(Fraldi et al. 2015) can be obtained with good agreement, modu-
lating the prestretch and the number of active filaments within
experimentally documented intervals. An instructive numerical ex-
ample can be easily done by considering the case of cell stiffness
measured by Cross et al. (2008) for human healthy cells and cor-
responding abnormal carcinoma of the lung, estimated as approx-
imately 2,100 and 560 Pa, respectively. In this case, setting
ν ¼ 0.4, the stiffer value associated with the healthy cells can
be obtained through the proposed model by assuming a prestretch

Fig. 3. Dimensionless contribution of a filament to the cell stiffness as
function of the prestretch; for different Poisson’s ratio values, a mini-
mum is always highlighted

© ASCE D4016009-4 J. Eng. Mech.
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of λp ¼ 1.32 and considering n ¼ 75 active protein filaments, the
cancer cell elastic modulus being caught by merely reducing to
approximately 26 the number of active filaments to simulate
possible lower levels of polymerization in the cytoskeleton struc-
ture of cancer cells to facilitate squeezing and metastatic migration
abilities.

In-Frequency Response of Adherent Single-Cell
Viscoelastic Systems Incorporating
Cytoskeleton Prestress

By exploiting the results obtained in the previous sections re-
garding the effects of the prestretched/prestressed cytoskeleton
filaments on the cell stiffness and by starting from an approach
proposed by Or and Kimmel (2009) and recently further developed
by Fraldi et al. (2015) to analyze the case of vibrating cell nucleus
in a viscoelastic environment excited by low-intensity therapeutic
ultrasound (LITUS), consider a single-cell system whose dynamics
is reduced to an oscillating mass immersed in a viscoelastic
medium (Fig. 5). To represent the nucleus, a rigid sphere of radius
R is thus considered by ideally concentrating in it the entire mass of
the cell and modeling the environment as a homogeneous and
isotropic viscoelastic medium. Under these hypotheses, the whole
cell dynamics is completely governed by one degree of freedom
stimulated by a velocity law assumed in the following form:

vmðtÞ ¼ vm0e−iω0t ð17Þ
where vm = velocity prescribed to the medium; vm0 = amplitude
of the complex velocity phasor; ω0 ¼ 2πf = oscillations angular
frequency; and f = measured frequency in hertz. According to
the aforementioned studies, the motion can be described by the
following:

fm ¼ mobaob ¼
4

3
πR3ρob

d2uob
dt2

¼ fac − fres ð18Þ

where t = time; fm = inertial force; mob = nucleus mass of density
ρob; uob = displacement; and fac = driving force that is kindled by
the acoustic pressure gradients triggered by the ultrasound trans-
ducer in the system. In the case under analysis, the object is very

small compared with the acoustic wavelength; thus, the form of the
acoustic force can be simply reduced to a force that ideally would
act on a sphere of the same radius in the absence of the object
(Maxey and Riley 1983). This permits

fac ¼
4

3
πρmR3

Dvm
Dt

≡ 4

3
πρmR3

dvm
dt

ð19Þ

where ρm = density of the medium. Additionally, dimensional
analyses show that the convective term is small; as a result, the
absence of spatial variability allows to adopt in Eq. (19) time differ-
entiation d=dt instead of the substantial derivative D=Dt (Or and
Kimmel 2009). Also, fres represents the response force applied to
the object by its surrounding, attributed to their relative motion, and
will thus depend on the overall rheological features of the environ-
ment. To catch possible further insights on the single-cell behavior,
this force incorporates in a parametric way key geometrical and
mechanical properties of interest.

The analyses will be performed by first using two quasi-
standard viscoelastic models (Voigt and Maxwell) and then intro-
ducing a generalized standard linear Kelvin model, in which
dashpot and spring elements are replaced by so-called spring-pot
systems, which have been recently used in different ways to de-
scribe with success the mechanical behavior of biological materials
(Deseri et al. 2013).

Additionally, by recalling the well-known relationship between
Laplace and Fourier transforms (i.e., F ½·� ¼ L½·�js¼iω), the Laplace
transform is used in what follows to solve the differential problem
at hand, thus obtaining the response of the systems directly in terms
of frequency (Fraldi et al. 2015).

With respect to the assigned initial conditions, in all the
simulations, the single-cell system is assumed to be initially at rest,
that is

uobjt¼0 ¼ 0,
duob
dt

����
t¼0

¼ 0 ð20Þ

With Laplace transforming Eq. (18), one finally obtains

Fm ¼ 4

3
πR3ρobs2Uob ¼ Fac − Fres ð21Þ

Fig. 4. Parametric analyses for the equivalent Young’s modulus of a single-cell system for different Poisson’s ratios: (a) elastic stiffness versus
prestretch with fixed number of active filaments (75); (b) elastic stiffness versus number of (active) filaments, with prescribed prestretch value
(λp ¼ 1.3)

© ASCE D4016009-5 J. Eng. Mech.
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where s = Laplace variable and capital letters = Laplace-
transformed terms. Accordingly, Fac = Laplace transforming of
the acoustic force fac reported in the Eq. (19), thus obtaining

Fac ¼
4

3
πρmR3sVm ¼ 4

3
πρmR3s2Um ð22Þ

Further details on the subsequently presented viscoelastic
models are available in Fraldi et al. (2015).

Enhanced Voigt and Maxwell Models for Single Cells

The Voigt idealization assumes that viscous and elastic elements
are placed in parallel with each other (Fig. 5). In this way, the re-
sulting overall force can be determined by the simple sum of the
forces attributed to the single constituting elements as

fres ¼ fμ þ fG ð23Þ

where fμ = viscous contribution and fG = elastic response. In case
of a rigid object rapidly vibrating in viscous fluids, the viscous term
can be helpfully represented with the following explicit form, as
suggested by Basset (1888), Landau and Lifshitz (1987), and Or
and Kimmel (2009):

fμ ¼ 6πRμ

0
@1þ

ffiffiffiffiffiffiffiffi
ωR2

2η

s 1
Aðvob − vmÞ

þ 2

3p
πR3ρm

0
@1þ 9p

2

ffiffiffiffiffiffiffiffi
2η
ωR2

r 1
Aðv̇ob − v̇mÞ ð24Þ

where η and μ = kinematic and dynamic medium viscosities,
respectively; and v ¼ u̇ = velocity. In Eq. (24), the structure of
the viscous force is different from that of the standard Stokes, with
frequency-dependent terms and an inertial (spurious) contribution

(b) (a)

(c) (d)

Fig. 5. Idealized single-cell system: (a) healthy and tumor cells agglomerate; (b) typical cell unit, with nucleus and cytoskeleton structure embedded
in the cytosol and confined by the lipid bilayer cell membrane; (c) idealized single-cell system, with cell nucleus oscillating in a viscoelastic
environment under the action of radiating ultrasound source; (d) adopted viscoelastic schemes (Voigt, Maxwell, and generalized spring-pot-based
SLK models)
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3πR3ρm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η=ωR2

p
, named added mass (Brennen 1982), addition-

ally appearing and p (in this equation, p ¼ 2) being the number of
elements in parallel introduced ad hoc in Fraldi et al. (2015) to
solve an ambiguous situation already pointed out by Or and
Kimmel (2009). In fact, as already highlighted in Fraldi et al. (2015),
to avoid contrived solutions to remove “the excessive added-mass
term” that “erroneously twice appears” in Or and Kimmel (2009),
the viscoelastic forces are in this equation set to ensure that any
combined viscoelastic scheme derived from the general fractional-
based standard linear Kelvin (SLK) model contains the sole
added-mass and virtual-friction contributions to be considered.

Following Ilinskii et al. (2005), the elastic force fG can be
given by

fG ¼ 6πGRðuob − umÞ þ 6πR2
ffiffiffiffiffiffiffiffiffi
Gρm

p
ðu̇ob − u̇mÞ

þ 2

3p
πR3ρmðüob − ümÞ ð25Þ

Similar to the viscous force, the elastic contribution in Eq. (25)
is presented in a somehow enhanced version, with respect to the
standard Hooke law, to include key effects of the cell nucleus–
environment dynamic interactions, which characterize the actual
physical behavior of the overall system attributed to rapid fluctua-
tions. In Eq. (25), the physics is then caught through two additional
dissipative and inertial terms, respectively, equal to 6πR2

ffiffiffiffiffiffiffiffiffi
Gρm

p
(the virtual friction) and the so-called added mass, with G repre-
senting the first Lamé modulus, and um the vibrational displace-
ment of the medium. Also, for convenience, it is assumed that

c0G ¼ 6πGR; c1G ¼ 6πR2
ffiffiffiffiffiffiffiffiffi
Gρm

p
; c2G ¼ 2

3p
πR3ρm ð26Þ

c1μ ¼ 6πRμ

0
@1þ

ffiffiffiffiffiffiffiffi
ωR2

2η

s 1
A; c2μ ¼ 2

3p
πR3ρm

0
@1þ 9p

2

ffiffiffiffiffiffiffiffi
2η
ωR2

r 1
A

ð27Þ

and a further dimensionless parameter is

ζ ¼ ρob
ρm

¼ 1

1þ γ
ð28Þ

where γ ¼ ρmρ−1ob − 1. The modified Voigt viscoelastic equation is
obtained as

fres ¼ c0Gðuob − umÞ þ ðc1μ þ c1GÞðu̇ob − u̇mÞ
þ ðc2μ þ c2GÞðüob − ümÞ ð29Þ

from which, by Laplace transforming, one finally has

Fres ¼ ðUob − UmÞ½c0G þ ðc1μ þ c1GÞsþ ðc2μ þ c2GÞs2� ð30Þ

and, replacing Eqs. (30) and (22) in Eq. (21) and after some
algebraic passages, the following equation is found:�
c0G þ ðc1μ þ c1GÞsþ

�
ðc2μ þ c2GÞ þ

4

3
πρobR3

	
s2
�
ΔU

¼ 4

3
πγρobR3sVm ð31Þ

where ΔU ¼ Uob − Um. By solving Eq. (31), the analytical
solution of the in-frequency response of the system, in terms of
relative displacement ΔU of the cell nucleus with respect to the
envinronment, is obtained in the form

jΔUj
���
s¼iω

¼
���� 4

3
πγζρmR3sVm

c0Gþðc1μþc1GÞsþ½ðc2μþc2Gþ 4
3
πρobR3Þ�s2

����
�����
s¼iω

ð32Þ

Complementary to the case of Voigt, Maxwell systems present
elastic and viscous elements ideally placed in series (Fig. 5). The
overall response is therefore found by imposing the following
isostress condition:

FG ¼ Fμ ¼ Fres ð33Þ

thus equating the sum of the viscous and the elastic displacement
contributions to the total relative displacement, that is

ΔU ¼ ΔUG þΔUμ ð34Þ

where FG and Fμ = Laplace transforms of the elastic and viscous
forces given in Eqs. (25) and (24), respectively, thus obtaining

FG ¼ ðc0G þ c1Gsþ c2Gs2ÞΔUG; Fμ ¼ ðc1μsþ c2μs2ÞΔUμ

ð35Þ

from which the elastic and viscous displacements can be explicitly
written as

ΔUG ¼ FG

c0G þ c1Gsþ c2Gs2
; ΔUμ ¼ Fμ

c1μsþ c2μs2
ð36Þ

By recalling Fres from Eq. (21) and considering Eq. (36), the
closed-form solution for the in-frequency response of the enhanced
Maxwell system is found as

jΔUj
���
s¼iω

¼
������

4
3
πγρobR3sVm

1þ 4
3
πρobR3s2

�
1

c1μsþc2μs2
þ 1

c0Gþc1Gsþc2Gs2

�
������
�������
s¼iω

ð37Þ

Single-Cell Response through Generalized Fractional
Derivative–Based Standard Linear Kelvin Paradigms

Added Mass and Virtual Friction in Spring-Pot Models
In a viscoelastic medium using fractional derivatives, the mechani-
cal behavior is interpreted through the introduction of spring-pot
systems. The first time that the fractional derivative concept is
traced in an epistolary correspondence between de L’Hopital
and Leibniz dates back to 1695 (Podlubny 1999), in which they
tried to answer the following question: “What does the derivative
dnfðxÞ=dxn mean if n ¼ 1=2?” Since that time, a new branch of
mathematics—fractional calculus, a generalization of the com-
monly used integer-order differentiation and integration—has been
formally developed. The basic idea, as suggested by Riemann-
Liouville, is in fact to interpret the fractional derivative as the
inverse operation of a fractional integral. The use of fractional
derivatives in viscoelasticity can be traced in the work by Nutting
(1921), in which, from the best fitting of experimental curves, he
noted the possibility of describing the relationship between defor-
mation and time through a power law, that is, u ∝ tnFm, in which
F = force; and u = displacement. In 1949, Blair and Caffyn (2010)
analytically justified this experimental curve by using the fractional
derivatives and also introducing the spring-pot model. Afterward,
Caputo (1969) in detail proposed a fractional derivative operator,
namely, C

aDα
t , which could be used in the real world:

© ASCE D4016009-7 J. Eng. Mech.
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C
aDα

t fðtÞ ¼
1

Γðn − aÞ
Z

t

a
ðt − sÞn−α−1fnðsÞds ∀ n − 1 ≤ α ≤ n

ð38Þ
where Γ = Euler gamma function and fðtÞ = integrable in ½a; t�.

In recent years, several scientific papers involving fractional
calculus–based viscoelasticity has been presented, for both ap-
proaching standard problems and analysing complex systems in
pioneering physical and engineering fields (e.g., Atanackovic et al.
2007; Bagley 1983; Deseri et al. 2013, 2014; Di Paola et al. 2009,
2013; Grillo et al. 2015; Mainardi 2012; Metzler and Klafter 2000;
Schiessel and Blumen 1993). For the present purpose, however, the
spring-pot model is essentially that first proposed by Blair and
Caffyn (2010), which is generalized ad hoc in this paper to integrate
added mass and virtual friction as additional system features.
Hence, the following definition of the spring-pot response force
fSP is introduced:

fSP ≔ Cα½C0Dα
t ðuob − umÞ� þ c1SPðu̇ob − u̇mÞ þ c2SPðüob − ümÞ

ð39Þ
in which C

0D
α
t = Caputo’s fractional time-derivative of order α

[α ∈ ½0; 1� being over the time interval ð0; tÞ]; and Cα = suitable
frequency-dependent parameter written by starting from Koeller
(1984) as follows:

Cα ¼ c0G



c1μ
c0G

�
α

ð40Þ

In particular, dissipative and inertial terms were incorporated in
the model by postulating the simplest mathematical structure

c1SP ¼ ð1 − αÞc1G; c2SP ¼ c2G



1þ α

9p
2

ffiffiffiffiffiffiffiffi
2η
ωR2

r �
ð41Þ

thereby reproducing the elastic and viscous models proposed by
Or and Kimmel (2009) as special limit cases, that is, α ¼ 0 and
α ¼ 1, respectively.

By substituting Eq. (39) into Eq. (21) and invoking the frac-
tional derivative rule allowing to Laplace transform by preserving
the classical (integer) derivative law for the Laplace variable s,

namely, C
0D

α
t !L sα, the in-frequency response of the spring-pot

model, in terms of nucleus-environment relative displacement,
can be finally found in the following form:

∀ α ∈ ½0; 1�;

jΔUj
���
s¼iω

¼
������

4
3
πγρobR3sVm�

4
3
πρobR3 þ c2SP

�
s2 þ c1SPsþ Cαsα

������
�������
s¼iω

ð42Þ

Generalized SLK Model Incorporating Spring-Pot Systems
To enrich Maxwell and Voigt viscoelastic behaviors, different stan-
dard linear solid (SLS) systems can be encountered in the literature
(Tschoegl 1989). Among these, one of the most used scheme is
composed of the SLK model, obtained by placing in series an
elastic spring with a Voigt system; the Maxwell-Wiechert model,

representing an alternative and somehow complementary configu-
ration in which an elastic spring is positioned in parallel with a
Maxwell system, whose multielement version leads to the well-
known Prony series method.

Given that the spring pot might be physically interpreted as a
viscoelastic system intrinsically capable to smoothly generate in-
termediate mechanical responses as the aforementioned parameter
α moves from zero to one in the limit cases giving purely elastic
and viscous behaviors, respectively, a possible generalization of the
SLK model can be envisaged by replacing in it each dashpot and
spring with a spring pot, as shown in Fig. 5, by further enhancing
the resulting model by suitably including added-mass and virtual-
friction terms. In this way, a powerful (linear) low-parameter vis-
coelastic system can be realized with the important advantage that,
by essentially following the aforementioned proposed strategies,
the analytical solutions of the corresponding in-frequency system
response can be always derived for any modulation and combina-
tion of the spring-pot parameter α. As a result, a wide range of
otherwise unforeseeable viscoelstaic responses can be caught, and
all the simpler viscoelastic models and the related analytical solu-
tions recalled previously, including those of Or and Kimmel (2009),
can be obtained as special limit cases of the proposed generalized
SLK scheme as well.

With reference to the configuration of the spring pot in the pro-
posed generalized SLK viscoelastic system (Fig. 5), equilibrium
among forces and compatibility for the displacements may be
written as

fSLK ¼ fP ¼ fSP3 ð43Þ

ΔuSLK ¼ ΔuP þΔuSP3 ð44Þ

where fSLK = total force; fP ¼ fSP1 þ fSP2; fSP1, fSP2, and fSP3 =
single contributions given by the three spring pots whose explicit
forms are furnished by Eq. (39); and the displacement ΔuP ¼
ΔuSP1 ¼ ΔuSP2.

By Laplace transforming fP and fSP3, the fractional derivative

rule C
0D

α
t !L sα gives

FP ¼ ½Cα1sα1 þ Cα2sα2 þ ðc1SP1 þ c1SP2Þs
þ ðc2 SP 1 þ c2SP2Þs2�ΔUP ð45Þ

FSP3 ¼ ½Cα3sα3 þ c1SP3sþ c2SP3s2�ΔUSP3 ð46Þ

Algebraic manipulations allow

ΔUP ¼ FP

Cα1sα1 þ Cα2sα2 þ ðc1SP1 þ c1SP2Þsþ ðc2SP1 þ c2SP2Þs2
ð47Þ

ΔUSP3 ¼
FSP3

Cα3sα3 þ c1SP3sþ c2SP3s2
ð48Þ

Therefore, by recalling the previously obtained relationship for
Fres, the closed-form in-frequency solution for the SLK system is
finally determined as

jΔUSLKj
���
s¼iω

¼
������

4
3
πγρobR3sVm

h
1

sðc1SP1þc1SP2Þþs2ðc2SP1þc2SP2ÞþCα1sα1þCα2sα2
þ 1

sðc1SP3þc2SP3sÞCα3sα3

i
4
3
πρobR3s2

h
1

sðc1SP1þc1SP2Þþs2ðc2SP1þc2SP2ÞþCα1sα1þCα2sα2
þ 1

sðc1SP3þc2SP3sÞþCα3sα3

i
− 1

������
�������
s¼iω

ð49Þ
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This equation thus gives the analytical response of a generalized
SLK model capable to cover a wide range of possible intermediate
viscoelastic behaviors reproduced by tuning the fractional deriva-
tive order α characterizing the spring pots, and incorporating
added-mass and virtual-friction effects (Fraldi et al. 2015) and
replicating, as limit cases, all the simpler (viscous and elastic) and
nonstandard single-cell literature models (Or and Kimmel 2009).
Some systems obtained by modulating the parameters α in the pro-
posed model are summarized in Table 1 with reference to selected
cases afterward used for simulating the in-frequency response of
single cells to mechanical loads (i.e., elastic; viscous; Voigt;
Maxwell; SLK limit cases; and the three intermediate chosen
configurations, namely, SLK_1, SLK_2, and SLK_3).

Resonance Hypothesis in Adherent Cells: Role of
Prestretch and Number of Active Cytoskeleton
Filaments

In a recent paper by some of the present authors (Fraldi et al. 2015),
the in-frequency response of single-cell systems has been analyzed
in detail through simple (one degree of freedom) viscoelastic
schemes and by conducting sensitivity analyses to gain information
about positioning and magnitude of the response peaks for
envisaging possibilities of exploiting the stiffness discrepancies
experimentally observed between healthy and tumor cells for me-
chanically targeting and selectively attacking cancer cells. Thus, the
authors explored the in-frequency responses of a wide class of
viscoelastic single-cell paradigms by introducing ad hoc a new
generalized fractional derivative–based SLK model and con-
structing the related analytical solutions, whose results were
considered ranges of mechanical properties and physical parame-
ters actually measured at single-cell level and reported in the
consolidated literature.

However, when dealing with living systems, the measures of
stiffness can be significantly affected by intrinsic structural changes
of the biological matter, for example, by the reorganization dynam-
ics guided by polymerization-depolymerization processes, which
change the internal configuration of the cytoskeleton, thereby
regulating adhesion and migration cell capabilities and in turn
provoking nonhomogeneous cell deformations and changes in
stiffness (Bao and Suresh 2003; Brunner et al. 2009; Rodriguez
et al. 2013), with Young’s moduli also oscillating from approxi-
mately 100 Pa to 10 kPa (Caille et al. 2002; Cross et al. 2008, 2007;
Faria et al. 2008; Ketene et al. 2012; Lekka et al. 2012a, b, 1999; Li
et al. 2008; Nikkhah et al. 2010; Prabhune et al. 2012; Rebelo
et al. 2013).

Nevertheless, the vast majority of the experimental data some-
what consider stiffness of “round” (suspended) cells and, to the au-
thors’ best knowledge, not much effort has been devoted, from the

modeling standpoint, to mechanically relate the overall change
of cell stiffness to its stretched configuration and to the average
number of active/assembled cytoskeletal filaments.

Therefore, by starting from the experimental results in the
literature and taking into account the ranges within which actual
measured mechanical features of cells can oscillate, the overall
stiffness, determined from the proposed elemental nonlinear elastic
single-cell model, has been introduced into the fractional derivative–
based SLK scheme. In this way, the viscoelastic behavior of the
cell explicitly depends, among other geometrical and physical
parameters, on the stiffness resulting from the number of active
cytoskeletal filaments, their prestretch level caused by possible
adherent configurations, and the round shape–associated cell
Young’s modulus, which is directly related to the cell line and
to the cell (i.e., healthy or cancer) state.

To highlight the possibility of following the previously de-
scribed strategy for representing the whole range of the experimen-
tally measured single-cell mechanical properties in both suspended
and adherent conditions and demonstrating that viscoelastic re-
sponse peaks still fall within frequencies intervals of ultrasound,
which would still preserve the possibility of selectively inducing
resonancelike phenomena in cells (Fraldi et al. 2015), sensitivity
analyses have been performed ad hoc by varying the overall intrin-
sic round-shaped cell Young’s modulus, the prestretch and the
number of active microfilaments, the cytosol viscosity, and the
nucleus size being prescribed and set equal to average values,
thereby covering the entire range of the mechanical data given
in the literature for many cell lines investigated.

By essentially following data and methods already introduced in
Fraldi et al. (2015) and with respect to the notations proposed for
the generalized SLK viscoelastic systems, the analyses reported
subsequently have been conducted by assuming a medium-
vibration velocity magnitude of vm0 ¼ 0.12 ms−1, determined in
case of plain progressive waves characterized by an acoustic inten-
sity of 1 Wcm−2 and an associated intensity of I ¼ 0.5ρmcv2m0,
where c ¼ 1,500 ms−1 = speed of sound at room temperature (Lide
et al. 2008) at which mass density of the medium has been also
assumed to be coincident with that of water and that of the nucleus
[as reported in Michelet-Habchi et al. (2005)] to be approximately
30% more dense than the environment.

More specifically, the performed analyses have been referred
to six selected viscoelastic schemes, that is, the enhanced Voigt,
Maxwell, and SLK schemes and three other generalized fractional
derivative–based SLK models with spring pots in Positions 1, 2,
and 3 with α ¼ 0.5 (Fig. 5), in all the cases also taking into account
added-mass and virtual-friction effects. Additionally, the elastic
modulus G appearing in the fractional derivative–based models
implicitly takes into account the cell configuration (suspended
and adherent) through prestretch and number of active filaments
determined by Eqs. (13) and (16). The theoretical outcomes
have been carried out by using the symbolic commercial code
Mathematica (Wolfram 2003) in the calculations, and the results
have been represented in the domain of the frequencies within
the interval that is most interesting for biomedical applications, that
is, 1 kHz ≤ f ≤ 100 MHz. In particular, the main attention is paid
to the in-frequency system responses plotted in terms of maximum
relative displacement jΔUj, in the time domain representing the
magnitude of relative oscillations between environment and cell
nucleus, induced by ultrasound.

Figs. 6–8 collect the most relevant results from the analytical
models: cell stiffness, prestrech intensity, and number of filaments
have been assumed to vary within intervals compatible with
experimental findings, keeping fixed the other complementary
parameters, and choosing for them the most common values in the

Table 1. Synoptic Table with Models and Adopted Parameters

Models

Parameters

α1 Cα1
α2 Cα2

α3 Cα3

Elastic 0 →∞ — — 0 c0G
Viscous 0 →∞ — — 1 c1μ
V 0 c0G 1 c1μ 0 →∞
M 0 →0 1 c1μ 0 c0G
SLK 0 c0G 1 c1μ 0 c0G
SLK_1 0.5 C0.5 1 c1μ 0 c0G
SLK_2 0 c0G 0.5 C0.5 0 c0G
SLK_3 0 c0G 1 c1μ 0.5 C0.5

© ASCE D4016009-9 J. Eng. Mech.
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literature, that is, Young’s modulus of E ¼ 2,100 Pa (Cross
et al. 2007); cell nucleus radius of R ¼ 1 μm (Cowin and
Doty 2007); and water viscosity of μ ¼ 10−3 Pa · s (Or and
Kimmel 2009).

Fig. 6 particularly illustrates the cell in-frequency response in
terms of relative displacement by parametrically varying the cell
stiffness from E ¼ 100 Pa to E ¼ 10 kPa, coherently with data
ranges reported in the experimental literature. Similarly, Figs. 7
and 8 show the results for the six viscoelastic models chosen by
plotting displacement amplitude against frequency and respectively
setting the tangent Young’s modulus (E ¼ 2.6 × 109 Pa) and
Poisson’s ratio (ν ¼ 0.4) of the microfilaments, the viscosity

μ ¼ 10−3 Pa · s, and varying the prestretch λp and the number
n of cytoskeleton filaments.

The outcomes obtained from the sensitivity analyses confirm
both qualitative trends and quantitative results already found in
Fraldi et al. (2015), with growing peak frequencies and associated
decreasing displacement amplitudes as the overall cell stiffness
grows up as a consequence of the increase of the intrinsic Young’s
moduli of the (round) cells (Fig. 6) and when the cell stiffening is
induced by its adherent configuration, a situation in this paper
modeled by increasing the tensile prestresses in the cytoskeletal
elements and the number of prestretched filaments (Figs. 7 and 8).
Also, in all the analyzed single-cell systems, the results highlight

Fig. 6. Sensitivity analysis for the frequency response of the cyclic displacement amplitude of a spherical object (R ¼ 1 μm) with respect to its
surroundings, with prescribed viscosity (μ ¼ 10−3 Pa · s) and varying Young’s modulus (E ¼ 100, 500, 1,000, 5,000, and 10,000 Pa); V = Voigt;
M = Maxwell; and SLK_1, SLK_2, and SLK_3 = generalized SLK with spring pot in Positions 1, 2, and 3, respectively; α ¼ 0.5

© ASCE D4016009-10 J. Eng. Mech.
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that the maximum vibrations jΔUj and associated peak frequencies
always fall within the interval 104 to 106 Hz, a range coherent with
that experimentally established by several works (e.g., Lejbkowicz
and Salzberg 1997; Johns 2002) that still authorize, at least in prin-
ciple, to think of obtaining resonancelike responses by stimulating
single cells by using ultrasounds. Importantly, for all the viscoelas-
tic schemes, the obtained results confirm that US-induced mechani-
cal vibrations, jΔUj, are mostly comparable (or greater than)
spontaneous thermal fluctuations if both calculated in limit situa-
tions of pure elastic media, in which the mean square displacement

(MSD) is hu2T;ei ¼ kBT=πRG (Ohshima and Nishio 2001), and
pure viscous systems, in which the mean relaxation distance
(MRD) is huT;ηi ¼ 2R2ρobv0=9μ (Kittel and Krocmer 1980), with
kB = Botzmann constant; T = absolute temperature; and v0 = initial
velocity. In fact, it can be numerically verified that the MSD maxi-
mum square root is of the order of 10−9 m, whereas the MRD
can oscillate between 10−15 and 10−8, in both the cases leading to
values smaller than (or at most comparable with) the vibration
amplitude peaks obtained theoretically from the aforementioned
parametric analyses (Figs. 6–8).

Fig. 7. Sensitivity analysis for the frequency response of the cyclic displacement amplitude of a spherical object (R ¼ 1 μm) with respect to its
surroundings, with prescribed viscosity (μ ¼ 10−3 Pa · s), tangent Young’s modulus (E ¼ 2.6 × 109 Pa), and Poisson’s ratio (ν ¼ 0.4) of the micro-
filaments for a fixed number of active filaments (n ¼ 50), varying the level of prestretch (λp ¼ 1, 1.5, 2, 3, and 4); V = Voigt; M = Maxwell; and
SLK_1, SLK_2, and SLK_3 = generalized SLK with spring pot in Positions 1, 2, and 3, respectively; α ¼ 0.5
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Conclusions and Future Challenges

By following a very recent work by some of the authors aimed
to analyze the in-frequency response of single-cell systems to
mechanical stimuli (Fraldi et al. 2015), a new enhanced fractional
derivative–based viscoelastic scheme incorporating the nonlinear
elastic behavior of the cell cytoskeleton has been proposed in this
paper by first introducing an elemental subcellular structural model
and then following—after a bottom-up procedure to meet the
microscale—a small-on-large approach to study the dynamics
(nucleus vibration) of the cell as a whole. In this way, along with

the geometrical and physical parameters usually involved in the
mechanical study of suspended (round) cells, some further key fac-
tors influencing the overall stiffness of adherent cells have been
taken into account, that is, the prestress/prestretch and the average
number of attending protein filaments. Actually, the cell stiffness
can significantly change if, by interacting with the ECM, the focal
adhesion points invite cell cytoskeleton to assume deformed con-
figurations. Stretching and collective reconfigurations of protein
filaments guided by polymerization/depolymerization processes
generally accompany the transition of a cell from a suspended to
an adherent state. Forces and strains in the prestretched stress fibers

Fig. 8. Sensitivity analysis for the frequency response of the cyclic displacement amplitude of a spherical object (R ¼ 1 μm) with respect to its
surroundings with prescribed viscosity (μ ¼ 10−3 Pa · s), tangent Young’s modulus (E ¼ 2.6 × 109 Pa), and Poisson’s ratio (ν ¼ 0.4) of the
microfilaments and a fixed level of prestretch (λp ¼ 1.3), varying the number of active microfilaments (n ¼ 50, 100, 150, 200, and 250); V = Voigt;
M = Maxwell; and SLK_1, SLK_2, and SLK_3 = generalized SLK with spring pot in Positions 1, 2, and 3, respectively; α ¼ 0.5
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thus play a crucial role in the dynamic updating of the mechanical
properties of single cells and in determing their viscoelastic re-
sponse to mechanical stimuli. In this framework, it has been indeed
experimentally shown that low-frequency cyclic loads and strain
regimes from 10−2 to 10−1 can actually generate structural altera-
tions or physical rupture of cytoskeletal elements in living cells
(Or and Kimmel 2009). Similar effects have been also observed
at relatively high frequencies, particularly for the case of cells
stimulated by ultrasound, as found in Mizrahi et al. (2012) and
Lejbkowicz and Salzberg (1997), which have shown that configu-
rational and mechanical changes were caused at ultrasonic frequen-
cies (106 Hz) by very small strains (10−5) and at physiological
frequencies (100 Hz) by relatively large strains (10−1).

With reference to the obtained theoretical findings, a rough
value of the axial elongation equivalent to a simple uniaxial strain
can be roughly estimated as ε ∝ jΔUj=ð10 × RÞ: therefore, by re-
calling that a typical size of a cell nucleus can be found in the
interval 2 × 10−7 to 10−5 m, whereas vibration magnitudes are
obtained from approximately 10−9 to 10−7 m, strains from 10−5
to 10−1 can be determined, and higher values can be hence reached
because of the prestretch imprisoned in the cytoskeleton filaments
of adherent cells.

Also, the peak frequencies, derived from the theory by using the
parametric fractional calculus–based viscoelastic schemes, span
from tens of kilohertz to approximately 1 MHz, these limit values
being both experimentally recognized as critical frequencies at
which cells exhibit significant biological configurational alterations
attributed to mechanical effects that prevail on thermal ones (Johns
2002; Schuster et al. 2013).

At least in principle, after a few seconds of exposure to ultra-
sound (e.g., LITUS), cell structural modifications or failure caused
by cyclic loading and associated fatigue phenomena could be thus
actually expected, and this, on the basis of the ascertained fact
that cancer cells are found to be always softer than their normal
(healthy) counterparts, independently from the cell line, might pave
the way for designing new mechanically based tumor markers and
strategies to selectively attack cancer cells.
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