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1. Introduction

In recent years, 2D materials (such as graphene, boron 
nitride and transition metal dichalcogenides) have 
attracted increasing attention for a wide range of 
possible applications, from electronics, to composites, 
to biology [1, 2].

However, the lack of a clear metrology and quality 
control is creating confusion among industrial end-
users, with many websites and companies selling what 
should be called graphite powders or thin platelets, 
rather than graphene. Despite the nomenclature [3] 
and classification framework [4] that have been pro-
posed for 2D graphene-based materials, a clear agree-
ment on metrology and standards is still missing.

Unlike other nano-materials, graphene can be 
produced by several methods, either using top-down 

or bottom-up approaches, leading to a wide range of 
 graphene-based 2D materials with very different qual-
ity and cost. For example, high-shear [5] or electro-
chemical [6] exfoliation techniques, yielding stable 
solutions in aqueous and organic solvents, have recently 
been upscaled from lab to industrial production level.

The final quality of graphene-based solutions and 
powders depends on a combination of complex pro-
cesses, including bubble cavitation, shear forces and 
intercalation, as well as possible chemical oxidation of 
the pristine graphite. In previous work, we studied the 
mechanism of how graphene nanosheets detach from 
bulk graphite upon ultrasonication, comparing this 
process with (more damaging) chemical or electro-
chemical exfoliation [7]. After detaching from graphite, 
the nanosheets continue to be broken and fragmented 
in solution, due to the presence of ultrasonic waves. An 
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Abstract
2-dimensional (2D) nanosheets such as graphene, graphene oxide, boron nitride or transition metal 
dichalcogenides can be produced on a large scale by exfoliation techniques. The lateral shape of these 
2D materials is typically considered random and irregular, and their average size is often estimated 
using techniques characterized by strong approximations or poor statistical significance. Here we 
measure in a quantitative, objective way the size and shape of 2D monoatomic nanosheets using 
a combination of optical, electronic and scanning probe techniques. We measure, one by one, the 
size and shape of thousands of sheets of graphene oxide as they undergo a standard ultrasonication 
treatment. Using automatic image processing and statistical modelling we identify two different 
fragmentation processes in 2D at the nanoscale, related to two populations of nanosheets described 
by gamma and exponential size distributions respectively. The two populations of sheets coexist 
during the fragmentation process, each one retaining its average size and shape. Our results explain 
the size reduction commonly observed in nanosheets upon sonication as an effect of changes in the 
respective weights of the two populations of nanosheets present in the material.
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understanding of the physics of such fragmentation 
processes is important to optimize the production rate 
of 2D materials with pre-programmed, well-defined 
and tunable chemico-physical properties.

Standardized approaches to study and describe 2D 
nanosheets are thus urgently needed, because both fun-
damental studies and industrial applications require 
controlled, reproducible properties of the material.

In particular, the size of 2D materials is a fundamen-
tal parameter to be estimated because it has an impact 
on their performance, influencing mechanical and 
electrical properties in polymer composites [8], charge 
transport [9], gas permeation in thin films [10] and 
even biological activity [11].

Here we show that a quantitative study of the 
nanosheets’ size and shape distribution can be done 
combining statistical, mathematical and physical tools, 
thus providing detailed information on the physical 
properties of 2D materials and the dynamics of the 
mechanisms involved in their production. We describe 
an analysis technique suitable to characterize large 
amounts of nanosheets providing robust statistical 
parameters to describe them. This analysis allows us to 
define and use a single, scalar quantitative parameter to 
characterize the areal dispersion of such 2D materials.

Our approach is inspired by the chemists from the first 
half of the 20th century, who were challenged to find new 
techniques to produce, characterize and define 1D poly-
mers [12]. One century later, we face similar challenges 
in producing and characterizing a new class of materials, 
formed by repeating units not in one but in two dimen-
sions [13], obtained by fragmentation of bulk graphite.

For linear polymeric chains, the molecular weight 
unambiguously identifies the 1D length of the object. 
The metrology of 2D materials is however more com-
plex, because exfoliation yields a poly-dispersed range 
of nanosheets featuring not only a wide range of sizes, 
but also different shapes. In all works previously pub-
lished on this topic, the only morphological param-
eter reported is the lateral size, quantified using two 
common statistical parameters: arithmetic mean and 
standard deviation (SD), assuming that the nanosheets’ 
length follows a Gaussian distribution. However, all 
published experimental data show that, for any given 
2D material the size distribution is non-Gaussian, 
skewed and highly asymmetric [1, 14]. Noteworthy, 
this skewed distribution is a general statistical feature 
that appears in almost all areas of science, e.g. the length 
distribution of polymers, the content of chemical ele-
ments in rocks, the abundance of species in biology and 
the distribution of galaxies in astronomy [15].

Therefore we decided to perform extensive sta-
tistical measurements of 2D nanosheets obtained in 
solution, using microscopic techniques and automatic 
image processing to extract robust statistical data about 
the size and shape of these sheets.

We demonstrated the validity of this approach using 
a standard 2D material as the target system, i.e. gra-
phene oxide (GO) completely exfoliated without any 

aggregation, featuring more than 99% of monoatomic 
nanosheets in water [9, 16]. We monitored the evo lution 
of the size of the nanosheets as they underwent a stand-
ard ultrasonication treatment from 0 to 100 h. The sheets, 
spanning a wide size range from 100 µm down to 10 nm 
(figure 1), were then deposited on ultra-flat silicon sub-
strates and measured using a combination of different 
microscopy techniques: optical fluorescence microscopy 
(FM) [16], scanning electron microscopy (SEM) and 
atomic force microscopy (AFM). The images obtained 
were then analyzed by an image processing software, 
which allowed the measurement of the size and 2D shape 
of all the sheets produced, one by one (see SI (stacks.iop.
org/TDM/4/025017/mmedia)). Even though the three 
techniques used rely on different physical processes 
(probing the sample with photons, electrons or a micro-
scopic sharp tip), we could use our analysis procedure in 
the same way on all collected images.

We could, in this way:

 • analyze a statistically representative sample of the 
GO nanosheets, corresponding to more than 2500 
sheets for each sample;

 • follow the evolution of size and shape distribution of 
the nanosheets during the fragmentation process;

 • fit these data using different mathematical models 
of dynamic fragmentation [17],

 • deduce the underlying fragmentation mechanisms 
acting on different length scales and

 • using the experimental data, select a robust 
parameter to quantify the heterogeneity of the 2D 
system studied.

2. Sample preparation and  
experimental methods

Single-layer GO sheets were obtained by oxidation and 
exfoliation of graphite using the modified Hummers 
method [16]. The prepared GO suspensions in water 
are stable for more than 1 year as confirmed by UV–vis 
absorption measurements. The fragmentation of GO 
sheets was obtained by sonicating the suspensions 
for up to 100 h with an Elmasonic P 70 H ultrasonic 
cleaning unit (Woutput  =  120 W, freq  =  37 kHz) (see SI: 
experimental methods).

AFM was used to monitor the abundance of 
single layers (>99%) by spin coating the solution 
(conc  =  0.1 g l−1) on an ultra-flat silicon oxide sur-
face. GO sheets were deposited with negligible overlap 
(<5%) [9] on silicon spanning a wide size range from 
100 µm down to 10 nm and examined combining three 
microscopic techniques: FM, SEM and AFM.

FM is based on the interaction of the nanosheets 
with fluorescent molecules, as previously described 
in [16]. SEM and AFM were performed with standard 
commercial setups (see supporting information).

Image processing and analysis was performed using 
commercial software (SPIP™ version 6.6.1) able to 
detect the different sheets by contrast threshold and 
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contour analysis [18] (see SI: Image processing, for 
details on image flattening and detection algorithm).

The statistical analysis of the discrete variables 
acquired by the automatic image processing was per-
formed by testing continuous distributions commonly 
used in fragmentation models: inverse power, log-nor-
mal, gamma and exponential functions. The discrimi-
nation between different functions was performed by 
analyzing the distribution itself as well as the corre-
sponding complementary cumulative distribution. The 
best-fit functions were obtained using the Levenberg–
Marquardt algorithm (see SI: Mathematical methods).

3. Results and discussion

3.1. How to describe the morphology  
of a 2D material
In previous works on exfoliation, the geometrical 
properties of 2D materials were described only by 
the lateral size, which was typically obtained by 
analyzing few tens of sheets with transmission electron 
microscopy (TEM). From the experimental point of 
view, this approach is tedious and prone to artifacts, 
given that the operator arbitrarily chooses the longest 
axis of the sheet as a definition of its lateral size.

A sheet with a given area can have a square shape or 
conversely be long and thin. In a similar way, a sheet with 
a long axis of given length can be square, or elongated, 
or simply irregular. Thus, 2D objects with variable shape 
cannot be defined by a single scalar number, neither 
length nor area. In general, also the shape of objects plays 
a crucial role in affecting the rheology of carbon nano-
particle suspensions and nanocomposites [19] or the 
percolation threshold in networks of shaped objects [20].

We thus describe a GO sheet using different param-
eters related to their area and their shape. The  analysis 

of the shape of 2D objects is not trivial and several 
dimensionless parameters are currently used in image 
analysis to measure shapes [21].

We chose to use the form factor, a standard morpho-
logical parameter calculated from the sheet area (A) and 
perimeter ( p ), to describe the irregularity of the shape 
respect to a circle: π= /A pFF 4 2. For compariso n, we 
also used another widespread morphological param-
eter (aspect ratio) which describes the anisotropy of the 
shape (see supporting info).

Once the shape is fixed, either area or length could 
be used to describe the object; we chose to report the 
area distribution rather than the length distribution 
because measuring the length of an irregular object is 
somehow arbitrary (the operator has to choose sub-
jectively the longest axis). Conversely, the area of each 
sheet shall be measured objectively, pixel by pixel, by the 
software we used [22].

We considered these nanosheets as non-stretchable 
materials where elastic deformations are negligible. 
Geometrically, this corresponds to the case in which 
the surface metric structure is locally Euclidean. Hence, 
GO sheets can move and bend in solution without any 
change in their surface area or shape, which are intrinsic 
properties of the sheet.

3.2. Statistical analysis of the nanosheet  
average area and size
By analyzing FM, SEM and AFM images, we evaluated 
the mean values of the chosen morphological 
parameters for different sonication times. Figure 2 
shows the evolution with time of average area and 
shape (quantified as the form factor defined above). 
Error bars correspond to the calculated SD. All three 
techniques gave an excellent agreement, showing that 
there were none of the systematic errors typical of 

Figure 1. (a) FM, SEM and AFM images of GO sheets deposited on a silicon substrate. Total surface areas sampled using the three 
techniques: 60 mm2, 0.1 mm2 and 0.01 mm2. (b) A scheme showing the different length-scales explored with the different techniques.

2D Mater. 4 (2017) 025017
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subjective, manual image analysis, thus demonstrating 
that different microscopies can be fruitfully combined 
to probe the sheet populations within a range spanning 
over six orders of magnitude, from 109 to 103 nm2 [21].

A similar trend, but consistently lower A  values, 
was achieved using a macroscopic averaging technique, 
dynamic light scattering (DLS). Although DLS provides 
a fast measurement by probing macroscopic volumes 
of solution, the data analysis assumes that the meas-
ured objects have a 3D spherical shape [23]. A semi-
quantitative method to model DLS of 2D nanosheets 
was previously developed, assuming an infinite rigid-
ity of the dispersed sheets [24]. However, the bending 
of nanosheets in solution cannot be neglected because 
folding is energetically more favorable than a perfectly 
flat sheet [25]. This causes an intrinsic underestima-
tion of the measured size using DLS, especially for large 
sheets that are more likely to fold. For this reason, the 
data reported hereafter are obtained from one-by-one 
analysis of single sheets on substrates, thus avoiding any 
underestimation due to ensemble averaging typical of 
DLS or other bulk, macroscopic measurements.

The value A   ≈  4  ×  108 nm2 measured for pris-
tine GO at t  =  0 (corresponding to an average lateral 
size A  of ~20 µm) decreased to A   ≈  1.6  ×  105 nm2 
after half an hour of sonication. Thereafter the area 
continued to slowly decrease, roughly following an 
exponential trend (dashed line in figure 2(a)). This 
gradual reduction in size upon sonication is well 
known, having been commonly observed in all works 
on the production of 2D materials, and indicates that 
fragmentation is a scaling process based on random 
scissions, without variation in the shape of the frag-
ments (see [26, 27], section 5 and figure S12 in sup-
porting info).

However, a change in the shape parameter FF  is 
clearly observed in our case after t  =  40 h (figure 2(b)).

To solve this inconsistency, we studied in detail not 
only the average area, but also how the sheet areas differ 
within each sample.

3.3. Analysis of area and size distribution  
in each sample
The analysis of the area distribution (fA) of each sample 
(figure 3) revealed more details on the evolution of the 
material upon fragmentation.

For the initial GO suspension, fA was linear in log–
log scale (figure 3(a)), indicating a scale-invariant frac-
tal behavior with dimension D  =  1.0  ±  0.1 [28]. A 
scale-invariant area distribution indicates that the initial 
 population can be described in terms of a Smith–Volterra–­
Cantor set [29] and that the GO exfoliation from bulk 
graphite proceeds with iterative self-similar steps where 
the fragmentation mechanism only depends on the details 
of the chemical exfoliation process, including intercalation 
of graphite and formation of gas bubbles [7].

After half an hour of sonication the pristine linear 
trend was still present (figure 3(b)); however, some 
deviations from linearity were observed for the smaller 
fragments.

After t  =  2 h, fA changed significantly (figure 3(c)) 
with the best fit now obtained using a Gamma dis-
tribution which becomes predominant after 10 and 
20 h (figures 3(d) and (e)). Gamma distributions are 
typical of random fragmentation models that follow 
2D-Voronoi tessellation [26, 30], similar to fragmenta-
tion of brittle materials (a.k.a. ‘bulk fragmentation’), 
such as ceramics, glassware and rocks. Such tessellation 
produces fragments with similar shapes; this process 
can be explained by mechanical failure of GO sheets 
due to their structure composed of graphene-like, 
sp2-hybridized patches divided by highly-defective sp3 
regions [31], where crack propagation shall start [32].

Between 40 and 60 h of sonication (figures 3(f) 
and (g)) we observed the coexistence of two popula-
tions: one consisting of large sheets following a Gamma 
distribution (called hereafter population PG), and the 
other of small-sized sheets following an exponential 
distribution (PE).

After t  =  100 h (figure 3(h)) only population PE was 
observed. The exponential distribution indicates the pres-

Figure 2. (a) Area and (b) shape evolution of the fragments in function of sonication time directly obtained by ( ) FM, ( ) SEM, 
(○) AFM and ( ) DLS. In (a) the blue dashed line shows an exponential fit of the FM, SEM and AFM data points. In (b) the Form 
factor (FF) is reported, as a measure of shape (see main text). Grey (red) dashed line corresponds to the ideal Form Factor of a 
circular (square) shaped object.

2D Mater. 4 (2017) 025017
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ence of a fragmentation process starting from seed defects 
on the outer edges of the sheets [33], from which crack 
lines depart (figure S13). This mechanism can be depicted 
as some kind of edge (a.k.a. coastal) erosion (see SI).

The time-evolution of average area A  of the two 
separated populations is summarized in figure 4(a). 
PG sheets fragmented until they reached an asymptotic 
area A G  =  15  ±  6  ×  103 nm2 while PE sheets had a 

smaller area A E  =  2  ±  1  ×  103 nm2 that was no longer 
modified by sonication.

This approach, based on the separate analysis of PG 
and PE, allows us to confirm that the shape of the sheets 
is fairly constant during the whole fragmentation pro-
cess. Figure 4(b) shows that the large sheets PG have a 
quite constant form factor (FF) of 0.45  ±  0.06 while PE 
are more isotropic, with values of 0.83  ±  0.09.

Figure 3. Evolution of size distribution of the 2D nanosheets ((a)–(h)) for different sonication times. The number of sheets (Nsheet) 
versus sheet area is plotted in log–log scale, from 0 h to 100 h. The measured distributions are fitted by: (blue) power law, (red) 
Gamma and (green) exponential functions. Light green, light yellow and light blue backgrounds indicate different active regimes: 
pristine fragments, bulk fragmentation and edge fragmentation.

Figure 4. Time-evolution of (a) area and (b) shape, as measured by the form factor (FF) monitoring the two populations: PG (red 
squares) and PE (green circles). A G and A E are the asymptotic area values of the two populations. Dashed lines correspond to the 
mean values: FF G and FF E. Shadowed areas are centered to the corresponding average values of the shape parameters (dashed 
lines) and the widths correspond to twice the standard deviation (=2·SD).

2D Mater. 4 (2017) 025017
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The form factors, and thus the shape regularity of 
the two populations remain constant upon fragmenta-
tion, in agreement with [26]; thus, the change in FF  
observed in figure 2(b) is not due to a change in the 
shape of the sheets, but simply to a change in the respec-
tive weights of the two populations, with the number of 
PG decreasing in time due to fragmentation, eventually 
disappearing and leaving only PE sheets in solution.

To confirm that this behavior was not due to the par-
ticular parameter used to measure shape, we performed 
a similar analysis using another widely used morpho-
logical parameter (aspect ratio) which describes the 
anisotropy of the shape, obtaining the same results (see 
section 3 and figure S9 in supporting info).

In general, physical models that do not take into 
account the presence of two distinguished sheet 
populations failed to describe the fragmentation pro-
cess. Incoherencies are observed if the sheet area is 
described in the conventional way, using mean and SD, 
which cannot account for the contribution of different 
populations in the sample. These parameters can give a 
correct statistical description of the sample only when 
fA is Gaussian. Instead, their use can cause misleading 
results when comparing distributions with different 
skew and shape.

Overall, a detailed analysis of how the area and 
shape of the nanosheets evolved during fragmentation 
indicates that two different processes acted on different 
scales. Large sheets PG were broken down by fracture 
events that divided each sheet into pieces with a com-
parable shape described by a Gamma distribution and 
reaching the asymptotic value A G corresponding to 
the ultimate fragments area obtained by ‘bulk fragmen-
tation’ of the pristine material. Following this stage, a 
second fragmentation process became relevant, where 
small pieces were cut from the edges of the larger sheets 
by an erosion process, creating a new population of 
objects described by an exponential distribution, hav-
ing a smaller and constant area A E. Each populations 
had a different shape that was not modified by sonica-
tion, PE sheets being systematically more isotropic with 
respect to PG, due to the erosion process.

These results cast new light on the commonly 
observed fragmentation process of nanosheets with 
sonication [10, 34]. The decrease of area is not due to 
a continuous shrinkage that affects all the sheets in the 
same way, but rather to a change in the ratio of two 
populations of sheets created by two different physical 
mechanisms.

We underline that the thickness of GO sheets as well 
as their chemical composition were constant through-
out the entire fragmentation process, as monitored by 
AFM, x-ray photoemission spectroscopy (XPS) and 
zeta-potential measurements (figures S10 and S11). 
The mechanical stress due to the sonication did not 
create new oxidized defects in the GO sheets and the 
fractures propagated along already existing defects. The 
two different mechanisms observed are thus not due 
to presence of different chemical defects in the initial 

or later stages, but rather to a change in the physical 
process of fragmentation while the average sheet size 
was shrinking.

3.4. Influence of sheet area on  
mechanical properties
During GO sonication, cavitation shatters the large 
sheets (PG) creating cracks that propagate from 
their edges and become unstable, giving rise to side 
branches, which can merge to form additional (small) 
fragments, observed as the PE population. The onset of 
two populations of larger and smaller fragments has 
previously been observed experimentally in 1D, e.g. 
in the fragmentation of spaghetti [35] (a problem that 
fascinated also Nobel laureate R Feynman) and 3D (e.g. 
in blasting of rocks) but only predicted by theoretical 
models for 2D systems [36].

The fragmentation action in a typical sonication 
treatment is based on the implosion of micro-bubbles 
created by ultrasound cavitation process. Collapsing at 
super-sonic speed, these bubbles break down the sheets 
due to shear viscous forces that cause mechanical stress 
[37]. The asymptotic area of fragments thus generated 
( A G) corresponds to the smallest surface on which the 
viscous stress shall act to break the fragment further.

Thus we used the experimental value found for 
the smallest average area to estimate the mechanical 
strength of single nanosheets. In terms of Mott statis-
tical theory [33], we extended a 1D model, previously 
used for carbon nanotubes [38], to the 2D case (see SI). 
A G and the viscous stress applied by cavitation bubbles 

were used as input in the model, obtaining a fracture 
strength of PG sheets of 30  ±  10 GPa, which is in good 
agreement with estimations from previous modelling 
[39] and experimental [40] works.

The results presented here demonstrate the com-
plexity of fragmentation in 2D, highlighting that it is 
not correct to quantify the physical properties of an 
ensemble of sheets with the most widely-used pair of 
statistical parameters (i.e. mean and standard devia-
tion). However, the definition of a robust statistical 
indicator could be useful to describe the uniformity of 
these materials and to compare them with others.

3.5. A new quantitative approach to measure the 
heterogeneity of 2D materials in solution
Graphene can be viewed as a polymer consisting of 
atoms covalently tethered in 2D [41]. Therefore, we 
propose to extend to 2D objects concepts already 
developed, one century ago, for 1D polymers. The 
description of the molecular mass of a polymer is 
determined by the mass-molar dispersity (ÐM) [42] 
which is commonly used for quantitative analysis of 
static light scattering measurements (SLS), viscometry 
and size exclusion chromatography [43]. Also known 
as polydispersity index, ÐM quantifies the variability 
in length of the polymer chains, and is defined as the 
weight-averaged molecular weight (Mw) divided by the 
number-averaged molecular weight (Mn).

2D Mater. 4 (2017) 025017
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Taking into account that the mass of 2D objects is 
directly proportional to the area (A), we thus extended 
the validity of ÐM by defining the area dispersity of 2D 
materials (Ð2D) as:

∑
∑ ∑
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resulting in the mean value of the squared area ( A2 ) 
divided by the square of the mean value of the area ( A
2). Figure 5(a) plots the time evolution of Ð2D of GO 
sheets during sonication. In the first half hour the 
dispersity increased indicating a higher heterogeneity 
of the solution due to the persistence of unbroken 
pristine material, as discussed before. Afterwards, with 
continuing sonication Ð2D reduced reaching a value 
close to 2 ascribable to the PE dispersity.

Finally, we tested the validity of this parameter 
demonstrating how it can explain some macroscopic 
property of the material studied. In analogy with 1D 
polymers, dispersity variation influences the way that 
light is scattered by 2D objects in solvent. We studied 
the GO suspension with SLS measurements, which are 
commonly used to characterize polymers and colloi-
dal solutions. At low particle concentrations and for 
Rayleigh scattering, the SLS signal is proportional to 
the ratio between Mw and the z-averaged mean-square 
radius of gyration [44], and can be written as a linear 
function of Ð2D, taking into account equation (1):
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where α and β represent dimensional and proportional 
parameters.

The linear trend achieved for t  ⩾  20 h (figure 5(b)) 

indicates that the ratio A R/
zg

2  is constant, confirm-

ing the validity of using the Ð2D index for 2D mat erials. 
This evidence suggests that the smallest GO sheets 
 produced by long sonication times had no relevant 

folding in water suspensions, behaving as quasi-planar 
objects, in agreement with the DLS measurements.

4. Conclusions

Fragmentation can be described as the process of 
disintegrating an object by multiple fracturing events. The 
physics of fragmentation is of interest in different fields of 
science and engineering: materials science, failure analysis 
and even astronomy. The analysis of the size distribution 
obtained with a given fragmentation process allows us 
to understand the underlying physics of that process. As 
example, using this approach Brown et al [45] studied 
the size distribution of many galaxies, demonstrating 
that the universe underwent a single fragmentation event 
separating into protogalactic volumes at a relatively early 
stage after the Big Bang. In most cases, the study of size 
distribution is performed on 3D objects (i.e. powders or 
rocks from mining activities) or on 1D polymers. Here 
we performed, for the first time, such an analysis on a 
purely 2D material. While polymers can be analyzed only 
at the ensemble level, one of the most striking features of 
graphene and related 2D materials is that even single sheets 
can be easily observed with high-throughput microscopy 
techniques. Thus, they are an ideal material to combine 
analysis from macro scale to the single sheet, allowing 
monitoring of chemico-physical processes at the nanoscale.

We underline that it was possible to obtain statisti-
cally sound data on all the different sheet populations 
thanks only to the good quality of the material chosen 
(GO sheets), whose typical lateral size matches the ideal 
working range of the selected microscopic techniques 
very well. Contrary to previous works, the changes in 
area observed could be ascribed only to 2D fragmen-
tation, not to exfoliation of 3D objects (e.g. graphene 
multilayers) into 2D nanosheets. This is because the 
original starting material we chose was already a purely 
2D material, thus ruling out any influence of 3D pro-
cesses on the changes in sheet population.

This approach can be applied to all the 2D materials 
having topological defects (very few atoms holes), small 
holes (few nm), fissures, etc., with size significantly smaller 

Figure 5. Experimental measurements of 2D areal dispersity index. (a) Time-dependence of areal dispersity Ð2D measured with 
different techniques. (b) Experimental evidence of the correlation between SLS signal (black squares) and Ð2D for t  >  20 h. The red 
line is a linear fit of the experimental data.

2D Mater. 4 (2017) 025017
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than the sheet size. Until defect size is much smaller than 
sheet size, this will just affect the average fracture strength, 
but will not change the fragmentation mechanism.

In summary, we described a new protocol for the 
quantitative analysis at the nano- and micro-scale of 
fragmentation in two dimensions. The results obtained 
allow some ambiguities reported in literature to be 
solved: by showing the coexistence of different GO pop-
ulations, we demonstrated that the GO suspensions can 
be described as a blend of large sheets and small debris 
fragments (similar to fulvic oxides), casting new light 
on the results recently reported on this topic [46].

The proposed approach, based on measurement 
and calculation of areal dispersity, builds on methods 
already well-established for 1D polymers, and could 
allow a rigorous metrology and a reliable, objective 
quality control of graphene-like materials for both fun-
damental and applied research, accelerating the use of 
these new, exciting materials in industrial applications.
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1.EXPERIMENTAL	METHODS	
	

To	monitor	the	sheet	population	from	the	meso-	to	the	nano-scopic	scale	we	used	a	combination	

of	different	techniques	(fig.	1	in	main	text):	optical	fluorescence	microscopy	(FM),1	scanning	electron	

microscopy	(SEM)	and	atomic	force	microscopy	(AFM).	In	this	way	we	could	analyse	more	than	2,500	

sheets	for	each	sample.	The	total	surface	areas	sampled	using	the	three	techniques	were:	60	mm2	

(FM),	0.1	mm2	(SEM)	and	0.01	mm2	(AFM).	

FM	

Images	were	taken	in	reflection	mode	with	a	Nikon	Eclipse	80i	optical	microscope.	The	images	were	

recorded	with	a	digital	color	camera	Nikon	Coolpix	5400.	Samples	were	prepared	by	spin-coating	

the	 GO	 sheets	 on	 300	 nm	 thick	 silicon	 oxide	 substrate	 that	 was	 covalently	 functionalised	 with	

triethoxysilane	 fluorescent	 thiophene-based	 dye,	 N-(3-(triethoxysilyl)propyl	 2,2ʹ:5ʹ,2ʹʹ:5ʹʹ,2ʹʹʹ-

quaterthiophene-5-carboxamide,	as	described	in	ref.	1.	

SEM–	

Scanning	electron	microscopy	(SEM)	images	were	acquired	using	a	FEI	Dual	Beam	system	(FIB-SEM)	

235	with	a	1	nm	electron	beam.	

AFM	

Atomic	 Force	 Microscopy	 (AFM)	 images	 were	 obtained	 in	 tapping	 mode	 with	 a	 commercial	

microscope	(MultiMode	Nanoscope	IIIa,	Bruker).	The	device	was	equipped	with	a	J	scanner,	which	

was	 calibrated	 using	 the	 manufacturer’s	 grating.	 Ultrasharp	 tips	 (RTESPA	 MPP-11120,	 Silicon	

cantilevers,	Bruker,	typical	force	constant	40	N/m,	resonant	frequency	300	kHz)	were	used.	Height	

images	were	flattened	to	remove	background	slopes.	No	other	filtering	procedures	were	performed	
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on	 the	 images.	 AFM	 images	 were	 analysed	 using	 SpipTM	 software.	 Detailed	 information	 about	

flattening	procedures	of	the	AFM	images	and	the	quantitative	analysis	using	the	frequency	spectra	

can	be	found	in	Ref.	2.	

XPS	

X-ray	photoelectron	spectroscopy	(XPS)	spectra	were	recorded	with	a	Phoibos	100	hemispherical	

energy	analyser	(Specs)	using	Mg	Kα	radiation	(ћω=1253.6	eV).	The	X-ray	power	was	250	W.	The	

spectra	were	recorded	in	the	constant	analyser	energy	(CAE)	mode	with	analyser	pass	energies	of	

40	eV	for	the	survey	spectra	and	20	eV	for	the	high	resolution	ones.	Charging	effects	were	corrected	

by	energy	calibration	on	C	1s	level	relative	to	284.5	eV.	The	base	pressure	in	the	analysis	chamber	

during	analysis	was	3·10-10	mbar.	

DLS	and	Zeta-potential	

Dynamic	 Light	 Scattering	 (DLS)	 and	 Zeta-potential	 experiments	 were	 carried	 out	 at	 25°C	 on	 a	

Malvern	 Zetasizer	 Nano-ZS,	 equipped	with	 a	 helium–neon	 633	 nm	 laser	 and	Non-invasive	 Back	

Scatter	 (NIBS)	optics/detector	at	173°.	The	size	distribution	was	calculated	using	a	built-in	auto-

correlation	 function,	 whereas	 Zeta-potential	 was	 estimated	 by	 means	 of	 the	 M3-PALS	 (Phase	

Analysis	 Light	 Scattering)	 technique,	 measuring	 the	 particle	 electrophoretic	 mobility	 in	 a	

thermostated	cell.	

SLS	

Static	 Light	 Scattering	 (SLS)	 spectra	 were	 recorded	 with	 a	 Horiba	 Jobin-Yvon	 Fluoromax	 4	

spectrofluorimeter	 equipped	with	 a	 150W	Xenon	 arc	 lamp,	 by	 using	 a	 synchronous	 scan	 of	 the	

emission	and	excitation	monochromators	(scan	range	200-800	nm)	and	a	right	angle	geometry	for	

excitation	and	photon	detection.	
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Sonication	process	

In	all	the	samples	used	the	sonication	conditions	such	as	the	ultrasound	frequency	and	the	effective	

energy	density	transferred	to	the	GO	sheet	(i.e.	energy/mass)	were	constant.		

For	a	typical	ultrasonic	power	output	of	120W	and	frequency	37	kHz,	the	corresponding	wavelength	

of	sound	(l)	 in	water	was	ca.	4	cm.	The	peak	pressure	in	the	wave	was	of	the	order	DP	≈	1	atm	

corresponding	to	a	net	stress	applied	to	GO	sheets	of	the	order	of	DP(size/l)	~	mPa,	which	induces	

the	sheet	breakdown.		

Transmission	Electron	Microscopy	(TEM)	characterization	of	GO	nanosheets	deposited	on	metallic	

grids	(fig.	S1)	showed	a	wrinkled	structure	typical	of	GO	that,	especially	for	the	larger	ones,	does	not	

allow	an	objective	estimation	of	their	size.	See	ref.	3	for	more	details.	

	

Fig.	S1	TEM	images	of	GO	sheets.	Samples	(50	μg/ml)	were	deposited	on	copper	grids	prior	to	TEM	

observation.	Reproduced	from	ref.	3	
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2.IMAGE	PROCESSING	
	

Definition	of	image	

Each	FM,	SEM	and	AFM	image	was	treated	as	a	matrix	A(i,j),	where	(i,j)	was	the	2D-position	of	

each	data-point.	Each	cell	of	the	matrix	for	AFM	images	contained	the	height	value	(z).	SEM	and	

FM	matrix	cells	contained	instead	the	intensity	of	electrons	and	photons	flux	respectively.	

	

Flattening	procedure	of	an	AFM	image	

Raw-data	AFM	images	are	affected	by	artefacts	due	to	piezo	scanning.	Piezo-electric	motors	are	

commonly	used	to	move	the	samples	in	sub-nanometric	steps	in	all	the	Cartesian	directions	(X,Y,Z).	

For	 the	sake	of	simplicity,	we	use	the	 laboratory	reference	system	(i.e.	X,Y	plane	defined	by	the	

surface	sample	and	Z	perpendicular).	In	general,	the	in-plane	movements	(x,y)	are	decoupled,	but	

Z-motion	depends	on	in-plane	position:	z	=	z(x,y).	This	means	that	the	original	data	recorded	into	an	

AFM	image	of	a	flat	surface	are	described	by	a	2D-hypersurface	z	=	f(x,y)	instead	of	a	plane	z	=	z0.	

Thus,	the	original	AFM	data	have	to	be	processed	and	the	mathematical	transformations	applied	to	

the	image	in	order	to	minimize	the	artefacts	are	called	“flattening	procedures”.	

The	histogram	distribution	is	a	graph	plotting	for	each	height	z	the	(normalized)	number	of	points	

of	the	image	having	that	height.	It	is	one	of	the	most	suitable	parameters	to	monitor	the	flattening	

procedure.	In	particular,	the	histogram	curve	Fc	allows	correction	of	the	image	slope	because	the	

histogram	is	the	best	indicator	of	the	flatness	of	the	surface.	Plane	surfaces	are	characterized	by	

high	and	narrow	histogram	peaks	and	the	peak	width	corresponds	to	the	surface	roughness	in	the	

case	of	a	Gaussian	distribution.4	

A	simple	scheme	is	shown	in	Fig.	S2	where	(a),	(b)	and	(c)	represent	the	raw	image,	an	intermediate	

and	 the	 correct	 image,	 respectively.	 Each	 step	 of	 the	 flattening	 procedure	 is	 monitored	 by	
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evaluating	the	histogram	distribution	(displayed	below	each	image).	In	particular,	Fig.	S2	shows	the	

AFM	image	of	GO	sheets	on	silicon	substrate	at	20	hours	sonication.	

Fig.	S2.	Example	of	the	flattening	procedure.	Corresponding	height	histograms	are	reported	below	

each	image.	Red	arrows	indicate	the	substrate	Z	level	(z0)	and	the	GO	height	(zGO).	

	

The	correct	(a.k.a.	flattened)	AFM	image	presents	a	symmetric	histogram	distribution	well	described	

by	a	Gaussian	function.	The	peak	width	amounts	to	3.80	±	0.02	nm	as	calculated	following	the	work	

of	Olive	et	al.5	

	

Automatic	size	analysis	

After	 the	 flattening	 procedure	 (fig.	 S3A),	 bare	 substrate	 and	 GO	 sheets	 can	 be	 unambiguously	

distinguished	by	using	a	threshold	value	(zth)	defined	as	the	mean	value	between	the	substrate	Z	

level	(z0)	and	the	GO	height	(zGO):	𝑧"# = (𝑧& + 𝑧()) 2.	

Zo	

ZGO	

Zth	



	

	 7	

All	the	pixels	(i,j)	having	the	corresponding	z	value	higher	than	the	threshold	are	assigned	to	the	GO	

sheets	while	the	others	are	assigned	to	the	substrate.		

In	this	way,	the	image	analysis	software	recognized	all	the	GO	sheets	(depicted	in	fig.	S3B,	marked	

with	different	 colours),	 counted	 them	and	 calculated	 several	morphological	 parameters	 such	 as	

area,	size,	perimeter,	Aspect	Ratio	and	Form	Factor.		

	

Fig.	S3.	A)	Original	AFM	data	and	B)	corresponding	processed	image	where	the	GO	sheets	have	

been	automatically	identified	by	the	software	and	marked	with	different	colors.	

	

Statistical	parameters	

Using	the	automatic	image	analysis,	each	image	is	decomposed	into	a	set	of	elements.	Each	of	them	

corresponds	to	a	GO	sheet	and	is	defined	by	an	array	of	six	parameters:	four	used	to	describe	the	

lateral	size	and	two	to	describe	the	shape	of	the	sheet.	

Fig.	S4	summarizes	the	information	related	to	a	single	GO	sheet	with	the	size	parameters	such	as:		

• Area	defined	as	the	number	of	pixels	occupied	by	the	sheet	on	the	surface	(green	region	in	

Fig.	S4B)	

A	 B	
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• Size	(s)	defined	as	the	side	length	of	the	square	having	the	same	area	of	the	sheet	(white	

square	in	Fig.	S4B)	

• Perimeter	defined	by	the	length	of	outer	contour	(green	contour	in	Fig.	S4C)	

• Length	(L)	defined	as	the	distance	between	the	two	farthest	pixels	of	each	sheet	(red	line	in	

Fig.	S4C)	

	

Fig.	S4.	Size	parameters	of	GO	sheet.	A)	AFM	image,	B)	automatic	recognition	of	GO	area	(green	

region)	and	corresponding	C)	perimeter	(green	line)	and	length	(L).	

	

For	 the	quantitative	 analysis	 of	 the	 shape	of	 the	2D	objects,	we	 focussed	our	 attention	on	 two	

dimensionless	parameters:	

• the	Aspect	 Ratio	 (AR),	 namely	 the	 squared	 length	 divided	 by	 the	 area	 (𝐴- = 𝐿//𝐴).	 This	

parameter	describes	 the	anisotropy	of	 the	shape	considered,	AR	 is	always	≥4/π	 (=4/π	 for	

circles	and	=2	for	squares).		

• the	Form	Factor	(FF),	which	combines	area	and	perimeter	(𝐹𝐹 = 4𝜋𝐴/𝑝/),	describing	the	

shape	irregularity:	FF	is	always	≤1	(=1	for	circles	and	=π/4	for	squares).			
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Pixel	resolution	–	overlapping	

Image	 resolution	 basically	 depends	 on	 two	 independent	 factors:	 the	 lateral	 resolution	 of	 the	

experimental	measurement	and	the	pixel	dimension	(Dp)	(a.k.a.	pixel	resolution).	The	first	factor	is	

related	to	the	experimental	parameters	such	as	the	physical	properties	of	the	probe-sample	system.	

Conversely,	the	pixel	resolution,	defined	as	the	ratio	between	the	lateral	size	of	the	acquired	image	

and	the	number	of	pixels:	𝐷6 = 𝑠𝑖𝑧𝑒:;<=> 𝑁6,	can	be	easily	tuned.	The	chosen	pixel	dimension	has	

to	be	much	lower	than	the	lateral	size	of	the	GO	sheet	in	order	to	minimize	the	artefacts	due	to	

pixelization	of	the	acquired	image.		

All	the	topographic	images	acquired	using	FM,	SEM	and	AFM,	are	obtained	by	scanning	areas	within	

the	 range	 between	 1	 µm	 and	 500	 µm.	 In	 order	 to	 compare	 all	 the	 collected	 images,	we	 chose	

different	pixel	resolutions,	as	shown	in	fig.S5,	overlapping	the	values	for	the	different	techniques.	

The	 issue	 related	 to	 the	 pixelization	was	minimized	 by	 using	 an	 iterative	 procedure	 to	 find	 the	

suitable	pixel	dimension.		

For	each	scanned	area	we	i)	acquired	images	with	different	Dp	values,	ii)	obtained	the	corresponding	

area	distributions	and	iii)	calculated	the	average	characteristic	size	 𝑠 = 𝐴 .	

We	chose	the	pixel	resolution	value	so	that	it	was	about	10	times	lower	than	the	average	size	of	the	

measured	GO	sheets:	𝐷6 ≲ 	 𝑠 /10.	
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Fig.	S5.	Pixel	resolution	of	all	the	acquired	images.	
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3.MATHEMATICAL	METHODS	
	

Discrete	distributions,	operative	definitions	

After	collecting	all	the	images,	we	calculated	for	any	studied	parameter	(x)	a	discrete	probability	

distribution	of	the	sheets	𝑓E	defined	as	the	sheet	distribution	normalized	for	the	total	number	of	

sheets.	 In	general,	a	distribution	 is	described	using	 the	mean	value	 (<x>)	and	 the	corresponding	

standard	deviation	(SD),	calculated	as:	

𝑥 = 𝑥: ∙ 𝑓E
EHIJ
EHKL

		;													𝑆𝐷 = 𝑥: − 𝑥 / ∙ 𝑓E
EHIJ
EHKL

								with			 𝑓E
EHIJ
EHKL

= 1.	

These	definitions	can	be	generalized	for	the	continuous	distributions	𝑓 𝑥 	where	x	is	a	continuous	

random	variable:	

𝑥 = 𝑥: ∙ 𝑓 𝑥 𝑑𝑥EHIJ
EHKL

		;							𝑆𝐷 = 𝑥: − 𝑥 / ∙ 𝑓 𝑥 𝑑𝑥EHIJ
EHKL

						with			 𝑓 𝑥 𝑑𝑥EHIJ
EHKL

= 1.	

In	the	case	of	a	Gaussian	distribution,	<x>	and	SD	correspond	to	the	position	(a.k.a.	mode)	and	the	

peak-width	 of	 the	 distribution	 respectively.	 Conversely,	 in	 the	 case	 of	 skewed	 distributions	 this	

simple	 relationship	 is	not	valid,	as	<x>	and	SD	are	given	by	a	combination	of	 the	mode	and	 the	

breadth	of	the	distribution.	In	the	case	of	highly	skewed	distributions,	the	standard	deviation	cannot	

be	a	useful	parameter	because	it	is	larger	than	the	mean	value.	This	is	a	common	issue	related	to	

the	 breadth	 and	 shape	 of	 the	 distributions	 that	 are	 usually	 determined	 most	 efficiently	 with	

parameters	derived	 from	 the	higher	moments	of	 the	distribution.	A	detailed	description	 can	be	

found	in	6.	



	

	 12	

<x>	and	SD	are	not	 sufficient	 to	describe	 the	given	distribution.	 Fig.	 S6,	 as	example,	 shows	 two	

different	discrete	distributions	fx:	(red)	Gaussian	and	(blue)	scattered	bimodal,	having	the	same	pair	

of	statistic	parameters	<x>	and	SD.	Both	distributions	are	normalized.		

	

Fig.	S6.	Two	distributions	described	by	the	same	pair	of	statistical	parameters:	<x>	and	SD.	

	

For	the	sake	simplicity,	in	the	main	text	we	used	indistinctly	the	words	“distribution”	and	“function”.	

	

Choice	of	the	“optimal”	number	of	sampling	points	to	reconstruct	the	distribution	

The	number	of	bins	Nb	used	to	build	the	size	distribution	histogram	is	calculated	as	the	ratio	

between	the	x-range	and	the	bin	width	h:		

𝑁𝑏 = EHIJQEHKL
#

	 	 	 	 	 	 	 	 	 	

where	min	 (max)	 value	 corresponds	 to	 the	 smallest	 (largest)	measured	 sheet,	while	 the	 braces	

indicate	the	ceiling	function.	
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The	parameter	h	 is	a	smoothing	or	 localizing	parameter	and	controls	the	width	of	the	histogram	

bins.	A	value	of	h	that	is	too	large	leads	to	very	big	blocks	and	thus	to	a	very	unstructured	histogram.	

On	 the	 other	 hand,	 when	 the	 h	 value	 is	 too	 small	 it	 gives	 a	 very	 variable	 estimate	with	many	

unimportant	 peaks.	 The	 choice	 of	 the	 “optimal”	 value	 is	 not	 trivial	 and	 several	 methods	 are	

suggested.7	We	used	the	Scott’s	rule:	 3/1nSD49.3h -××= ,	because	it	is	simple	and	well-founded	in	

statistical	 theory,	 taking	 into	 account	 the	 SD	 of	 the	 acquired	 dataset	 as	well	 as	 the	 number	 of	

measured	sheets	(n).8		

	

Sampling	

Managing	macroscopic	samples	and	solutions	requires	treating	systems	with	an	enormous	number	

of	objects.	For	example,	if	we	consider	1	g	of	single	layer	graphene	sheets	with	a	mean	area	of	10	

µm2,	 the	entire	population	corresponds	 to	about	1014	objects.	 It	 is	not	possible	 to	manage	such	

quantities	and	for	this	reason,	the	system	has	to	be	treated	with	statistical	approaches.	

What	 is	 the	minimum	number	of	GO	sheets	 from	within	a	statistical	population	 to	estimate	 the	

characteristics	of	the	entire	GO	solution?	

We	faced	this	problem	by	monitoring	how	the	area	distribution	changes	with	an	increasing	number	

of	 GO	 sheets	 (Nsheet)	measured	 by	 different	microscopy	 images.	When	 the	 area	 distribution	 no	

longer	 changes	 (i.e.	 asymptotic	 behavior),	 the	 corresponding	 Nsheet	 value	 is	 the	 representative	

sample	of	the	GO	solution.	

In	particular,	we	monitored	three	parameters	to	quantify	the	change	of	shape	of	the	distribution	𝑓E:	

• Skewness	(the	measure	of	the		𝑓E	asymmetry):	𝑠𝑘𝑒 = ES QT∙ E ∙UVWQ E S

UVS
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• Kurtosis	(the	measure	of	the	𝑓E	tailedness):	𝑘𝑢 =
EY

UVY
	

• Tail	percentage:	𝑡𝑎𝑖𝑙 = ]^IK_
]`abb^

,	where	the	first	Ntail	value	corresponds	to	the	root	square	of	

the	number	of	sheets	(Poisson	distribution).	

The	evolution	of	these	three	parameters	is	reported	in	Fig.	S7	for	the	case	of	2	sonication	hours.	We	

acquired	14	images	(AFM	and	SEM),	corresponding	to	about	3,500	sheets.	All	the	three	parameters	

tend	to	an	asymptotic	value	for	Nsheet	larger	than	2,500.	

	

Fig.	S7.	Fitting	analysis.	Evolution	of	the	shape	of	area	distribution.	

	

Thus,	we	are	confident	that	2,500	is	the	minimum	number	of	GO	sheets	from	within	a	statistical	

population	to	estimate	characteristics	of	the	GO	solution	at	2	sonication	hours.	

The	same	procedure	has	been	repeated	for	all	the	sonication	times	and	corresponding	Nsheet	values	

range	between	2,000	and	3,000.		

	

List	of	analytic	continuous	distributions	used	

All	the	acquired	area	distributions	were	fitted	with	the	probability	distributions	commonly	used	in	

fragmentation	models:9		Inverse	power,	Log-normal,	Gamma	and	Exponential	functions.	
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• Inverse	power	law	describes	a	scale	invariant	(a.k.a.	fractal)	fragmentation,	depicting	a	series	

of	fragmentation	processes	that	do	not	depend	on	the	size	of	the	fragment.		

• Log-normal	 distribution	 describes	 random	 fragmentation	 processes	 with	 a	 random	

distribution	of	 the	 fragment	 shape,	and	has	previously	been	used	 to	describe	many	 rock	

crushing	processes	and	fragmentation	of	2D	materials.10		

• Gamma	 function	 describes	 the	 fragment	 distributions	 following	 a	 particular	 partition	 of	

Euclidean	surfaces	called	Voronoi	tessellation.11	Because	Gamma	and	Log-normal	functions	

have	very	similar	shapes	they	are	often	used	indiscriminately,	despite	describing	different	

mechanisms.	

• Exponential	functions	(a.k.a.	Mott	functions)	describe	from	a	purely	statistical	point	of	view	

fragmentation	given	by	randomly	oriented	cracks.	

	

The	mathematical	functions	mentioned	in	the	main	text	are	listed	below:		

Table	S1.	List	of	the	analytic	distributions	and	the	corresponding	mean	and	SD.	

Distribution	 Equation	 𝑥 	 𝑆𝐷	

Gaussian	
1

𝑤 2𝜋
∙ 𝑒Q

EQEd W

/eW 	 𝑥&	 𝑤/	

Log-normal	
1

𝑥𝑤 2𝜋
∙ 𝑒Q

fgEQEd W

/eW 	 𝑒EdheW /	 𝑒QeW − 1 ∙ 𝑒/EdheW 	

Gamma	 Γ 𝛼 ∙ 𝑥kQl ∙ 𝑒QmE,		
𝛼, 𝛽 > 0	

𝛼
𝛽	

𝛼
𝛽/	

Power	law	 1
𝑥k 	

-	 -	

Mott	 𝑒Qq∙ E	 -	 -	

	



	

	 16	

The	Gaussian	function	is	a	symmetric	distribution	where	the	mean	value	corresponds	to	the	median	

and	the	mode,	 i.e.	 the	position	of	 the	peak.	The	statistical	parameters	are	calculated	within	 the	

domain	 𝑥 ∈ ℜ.	 All	 the	 other	 functions	 are	 asymmetric	 and	 defined	 for	 positive	 variables.	 The	

statistical	parameters	of	Log-Normal	and	Gamma	functions	are	calculated	within	the	domain	𝑥 ∈

0,+∞ .	

	

Data	fit	

In	general,	discriminating	between	different	asymmetric	distributions	is	not	simple	(see	ref.	12	as	an	

example).	In	order	to	tackle	this	well-known	problem,	we	studied	the	complementary	cumulative	

distribution	 functions:	 𝐶𝐶𝐷 𝜉 = 1 − 𝑓 𝑥 𝑑𝑥w
& 	 together	 with	 the	 distribution	 itself	 f(x).	 This	

function	can	be	defined	both	for	discrete	and	continuous	distributions.	

For	 example,	 taking	 into	 account	 our	 experimental	 dataset,	 given	 a	 certain	 area	 value	 (Ai),	 the	

CCD(Ai)	function	indicates	the	population	of	GO	sheets	larger	than	Ai.	For	this	reason	it	is	also	called	

the	survival	or	reliability	function.	

Fig.		S8	reports	the	study	performed	on	(A)	the	area	distribution	and	(B)	the	corresponding	CCD	of	

GO	 sheets	 after	 20	 sonication	 hours,	 comparing	 the	 best-fit	 functions	 obtained	 by	 using	 the	

Levenberg–Marquardt	algorithm	corresponding	to	(purple)	Log-normal,	(red)	Gamma	and	(green)	

Mott	distributions.	The	corresponding	𝜒/	coefficients	are	reported	in	table	S2	(the	lower	𝜒/,	the	

better	the	fitting).		
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Fig.	 S8.	 Fitting	 analysis.	 (A)	 Distribution	 of	 GO	 sheets	 after	 20	 sonication	 hours	 and	 (B)	 the	

corresponding	 cumulative	 distribution	 function.	 The	 experimental	 distributions	 are	 fitted	 with	

(purple)	Log-normal,	(red)	Gamma	and	(green)	Mott	distributions.	

	

Table	S2.	𝜒/	coefficients	of	best-fit.	

	 𝑓 𝑎𝑟𝑒𝑎 	 𝐶𝐶𝐷 𝑎𝑟𝑒𝑎 	

Log-normal	 39.6	 13093	

Gamma	 9.15	 126.6	

Mott	 16.6	 1139.7	

	

The	𝜒/	coefficient	of	the	Gamma	function	 is	the	 lowest,	clearly	demonstrating	that	this	function	

better	reproduces	the	measured	dataset.	

This	procedure	has	been	used	for	all	the	area	distributions	acquired	at	all	the	different	sonication	

times.	Gamma	distribution	always	shows	the	lowest		𝜒/	coefficient	in	the	range	between	0.5	hours	

and	40	hours	sonication	times.	

A	 B	
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It	 is	noteworthy	that	the	statistical	analysis	has	been	performed	for	all	the	statistical	parameters	

taken	into	account,	such	as	area,	size,	perimeter,	Form	Factor	and	Aspect	Ratio.	

	

Time-evolution	of	the	shape	of	GO	sheets	

In	the	main	text,	we	evaluated	the	shape	of	GO	sheets	for	different	sonication	times	by	monitoring	

the	Form	Factor	(FF)	statistical	parameter.	The	experimental	results	suggested	the	presence	of	the	

GO	populations	(PG	and	PE)	with	different	shape	which	did	not	change	during	sonication.	This	picture	

has	been	confirmed	by	analyzing	further	shape	parameters	such	as	the	Aspect	Ratio	(AR),	described	

before	(see	Fig.	S9).	

	

Fig.	S9.	Time-evolution	of	the	Aspect	Ratio	parameter	of	GO	sheets:	(A)	mean	value	and	SD	and	(B)	

monitoring	the	two	populations:	(red	squares)	PG	and	(green	circles)	PE	using	the	fA	analysis.	Dashed	

lines	 correspond	 to	 <AR>G	 and	 <AR>E	 values.	 Shadowed	areas	 are	 centered	 to	 the	 corresponding	

average	 values	 of	 the	 shape	 parameters	 (dashed	 lines)	 and	 the	widths	 correspond	 to	 twice	 the	

standard	deviation	(=	2·SD).	
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4.CHEMICO-PHYSICAL	ANALYSIS	
	

Monitoring	of	C/O	ratio	of	the	GO	sheets	

	

Fig.	S10.	XPS	surveys.	High-resolution	core	level	spectra	Carbon	1s	of	GO	sheets	before	(A)	and	after	

(B)	100	hours	of	sonication.	XPS	spectra	have	been	corrected	by	removing	the	background.	

	

The	high-resolution	C1s	XPS	spectra	exhibited	contributions	of	different	C-C	bonds	and	the	presence	

of	hydroxyl	and	carboxyl	groups.	In	particular,	we	distinguished	five	components	at	284.4	eV	(C	sp2),	

285.0	eV	(C	sp3),	286.8	eV	(C-O-C)	288.5	eV	(O-C=O)	and	290.8	eV	(shake-up).		

All	the	XPS	spectra	were	obtained	by	subtracting	the	Shirley	background	(as	displayed	in	Fig.	S10)	

and	then	fitted	with	a	Voigt	function	for	each	component.	The	Full	Width	Half	Maximum	value	of	all	

the	 five	components	 is	between	1.0	and	1.6	eV.	We	analyzed	three	samples	 for	each	sonication	

time.		

The	oxidation	degree	of	 the	GO	sheets	 (C/O)	 (i.e.	 the	 ratio	between	 the	number	of	oxygen	and	

carbon	atoms:	C/O)	was	calculated	as	a	combination	of	the	measured	contribution	weight	by	the	

area	(Ax):	
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𝐶/𝑂 = {`|Wh{`|Sh{}~�~}h{��}~�
{}~�~}//h/∙{��}~�

	.	 	 	 	

The	areas	of	all	the	contributions	obtained	by	the	fit	procedures	are	reported	in	the	table	S3.	

The	analysis	of	the	relative	contributions	shows	that	the	chemical	functional	groups	as	well	as	the	

amount	of	carbon	chemical	species	(sp2-	for	graphitic	clusters	and	sp3	for	the	defects)	did	not	

change	significantly.	The	corresponding	C/O	ratio	amounts	to	2.4	strongly	indicating	that	the	

chemical	properties	of	the	GO	sheets	were	not	modified	by	the	long	sonication	treatment.		

	

Table	S3.	Relative	composition	of	C1s	spectra.	
	

	 C	sp2	 C	sp3	 C-O-C	 O=C-O	 C/O	ratio	

0	hours	 29±2	 13±1	 52±1	 6±1	 2.38±0.08	

100	hours	 32±2	 12±1	 50±1	 6±1	 2.42±0.08	

	

	

Zeta-potential	analysis	

GO	 sheets	 are	 typically	 functionalized	with	 hydroxyl	 groups	 and	 carboxyl	 groups,	 which	 bear	 a	

different	amount	of	negative	charges	depending	on	sheet	composition	and	pH.13	All	the	samples	

produced	showed	a	Z-potential	of	-50	±	29	mV,	independent	of	GO	size	(Fig.	S11)	confirming	that:	i)	

the	sheets	are	strongly	solvated,	do	not	interact	with	each	other	in	the	solution	and	ii)	the	number	

of	charged	chemical	groups	present	on	their	surface	is	constant.	The	first	point	confirms	the	long	

stability	of	the	solutions	observed	experimentally,	while	the	second	one	indicates	that	the	chemical	

properties	of	the	GO	sheets	do	not	vary	with	the	lateral	size.			
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Fig.	S11.	Zeta	potential	spectra	of	GO	in	water	solution	acquired	for	different	sonication	times.	
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5.PHYSICAL	MODELLING	
	

2D	fragmentation	–	Scaling	properties	

The	geometry	of	 fragments	clearly	 influences	 the	 fragmentation	processes,	which	 is	 reflected	 in	

different	 behaviors	 of	 the	 time-dependence	 of	 the	 mean	 values	 of	 the	 area	 <A>	 and	 of	 the	

characteristic	size	<s>.	According	to	the	Cauchy–Schwarz	inequality,14	it	is	simple	to	demonstrate	

that	the	ratio	of	these	two	parameters	differs	from	unity:	 𝐴 𝑠 / ≠ 1.	Using	a	random	scission	

model,	Krapivsky	et	al.15	demonstrated	the	scaling	behavior	of	the	2D	fragmentation	showing	that	

the	ratio	depends	asymptotically	on	time:	 𝐴 𝑠 / ~𝑡Qg,	where	𝑛 = 17 − 4 ≅ 0.123.	

Fig.	S12	shows	how	the	ratio	varies	with	increasing	sonication	time.	Values	are	calculated	directly	

from	the	experimental	data	 (fig.	2A)	and	taking	 into	account	 the	equation	 𝑠 = 𝐴 .	The	ratio	

values	decrease	linearly	in	log-log	scale	with	a	slope	of	0.13±0.01	showing	an	excellent	agreement	

with	theory.	This	evidence	strongly	 indicates	that	the	GO	fragmentation	 is	a	2D	random	scission	

which	does	not	affect	the	shape	of	the	fragments.	

	

Fig.	S12.	Time	evolution	of	 𝐴 𝑠 /	ratio	calculated	by	(+)	FM,	(△)	SEM	and	(○)	AFM.	
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The	 experimental	 trend	 strongly	 indicates	 that	 the	 fragmentation	 of	 GO	 is	 a	 homogeneous	

processes16	in	which	the	shape	of	the	fragment	does	not	change	with	time.		

It	is	noteworthy	that	this	picture	has	been	developed	by	calculating	the	area	(and	size)	of	all	the	GO	

sheets	without	any	analysis	of	the	area	distribution.	A	more	correct	analysis,	performed	taking	into	

account	the	two	populations,	is	reported	in	main	text.	Fig.	S13	shows	a	cartoon	schematizing	the	

different	fragmentation	mechanisms	acting	on	different	scales.	

Scheme	of	fragmentation	processes	

	

Fig.	S13.	Schematic	representation	of	the	different	fragmentation	mechanisms	between	10	and	100	

sonication	hours,	observed	together	with	some	every-day	examples	of	rock	fragmentation.	 	
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Bulk	fragmentation	-	Modelling	of	the	cavitation	shear	stress	

XPS	 and	 Zeta-potential	 measurements	 confirm	 that	 the	 sonication	 did	 not	 affect	 the	 chemical	

properties	of	the	GO	sheets	in	solution.	For	this	reason,	any	change	in	fragmentation	mechanism	

was	only	due	to	the	smaller	size	of	the	GO	sheets	involved.	During	sonication,	the	implosion	of	the	

cavitation	bubbles	created	in	the	liquid	imposes	an	inward	radial	fluid	flow,	which	induces	viscous	

forces	 on	 the	 graphene	 sheets	 that	 can	 thus	 fracture.	 After	 multiple	 fractures,	 fragments	 are	

generated	 with	 an	 asymptotic	 area	 (<A>G)	 corresponding	 to	 the	 smallest	 surface	 on	 which	 the	

viscous	stress	cannot	generate	a	lateral	force	high	enough	to	further	break	of	the	fragment.		

Here	we	extend	to	GO	sheets	the	approach	proposed	for	nanotubes	by	Ahir	et	al.17	If	a	bubble	of	

radius	𝑅	implodes	at	a	velocity	𝑅,	the	mass	conservation	law	4𝜋𝑅/𝑑𝑅 = 4𝜋𝑥/𝑑𝑥,	where	x	is	the	

radial	coordinate,	implies	a	fluid	velocity	in	the	form	𝑣 𝑥 = 𝑅/𝑅/𝑥/.	The	GO	sheet	is	described	by	

a	characteristic	lateral	size	s	and	a	thickness	h,	as	summarized	in	the	Fig.	S14.	

	

Fig.	S14.	Scheme	of	the	collapsing	bubble.	
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We	define	the	stagnation	point	as	𝑣 𝑥& = 𝑉,	which	can	be	calculated	by	balancing	the	viscous	force	

F	 along	 the	 sheet,	 placed	 between	 x1	 and	 𝑥/ = 𝑥l + 𝑠,	 according	 to	 𝐹 = 𝜂 �
#
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,	where	𝑥& = 𝑥l𝑥/.	

The	self-equilibrated	two	forces	acting	on	both	the	sides	of	the	graphene	can	be	written	as	

𝐹 = 𝜂 �
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It	is	noteworthy	that	both	faces	of	the	sheet	feel	the	viscous	shear	stress	(dividing	by	𝐴 = 𝑠 ∙ ℎ	and	

multiplying	the	force	for	a	factor	2).	The	corresponding	applied	viscous	normal	stress	can	be	written	

as:	
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The	maximal	stress	is	reached	at	the	smallest	distance	𝑥l = 𝑅:	
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Eq.	(2)	calculates	the	maximal	normal	stress	that	can	act	to	the	GO	sheet.	This	value	cannot	
exceed	the	fracture	strength	of	the	GO:	𝜎�

() .	Thus,	for	a	given	characteristic	size	s,	the	sheet	
fragmentation	complies	with	the	equation:  
	
	 	 ( ) ( )GO
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The	asymptotic	size	of	the	GO	sheet	can	be	calculated	using	the	eq.	2,	for	the	case		𝑅 ≫ 𝑠	:	
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Taking	into	account	that	the	sheet	area	is	the	square	of	the	characteristic	size:	𝑠 = 𝐴,	we	describe	

the	fracture	strength	of	the	GO	sheet	as:	
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where	 the	 first	 factor	 describes	 the	 dynamics	 of	 the	 collapsing	 bubble	 in	 terms	 of	 stress	 rate	

(𝑅 𝑅≈109	 s-1)	 and	water	 viscosity.18	 The	 second	 factor	 is	 related	 to	 the	morphology	 of	 the	 GO	

fragment,	where	h	is	the	thickness	and	 𝐴 ( 	is	the	asymptotic	area	of	the	GO	population	obtained	

by	“bulk	fragmentation”	and	following	the	Gamma	area	distribution,	as	shown	in	fig.	4	in	the	main	

text.	The	dynamics	of	the	collapsing	bubble	(radius	and	velocity)	have	been	calculated	by	solving	

the	Rayleigh-Plesset	equation	using	the	adiabatic	approximation	(k	=	1.4),	considering	the	gas	as	

non-condensable	and	neglecting	the	thermal	and	surface	tension	effects.	A	detailed	description	can	

be	found	in	the	book	by	Brennen	(chapter	3)	and	references	therein.19		

	

Edge	fragmentation	mechanism	

The	mechanical	stress	of	cavitation	acts	directly	and	indirectly	on	the	rupture	mechanisms	of	the	

GO	sheets	in	solution.	A	simplified	scheme	is	reported	in	Fig.	S15.	

Large	fragments	are	directly	generated	by	the	mechanical	stress	of	cavitation,	as	modelled	in	the	

previous	section.	Stress	creates	large	cracks	in	pristine	sheets	(fig.	S15A)	leading	to	the	formation	of	

“bulk	fragments”	(i.e.	first	generation	of	fragments,	following	a	Gamma	size	distribution).	

A	further	mechanism	has	to	be	taken	into	account	because	unstable	cracks	can	branch	off	from	the	

main	 crack	 that	 generates	 the	 bulk	 fragments	 (fig.	 S15B).20	 This	 mechanism	 is	 responsible	 for	

additional	 edge	 erosion	 of	 the	 first	 generation	 fragments.	 After	 100	 hours	 sonication,	 bulk	

fragments	are	completely	eroded	leading	to	a	new	population	of	small	GO	sheets	(<s>	»	45	nm)	

whose	area	distribution	follows	an	exponential	curve	(second	generation	of	fragments,	fig.	S15D).	
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Fig.	S15.	Scheme	of	fragmentation	mechanisms.	
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