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Wetting theory for small droplets 
on textured solid surfaces
Donggyu Kim1, Nicola M. Pugno2,3,4 & Seunghwa Ryu1

Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes 
suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades 
of intensive study, there are still many experimental results that are not well understood because 
conventional wetting theory, which assumes an infinite droplet size, has been used to explain 
measurements of finite-sized droplets. Here, we suggest a wetting theory applicable to a wide range 
of droplet size for the three wetting modes by analyzing the free energy landscape with many local 
minima originated from the finite size. We find that the conventional theory predicts the contact angle 
at the global minimum if the droplet size is about 40 times or larger than the characteristic scale of the 
surface roughness, regardless of wetting modes. Furthermore, we obtain the energy barrier of pinning 
which can induce the contact angle hysteresis as a function of geometric factors. We validate our theory 
against experimental results on an anisotropic rough surface. In addition, we discuss the wetting on 
non-uniformly rough surfaces. Our findings clarify the extent to which the conventional wetting theory 
is valid and expand the physical understanding of wetting phenomena of small liquid drops on rough 
surfaces.

The contact angle is a material property determined by the surface tensions between substrate, liquid, and vapor1. 
Because the materials with extremely small or large contact angles, i.e., with super hydrophilicity or super hydro-
phobicity, are applicable in many ways, there have been a myriad of studies that have investigated tuning the 
contact angle via the surface roughness of the substrate based on the conventional wetting theory of rough surface 
with Wenzel (W), Cassie-Baxter (CB), and Penetrate (P, which is also referred to as hemi-wicking2) modes3–9.

However, the conventional wetting theory1,10–12 assumes that the liquid droplet is much larger than the char-
acteristic scale of the surface roughness, which frequently is not justifiable in many experiments. Therefore, the 
contact angle predictions using the conventional theory differ from experimental results when the droplet size is 
small13–19. The conventional theory considers a straight boundary between the liquid and the vapor regardless of 
the three-phase contact line location or the droplet size1,10–12,20. However, because the realistic contour of a liquid 
droplet forms part of a sphere21, the assumption does not hold when the droplet size to surface texture scale ratio 
is small. There have been several studies to overcome the limitations of the conventional wetting theories for the 
small droplet, based on wetting free energy calculations. As a pioneer of the subject, Marmur et al.12,13 modelled 
the 2D circular droplet on the heterogeneous in CB mode or the saw-tooth-like rough surface in W mode, and 
clarified that the wetting on the rough surface can involve multiple local free energy minima with different contact 
angles and that the contact angle of the global free energy minimum approaches to that of the conventional the-
ory only when the scale of the liquid droplet is much bigger than the scale of the periodicity of the rough surface. 
Shahraz et al.22 computed the wetting free energies of every possible pinning points on the surface with periodic 
rectangular protrusions in W or CB mode, to predict the contact angles of the liquid droplet with finite volume at 
multiple pinning points. However, since the free energy landscape between the pinning points were not investi-
gated, it cannot be guaranteed that all the pinning points investigated in the study are at local free energy minima.

In this work, we present a more generalized wetting theory by considering the entire free energy landscape 
including the transition configuration between the pinning points in three wetting modes, P, W, and CB, on a 
surface with rectangular protrusions as well as non-uniformly rough surfaces. First, we confirm that the pinning 
phenomena can be understood by the existence of multiple local minima of the free energy landscape separated 
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by energy barriers. For all wetting modes (P, W, and CB), we show that the contact angle at the global minimum 
recovers the prediction of conventional wetting theory within 2° when the droplet size (diameter of the initial 
droplet) becomes at least 40 times larger than the characteristic scale of the surface roughness (periodicity of the 
texture). Second, we compute the free energy barriers between available pinning points in all wetting modes. For 
P and CB modes, the energy barrier between local minima tends to decrease as the contact angle becomes further 
apart from the contact angle at the global minimum energy and eventually becomes zero, which enables us to 
predict the ultimate bound of advancing and receding angles. Our theory is then applied to explain the measured 
contact angle on the surface with anisotropic roughness19. Finally, we calculate the free energy of the wetting 
on the non-uniformly rough surface and reaffirm in terms of free energy that the contact angle is determined 
by the roughness of the substrate near the three-phase contact line20,23, not by the overall roughness within the 
droplet-substrate contact area. When the effect of gravity is ignored22, the proposed theory is universally valid for 
any scale of droplets unless the droplet diameter is a few nanometers or smaller because we assume that the inter-
facial energy of rough surface can be written as the flat surface interfacial energy multiplied the ratio of true area 
to the apparent area. The length scale of the molecular interaction is known to be about one to two nanometers24. 
Our theory reproduces the conventional wetting theory in the limit of an infinite ratio between the droplet size 
and characteristic scale of surface roughness.

For the mathematical simplicity, we consider a two-dimensional (2D) finite-sized liquid droplet. As illustrated 
in Fig. 1a, we model the rough surface as periodic rectangular textures and model the boundary of the liquid 
droplet as an arc of a circle while ignoring the effect of gravity. In other words, our 2D droplet is a simplification 
of an infinitely long cylindrical droplet. Even though our theory cannot provide the exact quantitative prediction 

Figure 1. Assumptions and methods to achieve r − θ relation. (a) Schematic of liquid droplet and the 2D 
textured solid substrate. To simplify the problem, we assume that the liquid droplet has a vertical surface when 
the non-pinned tip is on the groove (b) Relation between n and L when =G 2, and =W 1 for two locally 
pinned states. (c–e) Relation between θ and E. Global minimum of free energy can be found at various 
roughness factors r. (f) Relation between r and θ. The contour is constructed by contact angles of the global free 
energy minima at each roughness factor r.
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of contact angle of realistic spherical-cap-like 3D droplets, it can still offer qualitative physical understanding 
about the wetting of small droplet on rough surface, such as the origin of pinning, the wetting on non-uniformly 
rough surface, and contact angle change upon droplet volume change. The transition between the pinning points 
in CB and P modes is modelled by assuming that the three-phase contact line horizontally slides between the top 
of grooves. In W mode, we assume that the liquid tip forms a vertical straight line when inside a groove. While 
such an assumption may cause a small numerical difference, the resulting free energy landscape would correctly 
capture the multiple local minima and the energy barriers between them qualitatively well (See Supplementary 
Information).

We find that the free energy has local minima when one end of the droplet is fixed at either the left or right cor-
ner of the step. Two cases are illustrated in the inset of Fig. 1b. Because a hydrophobic surface prefers to reduce the 
contact area between the droplet and the substrate at a given contact angle, Case I has the lower free energy for the 
hydrophobic surfaces (θ e >  90°), and Case II has the lower free energy for the hydrophilic surfaces (θ e <  90°) (see 
Supplementary Information for more details). θ e refers to the equilibrium contact angle on a flat surface deter-
mined by Young’s equation1, σ LV cos θ e =  σ SV −  σ SL, where σ LV, σ SV and σ SL denote the liquid-vapor, solid-vapor and 
solid-liquid interfacial energies, respectively. For the two cases, the number of grooves below the liquid droplet n 
can be expressed with length of the baseline L, width of the step W, and width of the groove G, as described below.
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n1 is the number of groove-step pairs which fully covered with liquid, hence a natural number, and n is defined to 
account for partially filled grooves (real number). The overbar indicates the dimensionless variables. In what 
follows, all length and energy variables are normalized against the radius of the circular droplet R0 (i.e. the volume 
of droplet is πR0

2) and σ LVR0, respectively. The values of n are visualized in Fig. 1b. for the case when =G 2 and 
=W 1. As illustrated in the figure, n continuously increases when the three-phase contact line is on the groove 

and is conserved when the contact line is on the step, as L increases. Thereafter, the radius of the curvature and the 
free energy of each wetting modes can be derived in terms of n, geometrical factors, and θ , which are presented in 
Table 1. Details on the numerical calculations are described in the Supporting Information. Because the current 
study considers only 2D droplet cases, the effect of the line tension25 can be ignored. However, one needs to incor-
porate the line tension effect when dealing with 3D droplets on textured surfaces26,27.

Based on the free energy expression as a function of θ , we can find the allowable contact angles with free 
energy minima at a given roughness factor28 = + +

+
r G W 2H

G W
, i.e., the ratio of the true surface area to the projected 

area. For example, Fig. 1c–e show the relationship between the free energy and the contact angle for the W mode 
when r =  1.2, 1.5 and 1.8, respectively when = = .G W 0 05 (i.e., a droplet size of 2R0 is 20 times that of the char-
acteristic scale of the surface roughness, G +  W). The vertical dotted line is the contact angle determined by the 
conventional wetting theory on the Wenzel mode, cos θ  =  r cos θ e. The contact angles at the global free energy 
minima under different surface roughnesses, which are highlighted by the blue circle, green triangle, and red 
square, do not match perfectly with the prediction from the conventional wetting theory. Thereafter, one can 
predict the contact angle as a function of the surface roughness factor r by connecting the contact angles at the 
global free energy minima, as illustrated in Fig. 1f. The conventional wetting theory prediction (red dotted curve), 
cos θ  =  r cos θ e, is also presented in comparison. The contact angles for the CB and P modes can be obtained in a 
similar way as functions of =

+
f W

G W
, which is the fraction of the step area from the projected area.

We then consider how the contact angle changes with the droplet size by varying the dimensionless variable G, 
which is the ratio of the groove width to the initial droplet radius. For a given G, the roughness factor28 r and the 
step fraction f can be tuned by changing the height or width of the steps, H or W. The predicted contact angles for 
W, CB, and P modes are presented in Fig. 2a–d with varying values of r and f. When = .G 0 5, i.e., the droplet size 
is 2 times the characteristic scale of the surface roughness, our theory and the conventional theory10–12 predict 
different contact angles because the wetting free energy landscape of a small droplet is extremely different from that 
of a large droplet. Hence, the conventional theory should not be used. However, in case of = .G 0 05, the contact 

Curvature Radius R Free Energy E
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θ − θ θ − θ ∈2R ( cos sin ) 2nH cos (n )W e e

θ − θ θ − θ − θ + ∉2R ( cos sin ) 2n H cos H cos H(n )W e 1 e e

CB = .π
θ − θ θ( )RC sin cos

1
2 θ − θ θ + + θ .2R ( cos sin ) nG(1 cos )C e e

P = .π
θ − θ θ( )RP sin cos

1
2 θ − θ θ + − + θ .2R ( cos sin ) nG( 1 cos )P e e

Table 1.  Expressions of curvature radius and free energies of three wetting modes. Overbar indicates 
dimensionless variables.
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angle from our theory converges to that from the conventional theory within the range of ± 10°. When G reaches 
0.005, the contact angle from our theory recovers the prediction of conventional theory10–12 almost perfectly, which 
is expected. Considering the typical resolution of the contact angle measurements (1~2°)15, we suggest the conven-
tional theory10–12 should be applied in the case when ≤ .G 0 025 (see Supplementary Information for details), i.e., 
when the droplet size is at least about 40 times bigger than the characteristic scale of the surface roughness.

We can predict the most stable wetting mode for the substrates with different Young’s angle θ e by comparing 
the free energies of the three modes29. As depicted in Fig. 3d, we find that in accordance with the conventional 
theory, on a hydrophilic surface (θ e <  90°), the contact angle is given by the higher contact angle between the 
predictions based on the P mode and W mode and on the hydrophobic surface (θ e <  90°) by the lower contact 
angle between the predictions based on the CB mode and W mode. The choice between the W mode and the CB 
mode is made by comparing the free energy values in Table 1. To select between the W mode and the P mode, we 
use the critical contact angle theory2 instead of the direct free energy comparison because the initial free energy 
of the P mode differs from the other modes. The critical contact angle, θ C is determined when the free energy 
variation to fill an additional groove is 0. If the contact angle of the flat surface θ e is smaller than θ C, the free energy 
variation to fill another groove becomes negative, spreading occurs, and the Penetrate mode is selected. In our 
work, the critical contact angle can be expressed with geometric factors as θ =

+( )arccosC
G

G 2H
. As illustrated in 

Fig. 2d, for the case of = .G 0 1, r =  1.5, and f =  0.5, one can find that the most stable wetting mode curve follows 
a similar path as that of the conventional theory.

We then confirm the origin of the pinning effect is the occurrence of multiple local minima and calculate the 
free energy barriers in terms of geometric factors for the three wetting modes. In the W mode, a drastic free energy 
change occurs when the three-phase contact line is located near the corner of the step because the additional 

Figure 2. Results of contact angle and wetting mode prediction from the proposed theory. (a–d) Convergence 
curve of each wetting modes ((a) Wenzel (hydrophilic), (b) Wenzel (hydrophobic) (c) Cassie-Baxter,  
(d) Penetrate). Conventional wetting theory should be used when < .G 0 025 (e) Wetting mode selection  
with respect to θe when = .G 0 1, r =  1.5 and f =  0.5.
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boundary may form or disappear. The A’ and B’ points at the end of the step in Fig. 3a include an additional bound-
ary line while A and B do not. As depicted in Fig. 3a, the free energy differences between A’ and A(∆E1) or B’ and 
B(∆E2) act as the primary free energy barrier and form a local free energy minimum. The amount of the energy 
barrier can be expressed with H and θ , as shown in Table 2. When the substrate is hydrophobic, the local minimum 
point is located on B, and one can notice that this corresponds to the experimentally observed three-phase contact 
line location19 when pinning occurs. A similar discussion can be repeated for the Cassie-Baxter or the Penetrate 
mode. By calculating the free energy of each point of Fig. 3b and c, the energy barriers can be formulated, as sum-
marized in Table 2. The superscripts A and B refer to the points A and B in the figures, respectively, and the sub-
scripts C and P refer to the wetting modes. Interestingly, while the Wenzel mode always has local free energy 
minima because of the additional liquid-vapor boundary line, the Cassie-Baxter or the Penetrate mode do not 
possess local minimum points when θ  <  θ e or θ  >  θ e, respectively. The disappearance of the energy barrier indicates 
the ultimate bound of advancing and receding angles which are determined by available local free energy minima. 
The maximum advancing (receding) angle can be obtained from experiments will be the highest (lowest) contact 
angle at the pinning points with nonzero energy barrier. We speculate that the conventional Wenzel state has very 
large contact angle hysteresis because of the non-vanishing energy barrier between local minima30.

Now, we apply the proposed theory to understand the wetting experiments on the surface with anisotropic 
roughness19. An experiment performed by Chen et al.19 used morphologically patterned surface to measure the 
contact angle of the surface with anisotropic roughness made of PDMS (θ e =  114°) along both perpendicular and 
parallel directions. The width of step and groove were 23 μ m and 25.6 μ m each. The height of the step was 30 μ m. 
The measurement of the contact angle were conducted with water droplet of volume from 0.59 mm3 to 5.679 mm3. 
They confirmed that droplets are in the CB mode, and measure the number of pillars filled by or the base line 
length of the droplet. It was reported that the contact angle at the direction perpendicular to the grooves is likely 
to be similar to the advancing contact angle31,32, and that the advancing contact angle is chosen as the maximum 
contact angle among the local free energy minima33. However, since there exists an external energy perturbation 
such as ambient vibration and the inertia associated with the droplet spreading, we expect that the measured 
advancing contact angle must be smaller than the maximum contact angle among local minima. We compute 
the energy barrier at each local minima for different droplet volumes, and compared the energy barrier at the 
measured contact angle for corresponding droplet volume. We could see that the free energy barrier between B 

Figure 3. Relation between θ and E with respect to wetting modes. (a) Wenzel, (b) Cassie-Baxter, (c) 
Penetrate. Equations of dimensionless energy barriers are presented in Table 2.

Wetting Mode ∆E1 ∆E2

Wenzel + θH(1 cos )e − θH(1 cos )e

Cassie-Baxter θ + θ − θ2R W cos 2RC
A A

e C
B B θ + − θ2R G 2RC

C C
C
B B

Penetrate θ + − θ2R G 2RP
A A

P
B B θ − θ − θ2R W cos 2RP

C C
e P

B B

Table 2.  Dimensionless energy barriers for each wetting mode.
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state and C state in Fig. 3b plays a main role in determining the advancing contact angle in CB mode. The energy 
barrier can be calculated by the formula in Table 2. Since the energy barrier formula is non-dimensional, we 
multiply R0σ LV and the baseline length parallel to the groove direction to dimensionalize the formula to compare 
the energy barriers for different droplet volume. The energy barrier between B state and C state, at each local min-
imum is plotted in Fig. 4a. Each dot in the curves refers to the energy barrier at each pinning point and all open 
symbols refer to the experimental result for different droplet volume. In the figure, one can notice that the energy 
barriers for different droplet volumes are similar. The average energy barrier is represented with the black dotted 
horizontal line which is located close to all open symbols. One may consider the black dotted line as the typical 
external energy perturbation in the series of experiments reported in the study. The contact angle for specific 
liquid volume can be predicted by capturing the pinning point which has the smallest distance from the average 
energy barrier (black dotted in Fig. 4b). The predicted contact angle agrees well with experimental results and 
show the same trend with experiments. One may perform a similar analysis to predict the receding contact angle 
or the contact angle hysteresis of other experiments.

We then apply our theory to analyse a surface with non-uniform roughness that has a rough center and flat 
periphery. In other words, we compute the free energy landscape when there exists an upper bound nMAX in the 
number of filled grooves, n. For example, we compute the free energies of the wetting states when = = .G W 0 05 
and θ e =  120° as functions of contact angle θ  with nMAX =  14 and 19, as depicted in Fig. 5a and b, respectively. 
Figure 5a illustrates the situation where the area of the rough central region is small enough that the three-phase 
contact line is located on the flat region. We find that the global free energy minimum is located at the Young’s 
angle θ e. It is the case for any nMAX ≤  14 because the free energy curve with a fixed n has a minimum at θ e, as 
depicted by the red dotted curves in Fig. 5a. On the contrary, Fig. 5b shows a case where the area of the rough 
region is large enough and the contact line is located within the rough center. In this case, the local minimum asso-
ciated with n =  nMAX =  19 has a higher free energy than the global minimum. Hence, the contact angle prediction 
becomes identical to the surface with uniform roughness. Our results agree with the previously proposed wetting 
theory for a non-uniform rough surface20,23, which proposed that the contact angle is determined by the roughness 
condition near the three-phase contact line. Our work offers an extended theory that enables us to predict whether 
the contact line will be located on the rough center or on the flat region. We note that our theory can be generalized 
to study the wetting on surfaces with a more complex non-uniform roughness or be used to build a surface to fix 
the droplet to the specific location34, complementing the pioneering works by Johnson and Dettre35,36.

Figure 4. Energy barrier and experimental results on surface with anisotropic roughness. (a) Amount of 
energy barrier at the pinning point of surface with anisotropic roughness. The experimental data are signed with 
symbols ( , , , , , ) and one can notice that they have similar energy barriers. (b) Predicted contact 
angle with average energy barrier. The predicted contact angle shows good match with experimental results.

Figure 5. Relation between θ and E of the Wenzel mode when the surface has non-uniform roughness. The 
contour contains slices of free energy contours of fixed n (red dotted). The global free energy point is 
highlighted with the green square symbol (a) The global free energy minimum point might be located on the 
n =  nMAX curve or (b) the global free energy point of the surface with uniform roughness.
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In conclusion, we have developed a wetting theory that can predict the wetting angle and wetting mode when 
the liquid droplet is not much larger than the surface texture scale. Because the conventional theory assumes a 
much larger size of the droplet compared to the texture scale, there have been limitations in how to analyse exper-
iments that investigate the wetting of small liquid drops. Our theory suggests that conventional theory should 
be used when the droplet size is about 40 times larger than the characteristic scale of the surface roughness and 
provides a deeper physical understanding regarding the wetting of smaller liquid droplets on non-uniform rough 
surfaces.
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Supplementary Figure 1: Free energy comparison between circular boundary and 
vertical boundary 

 

Supplementary Figure S1. Free energy comparison between circular boundary and vertical boundary. (a) 
Schematic of circular (A) and vertical (B) boundary. (b) Relative error between free energy of two boundary 
assumptions. The surface was set by ̅ܩ ൌ ഥܹ ൌ 0.5, r=1.5. (c) Relative error between free energy of two boundary 
assumptions. The surface was set by ̅ܩ ൌ ഥܹ ൌ 0.005, r=1.5. Rather than the droplet volume, the Young’s angle 
mainly affects the error arising from the vertical boundary assumption. 

 

 

 

 

 

 

 

 



Supplementary Figure 2: Free energy curve of a droplet in Wenzel mode  

 

Supplementary Figure S2. Convex curvature of Case II is always on the right side of Case I. Because ۳ത 
decreases for (a) a hydrophilic substrate and increases for (b) a hydrophobic surfaces as ી increases, the former 
has a minimum at Case II and the latter has a minimum at Case I.   



Supplementary Figure 3: Convergence to conventional theory with respect to ࡳഥ for 
each wetting mode 

 

Supplementary Figure S3. Convergence to conventional theory due to ࡳഥ for each wetting mode. ࢃതതത ࡴ ࢊࢇഥ  
are set to satisfy the roughness factors (r, f) in the legend. The contact angle difference between the proposed 
theory and the conventional theory (ઢી) converges to ~∘ when ࡳഥ  .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 1: Free energy comparison between circular boundary and vertical 
boundary 

 It was reported that the liquid droplet forms the part of the circle when the effect of the 

gravity is neglected1. However, it is mathematically very hard to model the liquid droplet on 

periodic rectangular protrusion with circular boundary with the constant droplet volume 

constraint. Therefore, we used vertical liquid boundary (path B in Fig. S1a) to model the 

droplet in Wenzel mode (CB mode and P mode do not need the assumption) rather than the 

circular liquid boundary (path A in Fig. S1a). To check the validity of our assumption, we 

compare the free energy of two boundary for a simple case where the three-phase contact line 

touches the bottom of the groove. 

 The free energy of each liquid boundary can be formulated as below. 

തܧ ൌ തܴ
ௐߙ 

തܧ ൌ ഥܪ  ሺ തܴ
ௐ sinሺߠ  ሻߙ െ തܴ

ௐ sinሺߠሻሻܿߠݏ 

Here, ܧത and ܧത refer to the free energy of the circular and the vertical boundary. The free 

energy can be formulated by E ൌ σܣ  ሺߪௌ െ  ௌ. α refers to the angle betweenܣௌሻߪ

circular boundary within the groove as depicted in Fig. S1a. The relative error between two 

energy barriers can be defined by 
ாതିாതೇ

ாതೇ
. The relative error between two boundaries are 

calculated for the surface with r=1.5, when ̅ܩ ൌ ഥܹ ൌ 0.5  (small droplet) and ̅ܩ ൌ ഥܹ ൌ

0.005 (large droplet). The region with high contact angle (θ  140∘) when the droplet volume 

is small is not investigated because α cannot be decided in the case because the three-phase 

contact line cannot reach the floor of the groove. As shown in Fig. S1b and Fig. S1c, the 

relative error is smaller than 15% unless the surface is highly hydrophilic (θୣ ൏ 60∘) or highly 

hydrophobic (θୣ  120∘). Because the droplet on the highly hydrophilic (hydrophobic) surface 

prefers P (CB) mode, we can conclude that our assumption is reasonable within 15% of errors. 



Supplementary Note 2: The choice between Case I and Case II along wetting modes 

1-1. Cassie-Baxter & Penetrate mode 

From Young’s relation2, one can say the free energy from same area of liquid - solid 

boundary is always larger than that from the liquid – vapor boundary for any substrate when 

θ  0∘. Because Case II always contains larger n than in Case I, regardless of L (Fig. 2b), Case 

I contains less area of the liquid-vapor boundary. Consequently, Case I become more stable if 

the same θ is assumed. In the case of Penetrate mode, on the contrary, Case II become more 

stable because the liquid-vapor boundary is substituted by a liquid-liquid boundary, which 

contains 0 surface energy. 

1-2. Wenzel mode  

If the same amount of n is assumed, Case I always has a larger Lത or smaller θ than 

Case II. As we noted in the text, the Eഥ െ θ graph contains convex contours of conserved n, 

where the minimum is at θୣ (red dotted in Figs. S1a, S1b). Because Case I has a larger θ for 

conserved n, one can notice the convex contour of Case II is always on the right side of Case I 

for conserved n. Recalling that the Wenzel mode has a larger equilibrium contact angle than 

θୣ, when the substrate is hydrophilic, the free energy of the liquid decreases as θ increases. 

Therefore, the local free energy minimum near the equilibrium contact angle is on the right 

side of the contour, Case II. If a hydrophobic substrate is assumed, by the opposite logic, the 

local free energy minimum is on Case I.        

 

  



Supplementary Note 3: Convergence to conventional theory with respect to ࡳഥ for each 

wetting modes 

 As depicted in Figs. 2a-c, the predicted contact angle from the proposed theory (θ) 

converges to the contact angle from the conventional theory (θሻ when ̅ܩ  0.025. We are 

not able to find a closed form expression for the difference between the two contact angles 

(Δθ ൌ θ െ θ), but find that the envelope of the oscillating Δθ curve decreases with ̅ܩ for 

all wetting modes (Fig. S2). The contact angle difference converges with vibration and 

becomes 1~2∘ range when ̅ܩ  0.025.  

 

 

 

 

 

 

 

  



Supplementary Note 4: Free energy and curvature radius calculation about ી 

The curvature radius of the liquid droplet of each wetting mode (W,CB,P) can be 

formulated with a circular trace of the boundary of the liquid and the constant volume constraint 

as Shahraz et al. 1 reported. In Wenzel mode, the sum of the area of the circular part and of the 

groove should be constrained. Therefore, the curvature radius of the Wenzel mode Rഥ can be 

formulated as follows. 

Rഥ ൌ ቆ
π െ nGഥHഥ

θ െ sin θcosθ
ቇ

ଵ
ଶ 

 

After the curvature radius is formulated, the free energy of the droplet can be calculated by 

summing up the free energy from the liquid-vapor boundary and the liquid-solid boundary as 

follows. 

E ൌ σA  ሺσୗ െ σୗሻAୗ 

A or Aୗ refer to the area of the boundary between the liquid and the vapor or solid and the 

liquid. Employing the curvature radius formula, the free energy of the droplet in Wenzel mode 

can be shown. 

Eഥ ൌ 2Rഥሺθ െ cosθୣsinθሻ െ 2nHഥcosθୣ  ሺn ∈ Գሻ 

Eഥ ൌ 2Rഥሺθ െ cosθୣsinθሻ െ 2nଵHഥcosθୣ െ Hഥcosθୣ  Hഥ ሺn ∉ Գሻ 

Because an additional boundary of the liquid-vapor boundary exists when n ∉ Գ in Wenzel 

mode, the free energy expression either differs when n ∈ Գ or not. Similar analysis can be 

repeated for the Cassie-Baxter mode and Penetrate mode to include the curvature radius or free 

energy of the liquid in CB mode or P mode. In particular, in the case of P mode, we only model 

the liquid forming the droplet to construct R and set the initial state of the free energy with 



a rough surface in which grooves are filled with liquid for convenience. Then the free energy 

and the curvature radius of the penetrate mode can be formulated similar with CB mode as 

follows.    

Rഥେ, ൌ ቀ
π

θ െ sin θcosθ
ቁ

ଵ
ଶ 

 

Eഥେ, ൌ Rഥେ,ሺθ െ cosθୣsinθሻ  nGഥሺ1  cosθୣሻ 

Because the n െ θ relation is known if the liquid tip condition (Case I or Case II) is suggested, 

a set of (Rഥ, n, Eഥ) can be shown with respect to a specific θ. In the case of CB mode and P mode, 

because Rഥେ,, Eഥେ,, and n are explicitly expressed by θ, a pair of (Rഥେ,, n, Eഥେ,) can be easily 

obtained for a specific θ. In W mode, Rഥ, Eഥ, and n are in an implicit relation; therefore we 

adopted the bisection method to numerically calculate the set of (Rഥ, n, Eഥ). With this process, 

the free energy of the droplet can be numerically obtained from a specific θ and can be used 

to find the contact angle of the minimum free energy.  
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