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An analytical hierarchical model explaining the robustness
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Abstract – Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an
airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the
interlocking mechanical behavior of the barbules is very important to understand the function and
long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection
solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions
of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high
robustness and flaw-tolerant design of the structure. This work contributes to the understanding
of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather,
and provides a basis for design of feather-inspired materials with robust interlocking mechanism,
such as advanced bio-inspired micro-zipping devices.

Copyright c© EPLA, 2016

Introduction. – Birds’ feathers are a complex evo-
lutionary novelty characterized by hierarchical structural
diversity. Regarding their structural morphogenesis, dif-
ferent researchers presented different models, from the de-
velopmental approach of molecular mechanisms [1], to the
growth theory of feather [2], and to the competition be-
tween growth rate and feather quality [3]. These models
have been analyzed in detail by following their functions,
such as thermal insulation, water repellency, and mechani-
cal protection [4]. One of their important functions, which
are well-accepted, is that the feathers must possess the
aerodynamic properties providing the birds’ flight. This
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ability is achieved thanks to the rigid and flexible closed
pennaceous vane, whose robustness or integrity are based
on the elaborate interlocking of barbules (fig. 1(a)) [5].
Therefore, knowing the barbules’ interlocking mechanics
is very important to understand the function and robust-
ness of the feathers. Recently, a mechanical experiment
was performed to test the rupture and recovery behav-
iors of a swan (Cygnus olor) feather in order to explore
the zipping and unzipping behaviors in feathers [6]. It
showed that the delamination strength (at rupture) of the
interlocking barbules was dependent on the interaction be-
tween the bow- and hook-barbules, and the hooklets on
the hook-barbules play an important role. In respect of
hooklet mechanics, researchers have reported mechanical
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Fig. 1: (Colour online) A bird feather and symmetrical delamination of the hierarchical barb-barbule model (barbs in thick lines
and barbules in thin ones) for feathers. (a) A third primary pennaceous feather of Columba oenas and a light microscopy image
of the vane, where a barb (B), hook barbules (hb) and bow barbules (bb) are indicated. (b) Symmetrical delamination model of
the structure, before (dashed lines) and after delamination (solid lines). (c) A basic large-displacement cantilever-beam model
and force analysis for barbules in the global system (X, Y ). (d) Force analysis on the i-th barbules in the local system (x, y).

behaviors of single hooklets [7,8], however, they are plants
fruits for dispersing their seeds.

Here, instead of studying the developmental morphol-
ogy of feathers, we aimed at understanding the robust-
ness of interlocking hook- and bow-barbule arrays in bird
feathers, using a hierarchical analytical model (hook- and
bow-barbules connected by microhook arrays). The de-
formations of the barbs and barbules were studied, and
then coupled to develop a theoretical framework to pre-
dict critical delamination forces between the barbules. It
is worth mentioning that the model does not include the
exact hooklet geometry, and only considers the equivalent
friction effect produced by the hooklets between the bar-
bules as reasonably suggested by [7,8].

Theory. – According to the study on feather mor-
phology [4], we first simplify the delaminated barb-
barbule structure into a symmetrical hierarchical model,
see fig. 1(b). The model involves deformations of barbs
and barbules; here, we denote the barbs by superscript (1)
and the barbules by superscript (2), respectively. Because
of the symmetry about the global axis X (or OO ’), the
half structure of the i-th pair of interlocking barbules
(1 ≤ i ≤ k ≤ n, where n is the total number of pairs
of hook- and bow-barbules, and k is the number of pairs
of interlocking hook- and bow-barbules, for fig. 1(b), n = 9

and k = 6) is analyzed, see fig. 1(c). In the analysis, three
coordinate systems are introduced: one is global (X, Y )
(fig. 1(b)), and the other two are local (xi, yi) and auxil-
iary (x′

i, y′
i) (fig. 1(c)). The auxiliary (x′

i, y′
i) is introduced

for the transition transformation of the barbules from the
local (xi, yi) to the global (X, Y ). Before the analysis, we
made the following two basic assumptions:

1) Due to the bending rigidity D(2) of the barbules,
which is much lower than D(1) of the barbs, the de-
formation influence of the barbules on the barbs is
assumed to be very weak, and thus is neglected; in
contrast, the deformation influence of the barbs on
the barbules is taken into account.

2) Sliding behavior between hook- and bow-barbules is
assumed to be friction-dominated, which indicates the
connecting barbules detach immediately when the an-
gle coordinate βi at point B satisfies βi − Θi = ψ >
ψfrict, where ψfrict is the friction angle and denotes
a critical detaching state, and its tangent equals the
ratio of the tangential to normal forces at the con-
necting point; if the ratio is greater than the tangent,
sliding occurs.

Small deflection of barbs. According to the experi-
mental observation in [6], we consider that the barb can
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be described assuming small deflection in the beam (here
cantilever with one end fixed) theory; a set of dimension-
less quantities is first defined as K(1) = L(1)

√
F/D(1),

X̄ = X/L(1), Ȳ = Y/L(1), ΔȲ = ΔY /L(1), where F
is the applied detaching force acting on the barb, K(1)

is the dimensionless detaching force, L(1) and D(1) are
the length and bending rigidity of single barb, respec-
tively, (X, Y ) is coordinate of an arbitrary point on the
barb, and correspondingly, (X̄, Ȳ ) are its dimensionless
coordinates, ΔY calculated by the classical Euler beam
theory, is the deflection of the point in the Y -direction.
Then, for the upper barb in fig. 1(b), Ȳ is expressed as
Ȳ = −l(2) sinα0/L(1)−ΔȲ , where α0 is an initial included
angle made by the undeformed barbule and barb, and l(2)

is the effective or deformed length (note: not the total
length L(2), fig. 1(b)) of the barbule. For the i-th locking
barbules, the displacement ΔȲi and rotation angle Θi of
the cross-section at the joint coordinate X̄i are expressed
as [9]

⎧⎪⎪⎨
⎪⎪⎩

ΔȲi =
1
6

(
K(1)

)2
X̄2

i

(
3 − X̄i

)
,

Θi =
1
2

(
K(1)

)2
X̄i

(
2 − X̄i

)
.

(1)

Large deflection of barbules. Similarly, according to
the experimental observation in [6], there is an apparent
rotation of barbules at the joint o, and thus, we consider
that the barbules display large deflection of a beam, here
a cantilever with one end rotationally constrained by an
angular spring. Its deformation process is subdivided into
two steps: according to the assumption (1), the barbules
are influenced by the deformation of barbs, therefore, the
first step is that it is translated by ΔȲi and rotates by
Θi caused by the barb with respect to the joint o, i.e.,
from the state IS to the MS state (fig. 1(c)): in this step,
the barbule bears no force at the point A. The second
step is that the barbule is deformed from the MS state to
the FS state (fig. 1(c)), due to an equivalent interlocking
force fi applied at the point A which moves to the point
B, moreover, under the interlocking force fi, the included
angle made by barbs and barbules is changed from α0 into
α0 + αi (FS state in fig. 1(c)), where αi is the rotation
angle of the i-th barbule with respect to the joint o. For
the sake of expedience, we study the deformation process
of the second step in the local system (xi, yi) (fig. 1(d)).

For the deformed portion oB in the barbules, the mo-
ment equilibrium with respect to a point P (xoB

i , yoB
i ) re-

quires [10] D(2)dθ/ds = fi cos Θi(l(2) cos α0 − δxi
−xoB

i )+
fi sin Θi(l(2) sinα0 + δyi

− yoB
i ), where D(2) is the bending

rigidity of single barbule, δxi
and δyi

are the displace-
ments of the point B with respect to its original position
A in the xi and yi directions, respectively. Defining a
new set of dimensionless quantities K

(2)
i = l(2)

√
fi/D(2),

s̄ = s/l(2), δ̄xi
= δxi

/l(2), δ̄yi
= δyi

/l(2), x̄oB
i = xoB

i /l(2),
ȳoB

i = yoB
i /l(2), the above moment-equilibrium equation

is re-expressed as

dθ

ds̄
= (K(2)

i )2 cos Θi(cos α0 − δ̄xi
− x̄oB

i )

+ (K(2)
i )2 sin Θi(sin α0 + δ̄yi

− ȳoB
i ). (2)

Furthermore, deriving the curvature eq. (2) with respect to
s̄, and considering dx̄oB

i /ds̄ = cos θ and dȳoB
i /ds̄ = sin θ,

the equation is rearranged as

d2θ

ds̄2
= −

(
K

(2)
i

)2

cos (θ − Θi) (3)

Then, employing the boundary condition at the free end
B, where the moment (or the curvature) is zero, i.e.,
dθ/ds̄|θ=β

i
= 0, the curvature of the cantilever is calcu-

lated as

dθ

ds̄
=

√
2K

(2)
i

√
sin (βi − Θi) − sin (θ − Θi), (4)

where θ varies from α0 + αi to βi. According to the
assumption (2), the condition 0 < βi −Θi < ψfrict ensures
the interlock of barbules. Integrating eq. (4) leads to the
dimensionless curvilinear coordinate of P (xoB

i , yoB
i ):

s̄ (θ) =
pi

K
(2)
i

[
F

(
pi,

θ − Θi

2
+

π

4

)

− F

(
pi,

α0 + αi − Θi

2
+

π

4

)]
, (5)

where p2
i = 2/[1 + sin(βi − Θi)], the function F (pi, ξ) is

the incomplete elliptical integral of the first kind, in which
ξ is a general amplitude. Considering the inextensibility
of the cantilever s̄(βi) = 1, we find that

K
(2)
i = pi

[
F

(
pi,

βi − Θi

2
+

π

4

)

− F

(
pi,

α0 + αi − Θi

2
+

π

4

)]
, (6)

based on dx̄oB
i /ds̄ = cos θ, dȳoB

i /ds̄ = sin θ, and eq. (4),
the dimensionless Cartesian coordinates of the point
P (x̄oB

i , ȳoB
i ) can be computed as

see eq. (7) on top of the next page

in which the function E(pi, ξ) is the incomplete elliptical
integral of the second kind. Then, transforming the coor-
dinates of the barbules from the local coordinate system
(xi, yi) to the global one (X, Y ), the corresponding global
coordinates of the barbules are obtained as(

X̄oB
i (θ)

Ȳ oB
i (θ)

)
=

(
L(1)

l(2)

) (
X̄i

Ȳi

)

+
(

cos Θi sin Θi

− sin Θi cos Θi

) (
x̄oB

i (θ)
ȳoB

i (θ)

)
=

(
L(1)

l(2)

) (
X̄i

Ȳi

)
+

1
√

2K
(2)
i

(
A (θ)
B (θ)

)
, (8)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄oB
i (θ) =

∫ θ

α0+αi

cos θds̄ =
1

√
2K

(2)
i

∫ θ

α0+αi

cos (θ − Θi + Θi)√
sin (βi − Θi) − sin (θ − Θi)

dθ =
1

√
2K

(2)
i

(A (θ) cos Θi − B (θ) sin Θi) ,

ȳoB
i (θ) =

∫ θ

α0+αi

sin θds̄ =
1

√
2K

(2)
i

∫ θ

α0+αi

sin (θ − Θi + Θi)√
sin (βi − Θi) − sin (θ − Θi)

dθ =
1

√
2K

(2)
i

(A (θ) sin Θi + B (θ) cos Θi) ,

(7)
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A (θ) =

θ∫
α0+αi

cos (θ − Θi)√
sin (βi − Θi) − sin (θ − Θi)

dθ =

2
(√

sin (βi − Θi) − sin (α0 + αi − Θi) −
√

sin (βi − Θi) − sin (θ − Θi)
)

,

B (θ) =

θ∫
α0+αi

sin (θ − Θi)√
sin (βi − Θi) − sin (θ − Θi)

dθ =

√
2pi

[
sin (βi − Θi)

(
F

(
pi,

θ − Θi

2
+

π

4

)
− F

(
pi,

α0 + αi − Θi

2
+

π

4

))

− 2
p2

i

(
E

(
pi,

θ − Θi

2
+

π

4

)
− E

(
pi,

α0 + αi − Θi

2
+

π

4

))]
,

Fig. 2: (Colour online) Dimensionless forces and rotation angles of the barbules in eight critical states. (a) Interlocking forces
of the barbules. (b) Rotation angles of both ends of the cantilever barbule model.

where X̄oB
i (θ) = XoB

i (θ)/l(2), Ȳ oB
i (θ) = Y oB

i (θ)/l(2), and
(X̄i, Ȳi) is the dimensionless coordinate of the i-th joint o.
In particular, the coordinates (X̄oB

i (βi), Ȳ oB
i (βi)) of the

point B at the i-th barbule are obtained from eq. (8). In
the global system, because the ordinate of the point B
equals zero, i.e., Ȳ oB

i (βi) = 0, we have

K
(2)
i =

B (βi)√
2

[
sin α0 + ΔȲi

(
L(1)/l(2)

)] . (9)

Again, considering moment equilibrium of the can-
tilever but with respect to the joint o, a new equation

emerges:

λαi = fi cos Θix
oB
i (βi) + fi sin Θiy

oB
i (βi) =

fil
(2)

√
2K

(2)
i

Ai (βi) , (10)

where λ is the stiffness of angular spring (which has the
physical unit (N · m/rad)). Rearrangement of the above
equation leads to

K
(2)
i =

λ̄αi√
2 [sin (βi − Θi) − sin (α0 + αi − Θi)]

, (11)
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Fig. 3: (Colour online) Critical dimensionless forces and profiles. (a) Critical forces of the k-th detached barbule (solid circles)

K
(2)
k,crit, and the corresponding critical applied force on the barb (solid squares) K

(1)
k,crit. (b) The deformed profiles of eight

critical states. Note: FN denotes the number of absent barbules.

where λ̄ = λl(2)/D(2) is a new dimensionless parameter,
which represents the materials parameters in the barb-
barbule system, i.e., the relative relationship between the
rotation and bending abilities of the barbules. Thus, sub-
stituting eq. (11) into eqs. (6) and (9), an equation system
with two unknown parameters, αi and βi, could be solved
numerically. With the solution of αi and βi, the dimen-
sionless force K

(2)
i in each barbule can be calculated.

Again, invoking Ȳ oB
i (βi) = 0, the coordinates of the

straight portion BC part satisfy

Ȳ BC
i = tan (βi − Θi)

[
X̄BC

i − X̄oB
i (βi)

]
, (12)

where Ȳ BC
i = Y BC

i /l(2), X̄BC
i = XBC

i /l(2) is from
X̄oB

i (βi) to X̄oB
i (βi) + (L(2)/l(2) − 1) cos(βi − Θi).

The above equations from (2) to (12) are derived for
the interlocking barbules. As for the detached barbules
(k + 1 ≤ i ≤ n), the coordinates of the barbules satisfy

Ȳ oC
i = tan (α0 − Θi)

[
X̄oC

i − X̄i

(
L(1)

l(2)

)]
+ Ȳi

(
L(1)

l(2)

)
,

(13)
where Ȳ oC

i = Y oC
i /l(2), X̄oC

i = XoC
i /l(2) which

varies from X̄i(L(1)/l(2)) to X̄i(L(1)/l(2)) +
(L(2)/l(2)) cos(α0 − Θi), and (X̄i, Ȳi) is the same as
that in eq. (8).

Parametric analysis and discussions. – As an ex-
ample, the eight critical states in the delaminating pro-
cess shown in fig. 1(b) are treated; we selected an initial
included angle α0 = 30◦, according to the statistic data of
the barbules angle in the literature [11]. The dimension-
less rotation stiffness λ̄ of the barbules and the friction an-
gle ψfrict are assigned to be 1.0 and 45◦, respectively, and
length ratios used in the model are set to be L(2)/l(2) = 1.2
and L(1)/l(2) = 10.

In each critical state, the k-th pair of barbules detaches,
and the connecting dimensionless forces K

(2)
i , the rotation

angles αi and βi in the i-th (i ≤ k) interlocking barbules
are plotted in fig. 2. We can see that when i = 1 and
K

(2)
i = 0, αi =0 and βi = 30◦ for the fixed first barbule;

whereas for 2 ≤ i ≤ k, the distribution of the dimension-
less forces K

(2)
i in the interlocking barbules is linear. The

force on the same barbule decreases as the number k of
interlocking barbules increases. For instance, the force on
the 2nd barbule decreases as indicated by the dashed ar-
row in fig. 2(a), when k increases from 2 to 9. This means
that the detaching force acting on the 2nd barbule, which
determines the ultimate structural robustness, is miti-
gated by the presence of interlocking barbules behind it.
The rotation angles αi and βi are nonlinearly distributed
(fig. 2(b)). Also, the increasing number of interlocking
barbules decreases the two rotation angles and thus the
structural failure probability. Accordingly, the structure
consisting of multiple barbules may progressively but effec-
tively absorb energy before the complete structural failure,
and thus enhance its robustness, and this may be a reason
why there are many instead of few barbules on a barb [6].

Besides, the critical detaching force K
(2)
k,crit of the bar-

bule in each critical state and its corresponding critical
applied forces K

(1)
k,crit of the barb are plotted in fig. 3(a),

and the deformed profiles of the critical states are plotted
in fig. 3(b). In fig. 3(a), both critical forces decrease as the
number k of interlocking barbules increases; in particular,
K

(1)
k,crit decreases sharply when k changes from 2 to 3. This

is because the barbules closer to the fixed ends of barbs are
severer restrained, compared to the barbules far from the
ends, and a larger force is needed to detach the barbules
situated closer to the fixed end. Surprisingly, the local
force on individual barbules with increased number of de-
tached barbules (k from 9 to 2) is increased only 1.3 times,
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whereas the critical separation force increases 7 times. In
this regard, the structural hierarchy and large rigidity dif-
ference seem to propose a strong gradient failure of barbs
and a weak one of barbules in the interlocked architecture,
which is crucial for reaching the high resistance to quasi-
static (fatigue) and dynamical loadings during the flight
in birds’ pennaceous feathers. Corresponding to fig. 3(a),
the profiles plotted in fig. 3(b) indicate that detaching the
k-th (k ≥ 3) barbules is easier because of the weak de-
flection differences between these barbules, compared to
k = 2 (the thick blue line).

In all, according to the existence of a large number
of barbules, fig. 2, and to the different gradient failures
of barbs and barbules in the static delamination, fig. 3,
the pennaceous vanes are not seriously disclosed when
birds are flying, despite the absence of some barbules (see
fig. 3(a), when the number of absent barbules FN = 1,
2, 3, the delamination is not strongly influenced). This
suggests a flaw-tolerant and robust behavior of this natu-
ral and hierarchical design. However, we must admit that
due to the neglected influence of barbules on barbs, the
detachment of barbules is forced not to cause the insta-
bility in the progressive delamination, even if a dynamic
instable process could take place.

Conclusions. – Revealing the detaching behavior of
the barb-barbule structure in birds’ feather is very helpful
to understand their aerodynamic function. This paper em-
ployed beam theory to develop a hierarchical mechanical
model to compute the static delamination strength of the
barb-barbule system in the bird feather. The model results
indicate a high robustness and thus flaw-tolerance of the
natural design, and suggest a new bio-inspired strategy
in the design of robust interlocking mechanism, such as
bio-inspired zipping devices.
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