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a b s t r a c t 

The hierarchical organization of many biological materials plays a key role in their exceptional mechani- 

cal properties. Existing studies investigate how hierarchy affects the mechanical behavior of cellular ma- 

terials and the vast majority of them assume empty cells. In reality, in numerous natural systems the 

cells are filled with fluids, fibers or other bulk materials to better resist external stimuli. Inspired by the 

highly efficiency of nature, this paper investigates the effects of adding hierarchy into a composite cel- 

lular material. Initially, the analytical expressions for the effective elastic moduli derived in the case of 

self-similarity reveal the system isotropy as for the not filled configuration. Then, from parametric analy- 

sis emerges a strong influence of the microstructure on the overall properties. We discovered that adding 

hierarchical levels to a filled cellular material can lead to a higher material specific stiffness only if the 

filler is stiffer than a critical value. Thus for classical cellular materials hierarchy is detrimental for the 

specific stiffness. In spite of this, for composite cellular solids an optimal number of hierarchical levels 

naturally emerges. In addition, numerical homogenization validates the analytical approach. Finally, the 

example of a hierarchical composite cellular material having different levels with different cell topolo- 

gies is also considered. The present analysis provides an insight into the role of structural hierarchy on 

the in-plane elastic properties of composite cellular materials, as well as some possible ways to improve 

low-weight cellular structures by mixing different materials and varying the cell topology. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is well known that nature has developed a large number of 

ingenious solutions that served as a source of inspiration for sci- 

entists and engineers ( Fratzl and Weinkamer, 2007; Gibson et al., 

2010 ). 

In the literature, many works discuss this aspect: among others, 

the pioneering textbook by Thompson (1992) or, more recently, by 

Mattheck and Kubler (1995) , where the authors extract engineering 

principles from the structure of trees. 

Nowadays, terms like biomimetics or bioinspiration ( Sanchez 

et al., 2005; Vincent et al., 2006; Fratzl, 2007 ) are commonly used 

to describe the new approach in chemistry, material science and 
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engineering. That is, researchers study biological systems to find 

some useful principles to create and/or improve new materials and 

simplify many of our day-to-day functions. 

Indeed, lessons learned from nature solved a variety of tech- 

nical challenges in material science ( Jeronimidis and Atkins, 1995 ), 

architecture ( Kemp, 2004 ), aerodynamics and mechanical engineer- 

ing ( Milwich et al., 2006 ). For example, most are familiar with the 

Velcro, inspired by the way plant burrs stuck to animal fur ( Cohen, 

2005; Jenkins, 2012 ), the high performance swimsuits, modeled on 

the structure of shark skin to reduce drag in water ( Bixler and 

Bhushan, 2012 ) or the super adhesive fabrics that mimic the gecko 

foot configuration ( Shah and Sitti, 2004 ). 

Differently from the engineer, nature has a relatively limited 

number of structural elements to choose, polymers, composites of 

polymers and ceramic particles ( Fratzl and Weinkamer, 2007 ). Ma- 

terials that certainly are not associated with strength, toughness, 

stiffness or durability. However, even with these restrictions, na- 

ture developed a wide range of systems with distinctive functions 
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and remarkable mechanical properties that often surpass those of 

their components by orders of magnitude ( Gibson, 2012 ), as trees, 

skeletons, shells. 

Even though it is still unknown how nature succeeded in do- 

ing this, some authors provided a number of possible strategies. 

Fratzl (2007) , for instance, suggests the two paradigms of growth 

and functional adaptation , that lead to the complex hierarchical ar- 

chitecture of natural materials. In particular, one advantage of hier- 

archical structuring is the multi-functionality. That is to say, a spe- 

cific property, such as fracture toughness, can be tuned at different 

levels, independently of others properties, and adapted to the lo- 

cal needs ( Pan, 2014; Gao, 2010 ). In other words, the exceptional 

mechanical behavior of biological systems is due to the functional 

adaptation of the structure at all levels of hierarchy ( Fratzl and 

Weinkamer, 2007 ). 

In line with these theories, many studies and experimental ob- 

servations on different natural materials, gecko foot, nacre shell, 

Armadillo armor, show that hierarchy is the nature’s key of suc- 

cess ( Chen and Pugno, 2013 ). 

In a system, hierarchy is reflected by several characteristics 

( Pan, 2014 ). The first one, multiscality, is the coexistence of several 

structural levels with gradual transition in length scales ranging 

from nano to macro scale. The second, heterogeneity, is the pres- 

ence of different properties at different levels. Also, a variety of de- 

signs are possible by changing type and configuration of the con- 

stituents ( Barthelat and Mirkhalaf, 2013 ) and, generally, the overall 

properties rarely reflect those of the constituents. The final charac- 

teristics is anisotropy. As a consequence, many mathematical laws 

and material sciences’ principles, that assume isotropy and homo- 

geneity, must be carefully applied to hierarchical systems. General 

introductions on hierarchical biological materials include the re- 

cently published review articles ( Fratzl and Weinkamer, 2007; Gib- 

son, 2012; Chen and Pugno, 2013; Pan, 2014; Wegst et al., 2015 ). 

Various authors have extensively studied structural hierarchy. 

Among them, Lakes (1993) analyzes the hierarchical configuration 

of some natural materials, as fibrous composites and cellular solids, 

and of the man-made Eiffel Tower. It emerges that some desirable 

properties, like stress attenuation, superplasticity and increased 

toughness, are due to hierarchy. Other authors, like Chen and 

Pugno (2012) ; Pugno and Chen (2011) ; Haghpanah et al. (2014) ; 

Ajdari et al. (2012) ; Fan et al. (2008) ; Taylor et al. (2011) develop 

numerical and theoretical models, force or energy based, to un- 

derstand the role of hierarchy on the in-plane mechanical behav- 

ior of cellular solids. In particular, Chen and Pugno (2012) and 

Haghpanah et al. (2014) focus on the elastic buckling while 

Pugno and Chen (2011) ; Ajdari et al. (2012) ; Fan et al. (2008) ob- 

tain analytical expressions for the macroscopic elastic moduli. In 

addition, Bosia et al. (2012) considers different hierarchical archi- 

tectures of fiber bundles and, through multiscale calculations, pro- 

poses an analytical method to evaluate how hierarchy can affect 

the structural strength. Specifically, the study shows that, in the 

case of different types of fibers, the increase in the number of hier- 

archical levels leads to an improvement in the material strength. In 

the context of hierarchical materials with a self-similar microstruc- 

ture, namely when the geometry is similar from one scale to an- 

other, several attempts have been made to model their mechan- 

ical behavior. Oshmyan et al. (2001) presents a finite element- 

based technique to evaluate the effective elastic moduli and scal- 

ing properties of two-dimensional materials containing self-similar 

multiscale voids/rigid inclusions whose distribution closely resem- 

ble the Serpinski-like carpet. The investigation suggests that in- 

creasing the levels of hierarchy provides an increase in the co- 

efficient of anisotropy, leading to a mechanical behavior close to 

that of unidimensional materials. It also emerges that the scaling 

laws defining the transition between the properties belonging to 

different length of scale are power equations whose exponents are 

function of the inclusions/voids’ dimension. A similar result is the- 

oretically obtained in Dyskin (2005) , that investigates self-similar 

media with different types of inhomogeneities and stress concen- 

trators, such as pores, cracks, rigid inclusions. The proposed tech- 

nique uses the concepts of the differential self-consistent method 

( Salganik, 1973 ) where it is assumed that equally-sized inhomo- 

geneities does not interact directly. The interacting ones have dif- 

ferent length of scale. The material is also represented as a se- 

quence of homogenized continua of increasing scale, obtained in 

the average sense. An attempt to numerically solve boundary value 

problems for self-similar domains structured on a large number 

of scales is proposed in Soare and Picu (2007) . The authors, in 

particular, present a finite element procedure that employs mod- 

ified shape functions to capture the complexity of the geometry at 

no additional computational cost. An extension of the concepts of 

classical Fracture Mechanics to cracks propagating in a self-similar 

regime is discussed in Borodich (1999) . The analysis, in particu- 

lar, focuses on scaling laws of fracture energy in brittle and quasi- 

brittle materials. It emerges that, independently of the material, 

the fracture energy is an exponential function with the exponent 

only related to the considered length of scale. Same considerations 

apply in the case of multiple cracks creating a self-similar pattern. 

Inspired by the complex hierarchical organization of natural 

materials, the present paper focuses on the effects of adding 

hierarchy into a two-dimensional composite cellular material 

( Ongaro et al., 2016 ): namely, a cellular structure having the cells 

filled by a generic elastic material and a hierarchical architecture. 

In addition, the study investigates how hierarchy affect the macro- 

scopic in-plane elastic moduli and whether it is possible to im- 

prove the specific stiffness by structural hierarchy, material mix- 

ing and varying cell topologies at different levels. Finally, as in 

Ongaro et al. (2016) , the Euler-Bernoulli beam on Winkler foun- 

dation elements model the microstructure at all levels. 

A brief overview is of order. Initially, Section 2 focuses on a 

composite cellular material with a honeycomb microstructure and 

n levels of hierarchy. The assumption that the length of scale of the 

sub-structure is fine enough to be negligible with respect to the 

super-structure ( Lakes, 1993 ) leads to the elastic constants in the 

continuum description. Then, Sections 3 and 4 present the com- 

parison between the analytical and numerical approach, as well 

as the results of the parametric analysis to investigate the influ- 

ence of the geometrical and mechanical microstructure parame- 

ters on the macroscopic properties. In particular, the analysis re- 

veals that adding hierarchical levels to a cellular material can pro- 

vide a higher material specific stiffness only if the filler is stiffer 

than a critical value. An optimal number of hierarchical levels 

also emerges. Conversely, for hollow cellular materials hierarchy is 

detrimental for the specific stiffness. To the authors’ best knowl- 

edge, this is the first time such results are reported. 

2. The hierarchical composite cellular material: analytical 

model 

2.1. Elastic constants 

A hierarchical material contains structural elements which 

themselves have structure ( Lakes, 1993 ). Also, the hierarchical or- 

der of the material, n , can be defined as the number of levels 

of scale with recognized structure ( Lakes, 1993 ). This paper deals 

with the in-plane analysis of a hierarchical composite cellular ma- 

terial having n levels of hierarchy. That is to say, a material with 

n hierarchical levels, a honeycomb-like architecture and the cells 

filled at each level ( Fig. 1 ). As in Ongaro et al. (2016) , a sequence 

of Euler-Bernoulli beams on Winkler foundation forming a periodic 

array of hexagonal cells simulates the underlying configuration at 

all levels. In accordance with Lakes (1993) , the length of scale of 
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Fig. 1. The hierarchical composite cellular material. 

the cell walls’ structure, the (n − 1) th level, is fine enough to be 

negligible with respect to the n th level. That is to say, the size of 

the structure of each cell wall is much smaller than the cell wall 

itself. As a consequence, a continuum having the elastic moduli de- 

rived in Ongaro et al. (2016) approximates each cell arm. 

First of all, let us focus on the first order hierarchical structure, 

n = 1 , of Fig. 1 . As it can be seen, it has hierarchy at one length of 

scale, like the composite honeycomb of Ongaro et al. (2016) made 

by continuous cell walls, n = 0 . Accordingly, the effective Young’s 

modulus and related Poisson’s ratio in the e 1 and e 2 direction, E (1) 
1 

, 

ν(1) 
12 

and E (1) 
2 

, ν(1) 
21 

respectively, and shear modulus, G 

(1) , are ob- 

tained by adopting the same approach of Ongaro et al. (2016) . In 

particular, it emerges E (1) 
1 

= E (1) 
2 

≡ E (1) , ν(1) 
12 

= ν(1) 
21 

≡ ν(1) and 

E (1) = 

(13 K 

(1) 
w 

(1 − (ν(0) ) 2 ) + 16 λ(1) E (0) )(51(1 + (λ(1) ) 2 ) K 

(1) 
w 

(1 − (ν(0) ) 2 ) + 208(λ(1) ) 3 E (0) ) 

4 

√ 

3 (1 − (ν(0) ) 2 )(271(1 + (λ(1) ) 2 ) K 

(1) 
w 

(1 − (ν(0) ) 2 ) + 208(λ(1) + 3(λ(1) ) 3 ) E (0) ) 
, (1) 

G 

(1) = 

51(1 + (λ(1) ) 2 ) K 

(1) 
w 

(1 − (ν(0) ) 2 ) + 208(λ(1) ) 3 E (0) 

208 

√ 

3 (1 + (λ(1) ) 2 )(1 − (ν(0) ) 2 ) 
, (2) 

ν(1) = 

67(1 + (λ(1) ) 2 ) K 

(1) 
w 

(1 −(ν(0) ) 2 ) −208 λ(1) ((λ(1) ) 2 −1) E (0) 

271(1 + (λ(1) ) 2 ) K 

(1) 
w 

(1 −(ν(0) ) 2 ) + 208 λ(1) (1 + 3(λ(1) ) 2 ) E (0) 
, 

(3) 

with E (0) = E s and ν(0) = νs , on order, the Young’s modulus and 

Poisson’s ratio of the cell walls material, K 

(1) 
w 

the Winkler foun- 

dation constant. To simplify the notation, λ(1) = h (1) /� (1) , where 

h (1) and � (1) are, in turn, the thickness and the length of the cell 

arms. Moreover, taking into account the previous assumptions, the 

relations in (1), (2), (3) correspond to the elastic moduli of the 

cell walls in the case of hierarchy at two lengths of scale. Thus, 

the analysis in Ongaro et al. (2016) still applies and substituting 

E (1) , ν(1) for E (0) , ν(0) and λ(2) = h (2) /� (2) , K 

(2) 
w 

for λ(1) , K 

(1) 
w 

in (1), 

(2), (3) provides the effective elastic constants E (2) 
1 

= E (2) 
2 

≡ E (2) , 

ν(2) 
12 

= ν(2) 
21 

≡ ν(2) , G 

(2) of the second order hierarchical composite 

structure. 

Analogous considerations lead to the elastic moduli of the n th 

level structure in the continuum form. That is to say, the Young’s 

modulus, E (n ) ≡ E (n ) 
1 

= E (n ) 
2 

, shear modulus, G 

( n ) , Poisson’s ratio, 

ν(n ) ≡ ν(n ) 
12 

= ν(n ) 
21 

, are obtained by replacing E (0) , ν(0) and λ(1) , K 

(1) 
w 

by E (n −1) , ν(n −1) and λ( n ) , K 

(n ) 
w 

in (1), (2), (3) . With obvious no- 

tation, E (n −1) ≡ E (n −1) 
1 

= E (n −1) 
2 

and ν(n −1) ≡ ν(n −1) 
12 

= ν(n −1) 
21 

stand 

for the cell walls’ Young’s modulus, the first, and Poisson’s ratio, 

the second, in the case of n levels of hierarchy. 

Finally, it emerges that the above elastic constants satisfy the 

classical relation 

G 

(i ) = 

E (i ) 

2(1 + ν(i ) ) 
, i = 1 , 2 , . . . , n, (4) 

typical of the isotropic materials. 

It should be noted that the composite microstructures ana- 

lyzed in the present paper are represented by a sequence of elas- 

tic beams of unitary width. This assumption, in conjunction with 

the Winkler foundation to model the filler, enable us to obtain a 

closed form expression for the effective elastic constants, via an 

analytically tractable problem. Nevertheless, as a first approxima- 

tion, the results can be extended to the case in which the cell walls 

are plates by assuming a not unitary width of the beams. Alter- 

natively, to correctly capture the mechanical behavior and to ob- 

tain more accurate results, the beam should be replaced by plates. 

This leads to a mathematically less tractable problem and a closed 

form expression for the effective constants and constitutive equa- 

tions could not be derived. 

2.2. The stiffness-to-density ratio 

Let us consider the first order hierarchical composite cellular 

structure of Fig. 1 . The cell walls, of density ρs , and the filling ma- 

terial, of density ρ(1) 
f 

, define every cell ( Fig. 2 ). From the rule of 

mixtures, the density of such composite configuration, ρ(1) , is 

ρ(1) = f (1) ρ(1) 
f 

+ (1 − f (1) ) ρs , (5) 

with f (1) = V (1) 
f 

/V (1) 
tot the porosity, V (1) 

f 
and V (1) 

tot , respectively, the 

volume of the filling material and of the entire cell. Simple geo- 

metrical considerations provide 

f (1) = 

A 

(1) 
f 

b 

A 

(1) 
tot b 

= 

√ 

3 − 2 λ(1) 

√ 

3 

, (6) 
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Fig. 2. Density of the first order hierarchical structure. 

being A 

(1) 
f 

and A 

(1) 
tot , in turn, the area of the filling material and of 

the entire cell, b the width and λ(1) the quantity previously de- 

fined. Replacing (6) into (5) leads to 

ρ(1) = a (1) ρ(1) 
f 

+ b (1) ρs , (7) 

where 

a (1) = 

√ 

3 − 2 λ(1) 

√ 

3 

, b (1) = 

2 λ(1) 

√ 

3 

. (8) 

Assuming that the size of the microstructure of each cell wall is 

negligible with respect to the cell wall itself, equation (7) can also 

be treated as the cell walls’ density in the case of two levels of hi- 

erarchy. Consequently, substituting λ(2) , ρ(2) 
f 

, ρ(1) for λ(1) , ρ(1) 
f 

, ρs 

in (7) , equation (8) gives the density of the hierarchical composite 

with two hierarchical levels. 

Similarly, the density of the hierarchical composite cellular 

structure having n levels of hierarchy is: 

ρ(n ) = a (n ) ρ(n ) 
f 

+ b (n ) ρ(n −1) , (9) 

with 

a (n ) = 

√ 

3 − 2 λ(n ) 

√ 

3 

, b (n ) = 

2 λ(n ) 

√ 

3 

, (10) 

ρ( n ) and ρ(n −1) , respectively, the density of the filling material and 

of the cell walls at level n . 

Accordingly, the stiffness-to-density ratio takes the form: 

E (i ) 

ρ(i ) 
= 

E (i ) 

a (i ) ρ(i ) 
f 

+ b (i ) ρ(i −1) 
, (11) 

G 

(i ) 

ρ(i ) 
= 

E (i ) 

a (i ) ρ(i ) 
f 

+ b (i ) ρ(i −1) 
, i = 1 , 2 , . . . , n, (12) 

being E ( i ) and G 

( i ) , in turn, the effective Young’s modulus and 

shear modulus of the i th level hierarchical structure defined in 

Section 2.1 . 

3. Discussion 

3.1. Comparison between the analytical and numerical 

homogenization 

Finite element simulations on a computational model of the mi- 

crostructure evaluate the prediction ability of the proposed model- 

ing strategy. The study involves a three-level hierarchical compos- 

ite cellular material having a honeycomb microstructure at all lev- 

els and such that the self-similar condition ( Chen and Pugno, 2012 ) 

Fig. 3. Finite element implementation, the load conditions. (a) Uniaxial compression in the e 1 direction, (b) Uniaxial compression in the e 2 direction, (c) Pure shear. 
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Fig. 4. The influence of λ in the three-level hierarchical composite cellular material. (a), (b) Stiffness-to-density ratio, (c) Poisson’s ratio. 

λ(i ) = λ, i = 1 , 2 , 3 , (13) 

holds true. Specifically, a system with a self-similar property ex- 

hibits a statistically similar characteristic when examined both lo- 

cally, at the level of individual entities, and globally, at the level 

of the whole system. In other words, the same general char- 

acteristic is independent of the scale at which the observation 

is made ( Katz, 1999 ). In biology, examples of self-similarity in- 

clude the sticky foot of the Gecko, the trabecular bone, muscles 

and tendons ( Galvanetto and Ferri Aliabadi, 2010; Fratzl, 2008; 

Fratzl and Weinkamer, 2007; Buehler, 2008 ), composed by collagen 

fibers hierarchically arranged. Collagen, in particular, is a protein 

material with superior mechanical properties and provides itself 

an intriguing example of a hierarchical biological nano-material 

( Buehler, 2008 ). 

In terms of the material analyzed here, as in 

Ongaro et al. (2016) the Euler-Bernoulli beam on Winkler foun- 

dation elements model the composite microstructure at all levels. 

The starting element of the hierarchical structure, the level (0) in 

Fig. 1 , has Young’s modulus E s = 79 GPa, Poisson’s ratio νs = 0 . 35 , 

density ρs = 2900 kg/m 

3 (aluminum alloy) ( Gibson et al., 2010 ). 

The assumption that the density of the filling material, ρ(i ) 
f 

, is 

the same at all levels provides, similarly to (13) , 

ρ(i ) 
f 

= ρ f = α ρs , i = 1 , 2 , 3 , (14) 

been α a positive constant depending on the material inside the 

cells. In particular, assuming that a honeycomb cellular material 

fills the cells, as commonly happens in nature ( Gibson et al., 2010 ), 

leads to 

K 

(i ) 
w 

= K w 

= 

4 

√ 

3 

5 

α3 E s , i = 1 , 2 , 3 . (15) 

See Appendix A for further details. 

As Fig. 3 shows, the numerical simulations involve a 75x50 

mm rectangular domain discretized in an increasing number of 

hexagonal cells having gradually smaller length � and thickness 

h = 0 . 1 � . Also, K w 

= 10 −2 E s . Finally, the load conditions consid- 

ered are the uniaxial compression in the e 1 and e 2 direction, 

Fig. 3 a and Fig. 3 b respectively, and pure shear, Fig. 3 c, simu- 

lated by forces acting at the unconstrained boundary nodes of the 

domain. 

Table 1 illustrates the outcome of the analysis, in terms of the 

comparison between the theoretical and numerical values of the 

elastic moduli. It emerges that the analytical constants, derived 

from the expressions listed in Section 2.1 , compare reasonably well 

with the numerical results, obtained by numerical homogenization 

( Ongaro et al., 2016 ). In particular, the numerical solutions fastly 

converge to the analytical ones by increasing the number of cells 

that discretize the domain. 
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Fig. 5. The influence of K w in the three-level hierarchical composite cellular material. (a), (b) Stiffness-to-density ratio, (c) Poisson’s ratio. 

Table 1 

Comparison between the analytical and numerical approach, elastic 

moduli. 

No. cells � (mm) E (3) (GPa) ν(3) G (3) (GPa) 

10x7 5 3 .40 0 .30 0 .30 

50x35 1 3 .08 0 .31 0 .30 

100x70 0 .5 2 .97 0 .31 0 .41 

200x140 0 .25 2 .97 0 .32 0 .54 

250x175 0 .2 2 .96 0 .33 0 .91 

400x280 0 .125 2 .96 0 .33 0 .92 

500x350 0 .1 2 .94 0 .33 0 .92 

Analytical results 2 .95 0 .33 0 .98 

3.2. The influence of the microstructure parameters in the 

macroscopic properties 

As can be noted from the relations (1) - (3) , the elastic constants 

of the approximated i th order hierarchical structure, i = 1 , 2 , . . . , n, 

are obviously related to the microstructure parameters. That is to 

say, the Young’s modulus, E (i −1) , and the Poisson’s ratio, ν(i −1) , of 

the cell walls material, the ratio λ(i ) = h (i ) /� (i ) between the thick- 

ness and the length of the cell arms, the Winkler foundation con- 

stant, K 

(i ) 
w 

. Figs. 4 and 5 , based on a self-similar three-level hierar- 

chical honeycomb as in Section 3.1 , illustrate the influence of λ( i ) 

and K 

(i ) 
w 

on the macroscopic elastic moduli. 

When K w 

is fixed, Figs. 4 a, 4 b show that the stiffness-to-density 

ratio, E (3) / ρ(3) and G 

(3) / ρ(3) , increases with increasing λ, namely, 

when the beam becomes thick. In particular, for λ > 0.1 the in- 

crease is larger. As a matter of fact, the slope of the curves corre- 

sponding to λ > 0.1 is bigger than that corresponding to λ < 0.1. 

Furthermore, as expected, for an high value of K w 

(10 −1 E s ) the ini- 

tial values of E (3) / ρ(3) and G 

(3) / ρ(3) are higher than that occurring 

for small values of K w 

( 10 −3 E s , 10 −4 E s ). That is to say, an increase 

in the stiffness of the material filling the cells leads to a stiffer 

hierarchical composite cellular material. In terms of the Poisson’s 

ratio, Fig. 4 c suggests that, for fixed K w 

, an increase in λ provides 

a decrease in ν(3) , that is more significant for small values of K w 

( 10 −3 E s , 10 −4 E s ). 

Regarding the influence of K w 

in the overall properties, E (3) / ρ(3) , 

G 

(3) / ρ(3) and ν(3) , Figs. 5 a, 5 b suggest that, for fixed λ, to an 

increase of K w 

corresponds an high increase in the stiffness-to- 

density ratio. In particular, filling the cells with an elastic medium 

leads to an improvement in the specific stiffness, that is more ev- 

ident in the case of thick beams. From Fig. 5 c globally emerges 

that, for fixed λ, an increase in K w 

yields an increase in ν(3) , es- 

pecially for high values of λ (0.2, 0.1). Also, the initial increase is 

followed by an almost horizontal line once K w 

reaches a specific 

value: 0 . 9 × 10 −1 E s , 0 . 4 × 10 −1 E s respectively for λ= 0.2 and λ= 0.1. 

As stated, the stiffness of the material within the cells strongly 

affects the macroscopic properties of the hierarchical composite 

cellular material. One question that arises is how much it is pos- 

sible to improve the specific stiffness of a standard hierarchi- 

cal cellular material ( Chen and Pugno, 2012; Pugno and Chen, 

2011 ) by filling its cells with a generic elastic medium. Table 2 
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Fig. 6. Stiffness-to-density ratio vs levels of hierarchy, with λ = 0 . 1 . 

Fig. 7. Stiffness-to-density ratio vs levels of hierarchy, optimal values in the case of λ = 0 . 1 . 

Table 2 

Comparison between a three-level hierarchical composite cellular material and a 

standard hierarchical cellular material. Stiffness-to-density ratio. 

(E (3) /ρ(3) ) / (E (3) /ρ(3) ) k w =0 

λ = 0 . 2 λ = 0 . 1 λ = 0 . 05 λ = 0 . 02 

K w = 10 −4 E s 1 .3 1 .1 1 .1 1 .1 

K w = 10 −3 E s 1 .8 1 .6 1 .6 1 .5 

K w = 10 −2 E s 3 .3 3 .3 3 .2 3 .2 

K w = 10 −1 E s 16 .4 16 .3 16 .1 16 

(G (3) /ρ(3) ) / (G (3) /ρ(3) ) k w =0 

λ = 0 . 2 λ = 0 . 1 λ = 0 . 05 λ = 0 . 02 

K w = 10 −4 E s 1 .4 1 .1 1 .1 1 .1 

K w = 10 −3 E s 1 .8 1 .8 1 .7 1 .6 

K w = 10 −2 E s 3 .8 3 .6 3 .6 3 .4 

K w = 10 −1 E s 19 .7 19 .3 19 .3 19 .1 

presents the comparison between the stiffness-to-density ratio of 

a three-level standard hierarchical cellular material and of a three- 

level hierarchical composite cellular material. It emerges that the 

stiffness-to-density ratio of the filled-cells configuration, E (3) / ρ(3) 

and G 

(3) / ρ(3) , is generally 1–3 times higher than that of the hollow 

one, (E (3) /ρ(3) ) k w =0 and (G 

(3) /ρ(3) ) k w =0 . Obviously, increasing the 

stiffness of the filler, K w 

, leads to an higher improvement. 

Finally, differently from the standard hierarchical material 

( Chen and Pugno, 2012; Pugno and Chen, 2011; Bosia et al., 2012 ), 

Figs. 6 and 7 show that in the case of the filled-cells configura- 

tion an increase in the number of hierarchical levels provides an 

increase in the stiffness-to-density ratio. Nevertheless, to high val- 

ues of K w 

( 10 −1 E s , 10 −2 E s ) corresponds an higher increase than 

the one that occurs for a small value of K w 

( 10 −3 E s ). Conversely, 

for K w 

= 10 −4 E s , increasing the hierarchical levels lead to a de- 

crease in E (3) / ρ(3) , as in the case of hollow configurations ( Fig. 6 ). 

Fig. 7 also reveals that the stiffness-to-density ratio has an optimal 

value at level 4 for K w 

= 10 −1 E s , at level 3 for K w 

= 10 −2 E s and at 

level 2 for K w 

= 10 −3 E s . It should be noted that in Figs. 6 and 7 it 

is assumed λ = 0 . 1 . This does not affect the outcome of the analy- 

Table 3 

Hierarchical configurations considered. 

level 1 level 2 level 3 

case 1 not filled cells not filled cells not filled cells 

case 2 filled cells not filled cells not filled cells 

case 3 filled cells filled cells not filled cells 

case 4 filled cells not filled cells filled cells 

case 5 not filled cells filled cells not filled cells 

case 6 not filled cells filled cells filled cells 

case 7 not filled cells not filled cells filled cells 

case 8 filled cells filled cells filled cells 

sis, being the effect of λ on the specific stiffness minimal (cfr. Figs. 

4 a, 4 b). 

This result, in accordance with Bosia et al. (2012) , indicates that 

both hierarchy and material heterogeneity are necessary to obtain 

improved stiffness. Also, it could be of great interest in practical 

applications as a strategy to design a more stiff bioinspired mate- 

rial via structural hierarchy and material mixing. 

3.3. Filled vs not-filled cells 

To thoroughly analyze how the material within the cells can 

affect the macroscopic mechanical behavior, this section initially 

deals with a traditional three-level hierarchical cellular material 

having a hexagonal microstructure at all levels. As in Sections 3.1 

and 3.2, the cell walls material has Young’s modulus E s = 79 GPa, 

Poisson’s ratio νs = 0 . 35 and density ρs = 2900 kg/m 

3 (aluminum 

alloy). Also, the self-similar conditions (13), (14), (15) still apply. 

Then, an elastic medium fills the cells of some levels and leaves 

empty the others, alternately. Specifically, the considered cases are 

listed in Table 3 . 

The outcome of the analysis reveals that the macroscopic me- 

chanical properties of a hierarchical composite cellular material are 

affected not only by the geometrical and mechanical parameters of 
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Fig. 8. Different levels with different cell topologies: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6. 

the microstructure, λ, E s , νs , K w 

, as emerged in Section 3.2 , but 

also by having filled cells at one level rather than at another. 

As an example, let us consider the hierarchical composite struc- 

tures of cases 2, 5, 7 of Table 3 , that have filled cells at only one 

level. Respectively, the first, the second and the third. As Table 4 

suggests, the resulting stiffness-to-density ratio, E (3) 
case i 

/ρ(3) 
case i 

and 

G 

(3) 
case i 

/ρ(3) 
case i 

have different values in the three cases. In particu- 

lar, the hierarchical structure of case 2 is the least stiff while the 

configuration of case 7 has the higher stiffness. Accordingly, as 

pointed out in Gao (2010) , in terms of macroscopic properties, the 

smaller the level, the less important is the presence of the filling 

material. 

Focus now on cases 3, 4, 6, that have filled cells at two levels, 

levels 1 and 2, levels 1 and 3, levels 2, 3, in turn. As emerges from 

Table 4 , case 6 is the stiffest configuration, while the elastic moduli 

of case 3 have the lowest values. As before, the macroscopic me- 

chanical properties of a hierarchical composite structure are less 

affected by the presence of the filling material at small levels, as 

in case 3, rather than at larger levels, as in case 4 and 6. 

As a conclusion, the present study reveals that the effective 

elastic constants of a hierarchical composite cellular material can 

be optimized by carefully choosing the microstructure’s parame- 

ters at each level. 

4. Different levels with different cell topologies 

As emerged in Section 3.2 , the microstructure parameters gen- 

erally affect the macroscopic elastic constants of a hierarchical 

composite cellular material. In Section 3.3 it also emerged that 

having filled cells at one level rather than at another leads to 
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Fig. 9. The influence of K w in the stiffness-to-density ratio associated with the axis ( e 1 , e 2 ), with λ= 0.02: (a) Young’s modulus, (b) Shear modulus. 

Fig. 10. The influence of K w in the stiffness-to-density ratio associated with the axis rotated counterclockwise by 30 ° from ( e 1 , e 2 ), with λ= 0.02: (a) Young’s modulus, (b) 

Shear modulus. 

a hierarchical composite material with different elastic moduli. 

Namely, the mechanical properties of each level play an important 

role in the overall mechanical behavior. To further analyze such 

influence, this section treats a three-level hierarchical composite 

cellular material having different cell topologies at each level: the 

hexagonal, square and equilateral triangular, widely observed in 

natural and man-made cellular materials. In the considered config- 

urations, listed in Table 5 and illustrated in Fig. 8 , the cell walls are 

assumed isotropic linear elastic, with Young’s modulus E s = 79 GPa, 

Poisson’s ratio νs = 0.35, density ρs = 2900 kg/m 

3 (aluminum alloy). 

Again, a honeycomb cellular material fills the cells at all levels and 

the conditions in (13), (14), (15) still apply. For more details, see 

Appendix B and C. 

First of all, it should be noted that the hierarchical config- 

urations analyzed in this section are not isotropic as those in 

Section 3 . Thus, to provide a more complete description, Figs. 

9–12 illustrate the specific stiffness in different directions as a 

function of K w 

. In particular, (·) (3) 
0 

, (·) (3) 
30 

, (·) (3) 
45 

, (·) (3) 
60 

stand, 
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Fig. 11. The influence of K w in the stiffness-to-density ratio associated with the axis rotated counterclockwise by 45 ° from ( e 1 , e 2 ), with λ= 0.02: (a) Young’s modulus, (b) 

Shear modulus. 

Table 4 

Filled vs not-filled. Elastic moduli, with K w = 10 −2 E s . 

E (3) 
case i 

/E (3) 
case 1 

λ = 0 . 2 λ = 0 . 1 λ = 0 . 05 λ = 0 . 02 

case 2 1 .21 1 .20 1 .18 1 .18 

case 3 1 .28 1 .24 1 .20 1 .20 

case 4 1 .92 1 .86 1 .86 1 .85 

case 5 1 .26 1 .24 1 .21 1 .21 

case 6 2 .70 2 .70 2 .50 2 .50 

case 7 1 .92 1 .87 1 .87 1 .86 

case 8 3 .30 3 .30 3 .20 3 .20 

G (3) 
case i 

/G (3) 
case 1 

λ = 0 . 2 λ = 0 . 1 λ = 0 . 05 λ = 0 . 02 

case 2 1 .25 1 .23 1 .20 1 .20 

case 3 1 .31 1 .28 1 .23 1 .22 

case 4 2 .10 2 .00 1 .92 1 .90 

case 5 1 .29 1 .27 1 .24 1 .24 

case 6 3 .10 3 .00 2 .90 2 .90 

case 7 2 .20 2 .10 1 .94 1 .92 

case 8 3 .80 3 .60 3 .60 3 .40 

Table 5 

Hierarchical configurations with different cell 

topologies. 

level 1 level 2 level 3 

case 1 square hexagonal triangular 

case 2 square triangular hexagonal 

case 3 hexagonal square triangular 

case 4 hexagonal triangular square 

case 5 triangular square hexagonal 

case 6 triangular hexagonal square 

respectively, for the elastic moduli associated with the axis rotated 

counterclockwise by 0 °, 30 °, 45 °, 60 ° from ( e 1 , e 2 ). 

A common feature in the plots of Figs. 9–12 is the increase in 

the stiffness-to-density ratio for increasing K w 

. Regarding Fig. 9 a, it 

emerges that cases 1 and 3, having a triangular microstructure at 

level 3, are the least performant in terms of E (3) 
0 

/ρ(3) . Conversely, 

the hexagonal and square microstructures at level 3, as in cases 2, 

5 and 4, 6, respectively, provide high values of E (3) 
0 

/ρ(3) . Accord- 

ingly, such configurations could be the best solution to obtain a 

hierarchical material with superior mechanical properties and min- 

imum weight. Furthermore, in cases 1, 3, an increase in K w 

leads 

to a small increase in E (3) 
0 

/ρ(3) while in cases 2, 5 and 4, 6 the in- 

crease is larger. Also, Fig. 9 b shows that higher values of G 

(3) 
0 

/ρ(3) 

occur in cases 1, 3 and 2, 5 rather than in cases 4, 6. In addition, 

Fig. 9 b reveals the existence of a value of K w 

, K 

∗
w 

= 0 . 76 × 10 −3 E s , 

such that 

(
G 

(3) 
0 

ρ(3) 

)
cases 1 , 3 

> 

(
G 

(3) 
0 

ρ(3) 

)
cases 2 , 5 

for K w 

< K 

∗
w 

, (16) 

(
G 

(3) 
0 

ρ(3) 

)
cases 1 , 3 

< 

(
G 

(3) 
0 

ρ(3) 

)
cases 2 , 5 

for K w 

> K 

∗
w 

. (17) 

That is to say, small values of K w 

, K w 

< K 

∗
w 

, provide higher values 

of G 

(3) 
0 

/ρ(3) in cases 1, 3 rather than in cases 2, 5. In contrast, in 

terms of G 

(3) 
0 

/ρ(3) , cases 2, 5 have superior stiffness than cases 1, 

3 for high values of K w 

, K w 

> K 

∗
w 

. 
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Fig. 12. The influence of K w in the stiffness-to-density ratio associated with the axis rotated counterclockwise by 60 ° from ( e 1 , e 2 ), with λ= 0.02: (a) Young’s modulus, (b) 

Shear modulus. 

As can be seen from Figs. 10–12 the specific stiffness associated 

with the axis rotated by 30 °, 45 °, 60 ° exhibits very low values if 

compared to the plots in Fig. 9 . The reason is that the square mi- 

crostructure has a superior stiffness in the e 1 and e 2 directions, 

unlike in the other ones where the values are very low. This is 

due to the alignment of the cell walls in the loading direction. 

However, neglecting this aspect, in the case of Fig. 10 the previ- 

ous considerations still apply. That is to say, in terms of E (3) 
30 

/ρ(3) 

and G 

(3) 
30 

/ρ(3) , cases 2, 5 and 4, 6 have, on order, the highest and 

the lowest values. Conversely, regarding Figs. 11 - 12 , the hierarchi- 

cal material having a triangular microstructure at level 3, namely 

the cases 1, 3, is the less stiff. Again, the hexagonal microstructure 

at level 3, cases 2, 5, makes the composite stiffer. Finally, focusing 

on Fig. 13 , it emerges that the effect of K w 

is minimal on the ef- 

fective Poisson’s ratio. As before, different values can be observed 

by considering different directions. In Figs. 13 a, 13 c, 13 d, it should 

be noted that cases 4, 6, having a square microstructure at level 3, 

are not listed. The reason is that their Poisson’s ratio vanishes (see 

Appendix B). 

These findings could be useful to design/improve a new class 

of complex hierarchical materials with tailored parameters at each 

level. The plots in Figs. 9–12 could also assist the selection of the 

cell topology for a given problem. 

5. Conclusions 

This paper, inspired by the complex hierarchical organization of 

many natural systems, investigates the effects of adding hierarchy 

into a two-dimensional composite cellular material subjected to in- 

plane loads; that is to say, a cellular material having filled cells. In 

particular, a sequence of Euler-Bernoulli beams on Winkler foun- 

dation models the microstructure at all levels. 

Initially, the analysis deals with a composite cellular mate- 

rial having n levels of hierarchy, a honeycomb microstructure and 

the cells filled at all levels. The assumption that the length of 

scale of the substructure is fine enough to be negligible with re- 

spect to the superstructure provides the macroscopic elastic con- 

stants. As expected, they are related to the geometrical and me- 

chanical parameters of the microstructure at all levels. To in- 

vestigate such influence, the example of a three-level structure 

is presented. It emerges that the macroscopic specific stiffness 

of the material is generally improved by increasing the stiff- 

ness of the filler. In particular, we discovered that adding hi- 

erarchical levels to a composite cellular material can lead to 

a higher specific stiffness only if the filling material is stiffer 

than a critical value. Thus for classical cellular materials hierar- 

chy is detrimental for the specific stiffness. In spite of this, for 

filled cellular solids an optimal number of hierarchical level also 

emerges. 

In addition, the analysis reveals that the elastic constant in the 

continuum description are affected not only by the aforementioned 

microstructure’s parameters but also by having filled cells at one 

level rather than at another. 

Then, the example of a three-level hierarchical orthotropic 

structure having different cell topologies, the hexagonal, square 

and equilateral triangular, is considered. From the investigation 

emerges that also the geometrical properties of the microstruc- 

ture affect the effective elastic moduli of a hierarchical material. 

In particular, the hexagonal microstructure at level 3 is the best 

solution to obtain a material with superior stiffness and minimum 

weight. 

Finally, finite element simulations verify the analytical ap- 

proach. 

In conclusion, this paper investigates the role of structural hier- 

archy, material heterogeneity and cell topology on the elastic con- 

stants of composite cellular materials. Some useful tools to create 

and/or improve complex hierarchical structures with tailored prop- 

erties at each level are also included. 
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Fig. 13. The influence of K w in the Poisson’s ratio associated with (a) the axis ( e 1 , e 2 ) and with the axis rotated counterclockwise from ( e 1 , e 2 ) by (b) 30 °, (c) 45 °, (d) 60 °, 
in the case of λ= 0.02. 
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The in-plane elastic properties of hierarchical composite

cellular materials: synergy of hierarchy, material heterogeneity

and cell topology at di↵erent levels - Appendices

Appendix A. Relation between the Young’s modulus of the filling material

and the corresponding Winkler foundation constant

As stated in Section 2, the Euler-Bernoulli beam on Winkler foundation model sim-
ulates the composite hexagonal microstructure at all levels. Specifically, a sequence of
closely spaced independent linear-elastic springs approximates the cells filling material.
Note that representing the material within the cells by a Winkler foundation is a simpli-
fication to obtain a more mathematically tractable problem. However, notwithstanding
the limitations introduced, the analysis in [1] reveals the validity of the modeling ap-
proach based on the Winkler model. A suitable relation between the Young’s modulus

of the filling material, E

(i)
f

and the Winkler foundation constant, k

(i)
w

, is also provided
[1]:
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, i = 1, 2, 3, (A.1)

been K

(i)
w

= k

(i)
w

`

(i) and `

(i) the length of the cell walls.
Assuming that the material inside the cells is a honeycomb made of an aluminum alloy

as the whole hierarchical composite cellular structure analyzed in the present paper, leads
to [2]
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with ⇢
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(i)
f

and ⇢

s

, E

s

, respectively, the density and the Young’s modulus of the

honeycomb and of the constituent material. Also, �
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is the ratio between the thickness
and the length of the cell arms. From (A.2)
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Substituting (A.4) into (A.3) gives, in view of (A.1),
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Finally, from the self-similar condition
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and the assumption
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In particular, assuming ↵ = 0.4, 0.2, 0.1, 0.05, (A.8) provides, on order, K
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Figure A.1: Equivalence between the elastic moduli of the filling material and corresponding

spring. (a) Filling material as a classical continuum, (b) Filling material as a

Winkler foundation.

Appendix B. A continuum model for composite cellular material with square

microstructure

Appendix B.1. Elastic energy

As Figure (B.2a) shows, a sequence of elastic beams of length ` forming a periodic ar-
ray of square cells reproduces a cellular composite material with a square microstructure.
Also, an elastic foundation represents the elastic material filling the cells. In particular,
the Winkler foundation model simulates each beam, as in [1]. The unit cell of the peri-
odic array (Fig. (B.2b)) is composed by the central node (0) and the four external nodes
(1), (2), (3), (4), linked by the elastic beams (0)-(1), (0)-(2), (0)-(3), (0)-(4), represented
by the vectors

b1 = (`, 0) , b2 = (0, `) , b3 = �b1, b4 = �b2. (B.1)

Finally, the area of the unit cell is A0 = `

2.
The analysis of the representative cell of the microstructure provides, firstly, the strain

energy density of the discrete structure. Its continuum approximation is the consequence
of particular assumptions.
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Figure B.2: (a) The square microstructure, (b) The unit cell, (c) The beam on Winkler elastic

foundation.

First of all, the elastic energy of each beam
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derives by superposition principle due to the assumption of linear elastic beam. In
particular, ue = [u
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is the elongation of the springs a, the first, and of the springs b, the second (Fig. (B.3)).
Note that the factor 1/2 in the second and third term of (B.2), is due to the fact that the
springs are shared by two opposite beams and contribute only half of its strain energy
to the unit cell. See Appendix D for further details.
The terms k

e

b

and k

e

wf

in (B.2) are, respectively, the sti↵ness matrix of the classical
elastic beam and of the Winkler foundation [3], denoted by lowercase letters since they
are expressed in the local reference (see [1] for a detailed description). Their components
are
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Figure B.3: Square microstructure: (a) Springs a, (b) Springs b.

and

k

e

wf

=

2

6666664

0 0 0 0 0 0
0 3K

w

/35 11K

w

`/210 0 9K

w

/70 �13K

w

`/420
0 11K

w

`/210 K

w

`

2
/105 0 13K

w

`/420 �K

w

`

2
/140

0 0 0 0 0 0
0 9K

w

/70 13K

w

`/420 0 13K

w

/35 �11K

w

`/210
0 �3K

w

`/420 �K

w

`

2
/140 0 �11K

w

`/210 K

w

`

2
/105

3

7777775
, (B.6)

with K

w

= k

w

`, k

w

the Winkler foundation constant per unit width, C

`

= Es h
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2
s
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D
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3
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2
s )
, respectively, the tensile and bending sti↵ness (per unit width) of the

beams, h the thickness of the arms, E

s

and ⌫

s

the Young’s modulus and the Poisson’s
ratio of the cell walls material.

As it can be seen, the elastic energy is the sum of three terms. The first one,
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corresponding to the classical elastic beam, while the second and the third,
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related to the Winkler foundation and, in particular, to the elongation of the springs a,
the first, and of the springs b, the second (Fig. (B.3)).

The elastic energy of the unit cell, W , derives from that of the four beams it consists
of. In particular, expressing (B.2) in the global reference and summing the elastic energies
of the four beams, leads to

W =
W

1 + W

2 + W

3 + W

4

2
. (B.9)

The presence of the factor 2 in (B.9) is related to the fact that each beam is shared by
two adjacent cells. So, each member contributes only half of its strain energy to the
representative cell.
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The assumption that in the limit ` ! 0 there exist the continuous displacement and

microrotation fields û(·) and '̂(·), and that the discrete variables previously introduced
to represent the degrees of freedom (displacements and rotations) of the external nodes
of the unit cell can be expressed by [4]:

u
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= û0 +rû b

j

+
1

2
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û b

2
j

, '

j

= '̂0 +r'̂b

j

+
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2
r2

'̂b

2
j

, j = 1, 2, 3, 4, (B.10)

provides the continuum description of the discrete structure. In (B.10), b
j

are the vectors
formerly defined, û0 and '̂0 are the values of û(·) and '̂(·) at the central point of the
cell in the continuum description. The substitution of (B.10) into (B.9) gives the strain
energy of the unit cell as a function of the fields û(·) and '̂(·). Finally, dividing the
expression that turns out by the area of the unit cell, A0, leads to the strain energy
density in the continuum approximation
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been "

↵�

= 1
2 (û↵,�

+ û

�,↵

) the infinitesimal strains, ! = 1
2 (û1,2 � û2,1) the infinitesi-

mal rotation, '̂

,↵

the microrotation gradients. Note that in (B.11) only the first order
derivatives are retained, except for the terms of the form '̂ '̂

,↵↵

that can be integrated
by parts and result in first order derivative terms. Retaining this terms, in particular, is
important to maintain joint equilibrium, as pointed out in [4], [5], [6].

Moreover, after rewriting (B.11) in terms of c ⌘ C

`

/` = Es (h/`)
1�⌫
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, it emerges that in the resulting energy the coe�cients scale with di↵erent order

in `, as in [7], [1]. Specifically, the microrotation gradients scale with first order in `, while
the others coe�cients are independent of `. Accordingly, in the limit ` ! 0 the contri-
bution of the microrotation gradients is missing and, as in [1], the equivalent continuum
is non-polar. Consequently, the strain energy density in the continuum description is
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Appendix B.2. Constitutive equations

The constitutive equations

� =
1

A0

@W

@rû

, (B.13)

with � the Cauchy-type stress tensor, follows from (B.12).
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In particular, it emerges that � is a non-symmetric tensor and its components are
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with �

sym

��

and �

skw

��

, in turn, the symmetric and skew-symmetric parts of �. See [1] for
further details.

Appendix B.3. Elastic constants

Simple mathematical manipulations lead to the elastic constants in the continuum
approximation. Specifically, the stress state �11 6= 0, �22 = �12 = �21 = 0 provide, in
view of (B.14) and Hooke’s law �

sym

11 = E

⇤
1 "11, the Young’s modulus in the e1 direction:
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with E

s

and ⌫

s

, respectively, the Young’s modulus and the Poisson’s ratio of the cell
walls material, � = h/` the ratio between the thickness and the length of the beams.
The related Poisson’s ratio ⌫

⇤
12 = �"22/"11 is

⌫

⇤
12 = 0. (B.16)

Similarly, the stress state defined as �22 6= 0, �11 = �12 = �21 = 0 gives the Young’s
modulus in the e2 direction:
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and the related Poisson’s ratio ⌫

⇤
21 = �"11/"22 = 0.

As it can be seen, it emerges that E
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⇤ stands for the Young’s modulus, the first, and the Poisson’s ratio, the second, of the
approximated continuum.

The tangential elastic modulus, G

⇤ = �

sym

12 /2 "12, it is easily obtained by considering
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It should be noted that the elastic moduli derived do not satisfy the classical relation

for isotropic materials, G

⇤ =
E

⇤

2 (1 + ⌫

⇤)
. The e↵ective elastic constants are equal only in

the e1 and e2 direction [2], [8].
Analogous calculations, in conjunction with the classic transformation equations for

stress and strain, provide the e↵ective elastic moduli associated with di↵erent axis. In
particular, denoting with E

⇤
✓
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⇤
✓

, G

⇤
✓

, respectively, the Young’s modulus, Poisson’s ratio
and shear modulus associated with the axis rotated counterclockwise through an angle
of ✓ from (e1, e2), it emerges:
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⌫

⇤
✓

=
2c2s2(K

w

�
1� ⌫

2
s

�
+ �E

s

� �

3
E

s

)

c

4
�

3
E

s

+ �

3
s

4
E

s

+ 2c2s2(K
w

(1� ⌫

2
s

) + �E

s

)
, (B.20)

G

⇤
✓

=
�

3
E

s

(K
w

�
1� ⌫

2
s

�
+ �E

s

)

4 (1� ⌫

2
s

) ((c2 � s

2)2K
w

(1� ⌫

2
s

) + �(c4 + 2c2(�1 + 2�2)s2 + s

4)E
s

)
. (B.21)

To simplify the notation, c and s stand, respectively, for cos ✓ and sin ✓.

Appendix B.4. Comparison between the analytical and numerical approach

Writing the constitutive equations derived in Section B.2 in a compact way, provide
2

4
�

sym

11

�

sym

22

�

sym

12

3

5 =

2

4
C11 C12 C13

C21 C22 C23

C31 C32 C33

3

5

2

4
"11

"22

"12

3

5
, (B.22)

been

C11 = C22 =
C

`

`

+ K

w

=
E

s

�

(1� ⌫

2
s

)
+ K

w

,

C33 =
12D

`

`

3
=

E

s

�

3

(1� ⌫

2
s

)
,

C12 = C21 = C13 = C23 = C31 = C32 = 0. (B.23)

In terms of stress,
2

4
"11

"22

"12

3

5 =

2

4
C

⇤
11 C

⇤
12 C

⇤
13

C

⇤
21 C

⇤
22 C

⇤
23

C

⇤
31 C

⇤
32 C

⇤
33

3

5

2

4
�

sym

11

�

sym

22

�

sym

12

3

5 (B.24)

where

C

⇤
11 = C

⇤
22 =

C22 C33

C

2
22 C33 � C

2
12 C33

=
(1� ⌫

2
s

)

K

w

(1� ⌫

2
s

) + E

s

�

,

C

⇤
33 =

C

2
22 � C

2
12

C

2
22 C33 � C

2
12 C33

=
(1� ⌫

2
s

)

E

s

�

3
,

C

⇤
12 = C

⇤
21 = C

⇤
13 = C

⇤
23 = C

⇤
31 = C

⇤
32 = 0. (B.25)
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Finite element simulations on a computational model of the microstructure evaluate
the accuracy of the theoretical model. In particular, the Euler-Bernoulli beam onWinkler
foundation elements model the composite square microstructure. The cell wall material,
isotropic linear elastic for assumption, has Young’s modulus E

s

= 79 GPa, Poisson’s
ratio ⌫

s

= 0.35 and thickness h = 0.1`. In terms of Winkler foundation, K

w

= 10�2
E

s

.
The numerical analysis involve a 50x50 mm square domain discretized in an increasing
number of square cells of gradually smaller length `. As done in [1], the load conditions
are the uniaxial compression, uniaxial traction and in-plane shear. Specifically, forces of
the same intensity acting at the boundary, unconstrained nodes of the domain simulate
the loading states. The corresponding e↵ective sti↵ness components are derived as the
ratio between the average volume strain,

"

ij

=
1

V

Z

V

"

ij

dV, i, j = 1, 2, (B.26)

and the applied stress. Referring the interested reader to [1] for a comprehensive descrip-
tion, in the case of forces acting horizontally, (B.24) takes the form

"

(1) =

2

64
"

(1)
11

"

(1)
22

"

(1)
12

3

75 =

2

4
C

⇤
11 C

⇤
12 C

⇤
13

C

⇤
21 C

⇤
22 C

⇤
23

C

⇤
31 C

⇤
32 C

⇤
33

3

5

2

4
�11

0
0

3

5 =

2

4
C

⇤
11�11

C

⇤
21�11

C

⇤
31�11

3

5
, (B.27)

been �11 the applied stress, "

(1) the corresponding strain vector,

"

(1)
ij

=
1

V

Z

V

"

(1)
ij

dV, i, j = 1, 2, (B.28)

and V is the volume of the domain. Accordingly,

C

⇤
11 =

"

(1)
11

�11
, C

⇤
21 =

"

(1)
22

�11
, C

⇤
31 =

"

(1)
12

�11
, (B.29)

Note that the present analysis involves a domain with unitary width, composed by a
sequence of discrete beams having the same length ` and the same thickness h. Conse-
quently, denoting by s the parametric coordinate along the length of the beam (0  s  `)

"

ij

(s) =
1

2

✓
@u

i

(s)

@x

j

+
@u

j

(s)

@x

i

◆
, (B.30)

"

(1)
ij

=

P
nb

m=1
1
2

⇣
(u

i

(`)� u

i

(0)) @s

@xj
+ (u

j

(`)� u

j

(0)) @s

@xi

⌘

m

n

b

`

. (B.31)

being n

b

the number of the beams. Furthermore, the classical continuum mechanics
provides the Young’s modulus, E

⇤
1 , and the related Poisson’s ratio ⌫

⇤
12:

E

⇤
1 =

�11

"

(1)
11

, ⌫

⇤
12 = �"

(1)
22

"

(1)
11

. (B.32)
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Similarly, when the forces act vertically,

"

(2) =

2

64
"

(2)
11

"

(2)
22

"

(2)
12

3

75 =

2

4
C

⇤
11 C

⇤
12 C

⇤
13

C

⇤
21 C

⇤
22 C

⇤
23

C

⇤
31 C

⇤
32 C

⇤
33

3

5

2

4
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0

3

5 =

2

4
C

⇤
12�22

C

⇤
22�22

C

⇤
32�22

3

5
, (B.33)

and, consequently,

C

⇤
12 =

"

(2)
11

�22
, C

⇤
22 =

"

(2)
22

�22
, C

⇤
32 =

"

(2)
12

�22
. (B.34)

Also,

E

⇤
2 =

�22

"

(2)
22

, ⌫

⇤
21 = �"

(2)
11

"

(2)
22

. (B.35)

with �22 the applied stress, "

(2) the corresponding strain vector and "

(2)
ij

the average
volume strain given by (B.26).

Lastly, the shear loading condition provides

"

(3) =

2

64
"

(3)
11

"

(3)
22

"

(3)
12

3

75 =

2

4
C

⇤
11 C

⇤
12 C

⇤
13

C

⇤
21 C

⇤
22 C

⇤
23

C

⇤
31 C

⇤
32 C

⇤
33

3

5

2

4
0
0

�12

3

5 =

2

4
C

⇤
13�12

C

⇤
23�12

C

⇤
33�12

3

5
, (B.36)

C

⇤
13 =

"

(3)
11

�12
, C

⇤
23 =

"

(3)
22

�12
, C

⇤
33 =

"

(3)
12

�12
. (B.37)

and
G

⇤ =
�12

2 "

(3)
12

(B.38)

As before, �12 and "

(3) are, in turn, the applied stress and the corresponding strain

vector, while "

(3)
ij

is the average volume strain defined in (B.26).
Tables (B.1) and (B.2) present the outcome of the present study. In Table (B.1),

in particular, the comparison involves the theoretical and numerical C

⇤
ij

constants. In
Table (B.2), the theoretical and numerical elastic moduli. Both Table (B.1) and Table
(B.2) show that the analytical quantities are in accordance with the numerical results.

Appendix C. A continuum model for composite cellular material with equi-

lateral triangular microstructure

Appendix C.1. Elastic energy

As in Appendix B, a sequence of Euler-Bernoulli beams on Winkler foundation el-
ements model the triangular microstructure (Fig. (C.4). As Figure (C.4b) shows, the
unit cell of the periodic configuration is composed by the central node (0) and the six
external nodes (1), (2), (3), (4), (5), (6), linked by the elastic beams (0)-(1), (0)-(2),
(0)-(3), (0)-(4), (0)-(5), (0)-(6), represented by the vectors

b1 = (`, 0) , b2 =
�
`/2,

p
3 `/2

�
, b3 =

�
�`/2,

p
3 `/2

�
,

b4 = �b1, b5 = �b2, b6 = �b3.

(C.1)
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Table B.1: Square microstructure: comparison between the analytical and numerical approach,

C⇤
ij constants (GPa

�1
)

No. cells ` (mm) C

⇤
11 C

⇤
22 C

⇤
33 C

⇤
12 = C

⇤
21 = C

⇤
13 = C

⇤
23 = C

⇤
31 = C

⇤
32

10x10 5 0.08 0.10 9.39 0
50x50 1 0.10 0.11 10.70 0
100x100 0.5 0.11 0.11 10.70 0
200x200 0.25 0.11 0.11 10.74 0
250x250 0.2 0.11 0.11 10.79 0
400x400 0.125 0.11 0.11 10.82 0
500x500 0.1 0.11 0.11 10.95 0

Analytical results 0.11 0.11 11.11 0

Table B.2: Square microstructure: comparison between the analytical and numerical approach,

elastic moduli

No. cells ` (mm) E

⇤
1 (GPa) E

⇤
2 (GPa) ⌫

⇤
12 ⌫

⇤
21 G

⇤ (GPa)

10x10 5 12.50 10.00 0 0 0.09
50x50 1 9.57 9.18 0 0 0.05
100x100 0.5 9.28 9.10 0 0 0.05
200x200 0.25 9.15 9.06 0 0 0.05
250x250 0.2 9.12 9.05 0 0 0.05
400x400 0.125 9.08 9.04 0 0 0.05
500x500 0.1 9.08 9.04 0 0 0.05

Analytical results 9.00 9.00 0 0 0.05
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The area of the unit cell is A0 =
p
3 `

2
/2, with ` the length of the beams [9], [4]. As

before, the elastic energy of each beam is obtained by superposition principle

w

e =
1

2
(ue)T · ke

b

u

e +
1

2

✓
1

2
(�u

e,a)T · ke

wf

�u

e,a

◆
+

1

2

✓
1

2
(�u

e,b)T · ke

wf

�u

e,b

◆
,

(C.2)
with u

e, �u

e,a, �u

e,b, ke

b

, k
wf

, in turn, the vector of nodal displacements, the elonga-
tion of the two sets of springs and the sti↵ness matrices previously defined. See Appendix
E for further details. The elastic energy of the unit cell, W , derives from that of the
six beams it consists of. Note that each beam is shared between two adjacent cells.
Consequently, each member contributes only half of its strain energy to the unit cell.

It is not di�cult to see that the first node of each beam coincides with the central
node (0). So, denoted by u0 the displacements of the node (0) and by �u

a

0 , �u

b

0 the
elongation of the springs in (0), follows u

i

= u0, �u

a

i

= �u

a

0 and �u

b

i

= �u

b

0.
As done in [7], [1], expressing (C.2) in the global reference, adding up forces at the

central node (0) and condensing the corresponding degrees of freedom to take account
of the forces balance in (0), leads to

W = W (u
j

,�u

a

j

,�u

b

j

), j = 1, 2, 3, 4, 5, 6. (C.3)

The assumption that in the limit ` ! 0 the discrete variables (uj, 'j

) can be expressed
by

u

j

= û0 + rû b

j

, '

j

= '̂0 + r'̂b

j

, j = 1, 2, 3, 4, 5, 6 (C.4)

provides the continuum description of the discrete structure. The terms û0 and '̂0 in
(C.4) are the values of û(·) and '̂(·) at the central point of the cell in the continuum
description. Substituting (C.4) into (C.3) gives the strain energy of the unit cell as a
function of the fields û and '̂.

Finally, dividing the expression that turns out from the calculation by the area of the
unit cell, A0, gives the strain energy density in the continuum approximation w:

w =
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(C.5)

been C

`

= Es h

1�⌫

2
s
and D

`

= Es h

3

12(1�⌫

2
s )
, respectively, the tensile and bending sti↵ness (per

unit width) of the beams, h the thickness, E

s

and ⌫

s

the Young’s modulus and the
Poisson’s ratio of the cell walls material, K

w

= k

w

`, k

w

the Winkler foundation constant
per unit width. In particular, the resulting energy density

w = w ("
↵�

, (! � '̂), '̂
,↵

) (C.6)
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is a function of the infinitesimal strains "

↵�

= 1
2 (û↵,�

+ û

�,↵

) and the infinitesimal rota-
tion ! = 1

2 (û1,2 � û2,1) that represent, respectively, the symmetric and skew-symmetric
part of rû, as in the classical continuum mechanics, and of the microrotation gradients,
'̂

,↵

.

After rewriting (C.5) in terms of c ⌘ C

`

/` = Es (h/`)
1�⌫

2
s

and d ⌘ D

`

/`

3 = Es (h/`)3

12(1�⌫

2
s )
, it

emerges, as before, that the coe�cients are independent of `, with the exception of the
microrotation gradients that scale with first order in `. Consequently, in the limit ` ! 0
the contribution of the microrotation gradients is missing and the equivalent continuum
is non-polar. Accordingly, the strain energy density in the continuum approximation
takes the form:
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Appendix C.2. Constitutive equations

The constitutive equations ensue from (C.7):
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(C.8)

�

sym

��

and �

skw

��

are, in turn, the symmetric and skew-symmetric part of the not-symmetric
Cauchy-type stress tensor.

Appendix C.3. Elastic constants

Let us consider the stress state �11 6= 0, �22 = �12 = �21 = 0. From (C.8) and
Hooke’s law, �

sym

11 = E

⇤
1 "11, the Young’s modulus in the e1 direction is:
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, (C.9)
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Figure C.4: (a) The equilateral triangular microstructure, (b) The unit cell.
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Figure C.5: Equilateral triangular microstructure: (a) Springs a, (b) Springs b.
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while the related Poisson’s ratio ⌫

⇤
12 = �"22/"11 is:
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. (C.10)

Similarly, the stress state �22 6= 0, �11 = �12 = �21 = 0 leads to the Young’s modulus
in the e2 direction, E

⇤
2 = E

⇤
1 ⌘ E

⇤, and to the related Poisson’s ratio, ⌫

⇤
21 = �"11/"22 =

⌫

⇤
12 ⌘ ⌫

⇤.
Finally, the stress state �
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. (C.11)

Appendix C.4. Comparison between the analytical and numerical approach

In terms of stress, the compact expression of the constitutive equations derived in
Section C.2 is 2
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As in Appendix B, finite element simulations assess the analytical model. Specif-
ically, the Euler-Bernoulli beam on Winkler foundation elements model the compos-
ite microstructure. The cell wall material, assumed to be isotropic linear elastic, has
Young’s modulus E

s

= 79 GPa, Poisson’s ratio ⌫

s

= 0.35 and thickness h = 0.1`, while
K

w

= 10�2
E

s

. The numerical analysis involve a 75x50 mm rectangular domain dis-
cretized in an increasing number of equilateral triangular cells having gradually smaller
length `. As in Appendix B, the load conditions are the uniaxial compression, uniaxial
traction and in-plane shear. Forces of the same intensity acting at the boundary, un-
constrained nodes of the domain simulate the loading states. Again, the corresponding
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Table C.3: Equilateral triangular microstructure: comparison between the analytical and nu-

merical approach, C⇤
ij constants (GPa

�1
)

No. cells ` (mm) C

⇤
11 C

⇤
22 C

⇤
12 C

⇤
21 C

⇤
33 C

⇤
13 = C

⇤
23 = C

⇤
31 = C

⇤
32

15x10 5 6.05 6.08 6.02 6.03 7.50 0
75x50 1 6.13 6.13 6.03 6.03 5.90 0
100x100 0.5 6.25 6.23 6.03 6.05 5.90 0
300x200 0.25 6.27 6.29 6.10 6.09 5.10 0
375x250 0.2 6.35 6.34 6.15 6.13 4.80 0
600x400 0.125 6.38 6.39 6.22 6.21 4.60 0
750x500 0.1 6.38 6.39 6.22 6.22 4.60 0

Analytical results 6.43 6.43 6.40 6.40 4.50 0

Table C.4: Equilateral triangular microstructure: comparison between the analytical and nu-

merical approach, elastic moduli

No. cells ` (mm) E

⇤
1 (GPa) E

⇤
2 (GPa) ⌫

⇤
12 ⌫

⇤
21 G

⇤ (GPa)

15x10 5 11.33 11.48 0.42 0.45 4.70
75x50 1 11.33 11.39 0.41 0.40 4.63

100x100 0.5 11.10 11.08 0.41 0.40 4.63
300x200 0.25 10.91 10.90 0.32 0.33 4.51
375x250 0.2 10.70 10.78 0.33 0.33 4.50
600x400 0.125 10.61 10.50 0.33 0.33 4.22
750x500 0.1 10.50 10.47 0.33 0.33 4.10

Analytical results 10.46 10.46 0.33 0.33 3.94

e↵ective sti↵ness components are calculated as the ratio between the average volume
strain,

"

ij

=
1

V

Z

V

"

ij

dV, i, j = 1, 2, (C.15)

and the applied stress (see Appendix B).
The results of the analysis are presented in Tables (C.3) and (C.4). In Table (C.3)

the analytical and numerical values of the C

⇤
ij

constants are compared, while Table (C.4)
deals with the elastic constants. As it can be seen, the results from the continuum
formulation compare reasonably well with the numerical solutions.

Appendix D. The composite cellular material with square microstructure:

focus on springs

As Figure (D.6) shows, the elongation of the elastic springs is expressed by

- Beam (0)-(1)
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(a)
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(0) (1)(3)

e 1

e 2 (4)

(6)(7)

(8) (5)

(b)

(2)

(0) (1)(3)

e 1

e 2 (4)

(6)(7)

(8) (5)

(c)

(2)

(0) (1)(3)

e 1

e 2 (4)

(6)(7)

(8) (5)

(c)

(2)

(0) (1)(3)

e 1

e 2 (4)

(6)(7)

(8) (5)

Figure D.6: The unit cell with focus on springs in the square microstructure. (a) Beam (0)-(1),

(b) Beam (0)-(2), (c) Beam (0)-(3), (d) Beam (0)-(4).

(2)

(0)
(1)(3)

e 1

e 2 (4)

(6)(7)

(8) (5)

b6

b5b8

b2

b3

b7

b4

b1

Figure D.7: The bi vectors in the square microstructure.
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In the discrete system

�u

1,a =

2

664

u0 � u4

'0 � '4

u1 � u5

'1 � '5

3

775 , �u

1,b =

2

664

u0 � u2

'0 � '2

u1 � u6

'1 � '6

3

775 , (D.1)

while in the continuum description

u0 = û, '0 = '̂, (D.2)

u

i

= û+rû b

i

+
1

2
(r2

û b

2
i

), (D.3)

'

i

= '̂ +r'̂b

i

+
1

2
(r2

'̂b

2
i

), i = 1, 2, 4, 5, 6. (D.4)

Substituting (D.2)-(D.10) into (D.1) leads to

�u

1,a =

2

664

�rû b4 � (r2
û b

2
4)/2

�r'̂b4 � (r2
'̂b

2
4)/2

rû b1 + (r2
û b

2
1)/2�rû b5 � (r2

û b

2
5)/2

r'̂b1 + (r2
'̂b

2
1)/2�r'̂b5 � (r2

'̂b

2
5)/2

3

775 , (D.5)

�u

1,b =

2

664

�rû b2 � (r2
û b

2
2)/2

�r'̂b2 � (r2
'̂b

2
2)/2

rû b1 + (r2
û b

2
1)/2�rû b6 � (r2

û b

2
6)/2

r'̂b1 + (r2
'̂b

2
1)/2�r'̂b6 � (r2

'̂b

2
6)/2

3

775 . (D.6)

Similarly, for the beams (0)-(2), (0)-(3), (0)-(4):
- Beam (0)-(j)
Discrete system

�u

j,a =

2

664

u0 � u

k

'0 � '

k

u2 � u

l

'2 � '

l

3

775 , �u

j,b =

2

664

u0 � u

m

'0 � '

m

u2 � u

n

'2 � '

n

3

775 . (D.7)

Continuum description
u0 = û, '0 = '̂, (D.8)

u

i

= û+rû b

i

+
1

2
(r2

û b

2
i

), (D.9)

'

i

= '̂ +r'̂b

i

+
1

2
(r2

'̂b

2
i

), i = j, k, l, m, n (D.10)

and

�u

j,a =

2

664

�rû b

k

� (r2
û b

2
k

)/2
�r'̂b

k

� (r2
'̂b

2
k

)/2
rû b

j

+ (r2
û b

2
j

)/2�rû b

l

� (r2
û b

2
l

)/2
r'̂b

j

+ (r2
'̂b

2
j

)/2�r'̂b

l

� (r2
'̂b

2
l

)/2

3

775 , (D.11)
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�u

j,b =

2

664

�rû b

m

� (r2
û b

2
m

)/2
�r'̂b

m

� (r2
'̂b

2
m

)/2
rû b

j

+ (r2
û b

2
j

)/2�rû b

n

� (r2
û b

2
n

)/2
r'̂b

j

+ (r2
'̂b

2
j

)/2�r'̂b

n

� (r2
'̂b

2
n

)/2

3

775 . (D.12)

In particular,
Beam (0)-(2): j = 2, k = 1, l = 6, m = 3, n = 7,
Beam (0)-(3): j = 3, k = 2, l = 7, m = 4, n = 8,
Beam (0)-(4): j = 4, k = 3, l = 8, m = 1, n = 5.

Finally, the vectors b
i

(Fig. (D.7)) are

b1 = (`, 0) , b2 = (0, `) , b3 = (�`, 0) , b4 = (0,�`) ,

b5 = (`,�`) , b6 = (`, `) , b7 = (�`, `) , b8 = (�`,�`) .

(D.13)

Appendix E. Composite cellular material with equilateral triangular microstruc-

ture: focus on springs

In the case of equilateral triangular microstructure, the elongation of the springs takes
the form (Fig. (E.8), (E.9))

- Beam (0)-(1)
Discrete system

�u

a

1 =


u1 � u6

'1 � '6

�
, �u

b

1 =


u1 � u2

'1 � '2

�
. (E.1)

In the continuum description,

u

i

= û+rû b

i

, '

i

= '̂ +r'̂b

i

, i = 1, 6, 2 (E.2)

that, substituted in (E.1), lead to

�u

a

1 =


rû b1 �rû b6

r'̂b1 �r'̂b6

�
, �u

b

1 =


rû b1 �rû b2

r'̂b1 �r'̂b2

�
. (E.3)

For the other beams, similar calculations provide
- Beam (0)-(j)
Discrete system

�u

a

j

=


u

j

� u

k

'

j

� '

k

�
, �u

b

j

=


u

j

� u

l

'

j

� '

l

�
. (E.4)

Continuum description

u

i

= û+rû b

i

, '

i

= '̂ +r'̂b

i

, i = j, k, l (E.5)

and

�u

a

j

=


rû b

j

�rû b

k

r'̂b

j

�r'̂b

k

�
, �u

b

j

=


rû b

j

�rû b

l

r'̂b

j

�r'̂b

l

�
, (E.6)

with
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Figure E.8: The unit cell with focus on springs in the equilateral triangular microstructure. (a)

Beam (0)-(1), (b) Beam (0)-(2), (c) Beam (0)-(3), (d) Beam (0)-(4), (e) Beam

(0)-(5), (f) Beam (0)-(6).
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e 1

e 2

(2)

(0) (1)

(3)

(4)

(5) (6)

b6b5

b2b3

b4 b1

Figure E.9: The bi vectors in the equilateral triangular microstructure.

Beam (0)-(2): j = 2, k = 1, l = 3,
Beam (0)-(3): j = 3, k = 2, l = 4,
Beam (0)-(4): j = 4, k = 3, l = 5,
Beam (0)-(5): j = 5, k = 4, l = 6,
Beam (0)-(6): j = 6, k = 5, l = 1.

Finally, as stated, note that each beam is shared between two adjacent beams. So, each
member contributes only half of its strain energy to the representative cell.
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