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Abstract The main purpose of this paper is to evaluate the self-stress state of single-walled
Carbon NanoTubes (CNTs) and Flat Graphene Strips (FGSs) in their natural equilibrium
state, that is, the state prior to the application of external loads. We model CNTs as discrete
elastic structures, whose shape and volume changes are governed by a Reactive Empirical
Bond-Order (REBO) interatomic potential of second generation. The kinematical variables
we consider are bond lengths, bond angles, and dihedral angles; to changes of each of these
variables we associate a work-conjugate nanostress. To determine the self-stress state in
a given CNT, we formulate the load-free equilibrium problem as a minimum problem for
the interatomic potential, whose solution yields the equilibrium nanostresses; next, by ex-
ploiting the nonlinear constitutive dependence we derive for nanostresses in terms of a list
of kinematical variables, we determine the equilibrium values of the latter; finally, from
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the equilibrium values of the kinematical variables we deduce the natural geometry and, in
particular, the natural radius.

Our theoretical framework accommodates CNTs of whatever chirality. In the achiral
case, the stationarity conditions implied by energy minimization are relatively easy to derive
and solve numerically, because we can count on maximal intrinsic symmetries and hence the
number of independent unknowns is reduced to a minimum; for chiral CNTs, we prefer to
solve the minimum problem directly.

The natural-radius predictions we achieve within our discrete-mechanics framework are
in good agreement with the results of calculations based on Density Functional Theory
(DFT) and Tight Binding (TB) theory; the same is true for our predictions of the self-
energy, that is, the energy associated with self-stress (called cohesive energy in the liter-
ature); we surmise that our discrete mechanical model may serve as a source of benchmarks
for Molecular-Dynamics (MD) simulation algorithms.

We find that self-stress depends on changes in both bond and dihedral angles in achiral
CNTs and, in addition, on changes in bond length in chiral CNTs. Our analysis applies also
to FGSs, whose self-stress and self-energy we evaluate; we find that in FGSs self-stress is
associated exclusively with changes in bond angle.

Keywords Carbon nanotubes · Graphene · Discrete model · REBO potential · Dihedral
angles · Nanostress · Self-stress · Benchmark

Mathematics Subject Classification (2010) 74K99 · 74G55 · 74G65

1 Introduction

1.1 Previous Discrete Models of Carbon Allotropes

Discrete models have been used since long to predict the mechanical behavior of CNTs
and graphene. The linear model exploited in [19] to obtain closed-form expressions for
the elastic properties of armchair (A) and zigzag (Z) CNTs has been extended in [53] to
study torsion loading, with nonlinearities handled by means of a modified Morse potential.
A similar approach has been used in [46] to investigate various loading conditions, and in
[52] to evaluate effective in-plane stiffness and bending rigidity of A- and Z-CNTs. In [8],
the model of [7] is extended to chiral CNTs, an issue addressed also in [9]. Recently, a
discrete model allowing to treat general load conditions, arbitrary chirality, and an initially
stressed state, has been proposed in [39], and a geometrically nonlinear theory of discrete
elastic structures accounting for the effects of self-stress has been presented in [16]. Discrete
mechanics has also served as a scale-bridging tool to build shell theories [1, 6, 17]. On the
computational side, the methods presented in [38] are worth-mentioning, where nonlinear
torsional spring elements are adopted and implemented in a Finite Elements (FE) code. The
mechanical properties of graphene sheets and ribbons have been analyzed with a similar
approach; in particular, FE formulations employing both linear [20] and nonlinear springs
have been given [19, 21–23].

The size of a CNT of given chirality is customarily specified in terms of its nominal ra-
dius, that is, the radius that it would have if it were possible to manufacture it by rolling a
monolayer FGS up with no energy expenditure; this so-called Rolled-Up Model (RUM) was
proposed in the nineties just after CNTs came to the fore and, curiously enough, way before
graphene did. On having recourse to RUM, circumference and length of a CNT are taken
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equal to, respectively, the width and the length of its ‘parent’ FGS. One intrinsic approxima-
tion of RUM is that bond lengths come out shorter in CNTs than in their parent FGSs, due to
the difference between the length of a helix segment and the distance between its endpoints
[30]; consequently, RUM is accurate only for CNTs of rather large radius (about three times
the length of a C bond in graphene). Several studies have been performed to determine in
a more precise way the geometry of CNTs of small radius. Some studies adopt a Density
Functional Theory (DFT) approach [4, 5, 14, 28, 30, 37], others a Tight Binding (TB) [41]
or an interatomic potential approach [26, 27]; in all cases, the ‘relaxed’ configuration of a
CNT is determined through energy minimization, starting from the ‘unrelaxed’ (≡ nominal)
configuration furnished by RUM. The main findings of these studies can be summarized as
follows: whatever the chirality, (a) relaxed and unrelaxed bond lengths and bond angles are
different; (b) ‘relaxed’ CNTs have larger radius. Interestingly, in [32] geometrical relation-
ships alternative to those of RUM are derived, in order to obtain the radius of a CNT once
its bond lengths and bond angles are known.

1.2 Our Model in a Nutshell

In this paper we propose a discrete mechanical model to investigate whether defectless CNTs
and FGSs are in a state of self-stress in their natural (≡ relaxed) configuration, that is, in a
state of mechanical coaction prior to application of external loads.1 That all pristine CNTs
are somehow and to some extent self-stressed is implied by the collection of unzipping ex-
periments that have been performed with various techniques ever since the pioneer study
[29] was published in 2009.2 We not only show that all CNTs, whatever their size and chi-
rality, suffer a self-stress, but we also identify its different sources, as many as the types
of kinematical variables we consider. In addition to changes in bond lengths and bond an-
gles, our energy form accounts for changes in dihedral angles; to each of these kinematical
variables we associate a work-conjugated nanostress.3 Our quantitative evaluation of nanos-
tresses in CNTs is achieved with the use of Brenner’s 2nd-generation Reactive Empirical
Bond-Order (REBO) interatomic potential [3]; by taking a precisely defined infinite-radius
limit (see Sect. 5.2), we also determine the self-stress state of FGSs. Both for CNTs and
FGSs, we find that the self-stress is of the same order of magnitude as the stress induced
by traction loads that are about two thirds of the corresponding fracture loads in the case of
FGSs and that, in the scarce light of the information we gather from the few experiments
available, are comparable with fracture loads in the case of CNTs. This fact strongly sug-
gests that self-stress be properly incorporated in whatever model of carbon allotropes, be it
discrete or continuum.

1.3 Our Findings Put into Perspective

Our theoretical framework accommodates CNTs of whatever chirality. We show that the
symmetries intrinsic to achiral CNTs induce a drastic reduction of the number of kinematic
unknowns needed in case of arbitrary chirality. This greatly simplifies the formal devel-
opments leading to achieve energy minimization via the solution of a set of stationarity

1For an assessment of how defects make elastic response and strength of CNTs different, see [42, 43].
2While the possibility of obtaining graphene ribbons from CNTs is experimentally proved, there is not yet
a conclusive evidence that completely flat graphene sheets can be obtained by unzipping procedures (see,
e.g., [51]).
3Changes in dihedral angles have been ignored so far in most of discrete models of carbon allotropes, a no-
ticeable exception being the series of studies [20–23].
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conditions in terms of equilibrium nanostresses, because for achiral CNTs those conditions
are few and relatively easy to obtain; moreover, once the nonlinear dependence of nanos-
tresses on the kinematic unknowns is taken into account, numerical computations turn out to
be reasonably light. As to chiral CNTs, we prefer to perform energy minimization directly.
We derive the explicit form of constitutive equations for nanostresses in this case as well,
and we provide a body of quantitative results showing that self-energy (that is, the energy
in the natural configuration, associated with self-stress and called cohesive energy in the
literature) and self-stress of chiral CNTs are close to those of achiral CNTs of similar radius
(see Sect. 5.4). We find that self-stress depends on changes in both bond and dihedral angles
in achiral CNTs and, in addition, on changes in bond length in chiral CNTs. Our analysis
applies also to FGSs, whose self-stress and self-energy we evaluate; we find that, in FGSs
self-stress is associated exclusively with changes in bond angle.

We find that the nominal radius approximates the natural radius from below, poorly for
big curvatures, better and better for larger and larger CNTs. The minimum of the interatomic
potential is realized in the natural, not in the nominal, configuration. The natural geometry of
a CNT is a necessary intermediate product of our procedure to determine its self-stress state.
The natural-radius predictions we achieve within our discrete-mechanics framework are in
good agreement with the results of DFT- and TB-based calculations; the same is true for our
predictions of the self-energy. We show that self-stresses and self-energies are by no means
negligible with respect to load-related nanostresses and energies (see Sect. 5.2). We also
compute two other types of stored energies oftentimes regarded as relevant in the literature,
namely, the folding energy—that is, the energy hastily assigned to a CNT by borrowing a
formula for the cylindrical bending of thin elastic plates—and the roll-up energy—that is,
the difference in energy per atom of a CNT and its parent FGS, in their respective natural
configurations (see Sect. 5.3). We show that the ‘thin-plate formula’ is less and less reliable
as a CNT’s curvature grows big and that it always provides an estimate from above of the
roll-up energy.

An element of novelty of our study is that we have chosen an interatomic potential that,
to the best of our knowledge, has not been employed before in connection with CNTs of
small radius; the potential we use features a contribution due to changes in dihedral an-
gles, so as to account for the curvature-related effects of electrons’ orbital distortion and
rehibridization. For this reason, we believe that our predictions are potentially better—in the
sense that they can turn out to be closer to the results obtained by DFT or TB approaches—
than those obtained when first-generation potentials [2, 48, 49] are employed. In fact, we
envisage the possibility of tuning the parameters from which our potential depends so as
to minimize the discrepancies between our predictions and DFT’s or TB’s, with a view to-
wards improving the performances of Molecular Dynamics (MD) simulations based on such
a finely tuned potential. And, even in the absence of such tuning, we believe that our discrete
mechanical model, which leads to a quite standard energy minimization procedure requiring
negligible computational time, may serve as a source of benchmarks for MD simulation al-
gorithms: as is, in case those algorithms incorporate the same intermolecular potential; after
modest adjustments, in case of other REBO potentials. In this connection, we mention that
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), one of the most
used simulators in MD, when adopting the 2nd-generation Brenner potential produces in its
current implementation results which are offset by a significant amount from those of the
benchmark furnished by our present theory [18].

In our opinion, recognizing that both CNTs and FGSs are self-stressed structures and,
moreover, qualifying and quantifying their self-stress state is the main element of novelty of
our study. On the one hand, our qualification of the nature of nanostresses may turn out to be
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a convenient starting point for future homogenization studies on carbon allotropes, aimed at
obtaining higher-order elastic theories corresponding to potentials of 2nd-generation REBO
type. On the other hand, accounting for self-stress is crucial to produce reliable predictions
whenever a harmonic approximation of the interatomic potential is accepted [16]; see also
[54], where it is shown that bond-angle self-stress can contribute to the bending stiffness of
monolayer FGSs. We find that the dihedral contribution to self-energy is large, about half of
the total for CNTs of large radius, a result consistent with those in [35]; we also find that the
dihedral contribution is less important in small-radius CNTs, a fact that can be justified by
the large change of bond angles when curvature is large.

1.4 Summary of Contents

We consider a generic molecular aggregate, kept together by a system of conservative in-
termolecular forces; in Sect. 2, we describe such an aggregate as a discrete mechanical
structure, whose configuration is identified by a finite list of order parameters; and we de-
termine the conditions of natural equilibrium for such an aggregate. In Sect. 3, we focus on
hexagonal carbon lattices: we detail their geometry and kinematics and we recapitulate the
nominal geometry of achiral CNTs, that is, their geometry as viewed according to the RUM.
We then deal with the exact geometry, after having chosen the proper order parameter string,
in the light of the developments of Sect. 2. In Sect. 4, we derive the equations governing the
natural equilibrium of achiral CNTs, while, for chiral CNTs, we give the form of the energy
to be minimized, providing in both cases the constitutive relations for the nanostresses. In
the final Sect. 5, we present and discuss the results of our theory and make a comparison
with the literature. Four Appendices complete the paper: the Appendix A contains certain
geometrical and analytical details about the computation of dihedral angles that, although
indispensable, would have made unduly heavier the relative developments in the main text;
the Appendix B contains a reasoned presentation of the 2nd-generation Brenner potential, in
its general form and in the version we use; the Appendix C contains the balance equations
for the case of uniform traction of CNTs and FGSs, a case we use to compare energies and
stresses induced by an external load; the Appendix D contains tables collecting the data used
to draw the plots in Sect. 5.

2 Equilibria of Discrete Structures

The discrete mechanical structures we study consist of interacting C atoms occupying a
finite hexagonal lattice; their configurations are determined by assigning admissible posi-
tions in space to all lattice points; each configuration has an energetic cost, computable by
evaluating a given energy functional, which depends in principle on the distances of all
pairs of lattice points. The REBO potentials developed by Tersoff [48, 49] and Brenner [2]
have been widely used in MD simulations of carbon-based materials; they accommodate
multibody interactions up to second nearest neighbors. A so-called 2nd-generation Brenner
potential [3] is a REBO potential that accommodates third-nearest-neighbor interactions as
well, through a bond order associated with dihedral angles; we delineate its analytic features
in Appendix B.

In this paper we exploit the simplifications intrinsic to the highly symmetric shapes of
CNTs and FGSs so as to give the 2nd-generation Brenner potential we use a form that de-
pends on a finite list of order parameters. The latter are defined with reference to an aggre-
gate of two or more adjacent lattice points; when all admissible aggregates are considered,
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we end up with an order-parameter string ξ ; we call natural equilibria the local minima of
an energy functional depending on ξ .

For low-symmetry structures, the order-parameter string one needs can be very long; this
is not the case for CNTs and FGS, especially so when natural equilibria are sought: in fact, in
Sect. 3, we show that a 3-entry string q of Lagrangian coordinates is enough to determine ξ .
All in all,

V = ̂V (q), with ̂V = ˜V ◦̂ξ , ξ =̂ξ(q). (1)

The functional ̂V we use will be introduced in Sect. 4. In absence of external forces,
natural equilibria are the stationary points of ̂V ; any such point q0 satisfies

δV = ∂q ̂V (q0) · δq = 0 for all variations δq = q − q0, (2)

with

∂q ̂V (q0) · δq = (

∂q̂ξ(q0)
)T

∂ξ
˜V (ξ 0) · δq = ∂ξ

˜V (ξ 0) · (∂q̂ξ(q0)
)

δq, ξ 0 =̂ξ(q0);

an equilibrium q0 is stable if the Hessian ∂2
q
̂V is positive definite at q0.

We set χ̃ := ∂ξ
˜V , and call χ = χ̃(ξ) the stress mapping, in that, for δξ := ξ − ξ 0 the

strain increment in passing from the configuration ξ 0 to the configuration ξ ,

δV = χ · δξ (3)

can be regarded as the incremental expenditure of internal power. We also set ̂B := ∂q̂ξ , and
call ̂B the kinematic compatibility operator, in that

δξ = ̂B(q)δq.

Finally, we call ̂A := ̂BT the equilibrium operator, and note that (2) holds if and only if

̂A(q0)χ̃(ξ 0) = 0, ξ 0 =̂ξ(q0); (4)

provided H0 := ∂2
q
̂V (q0) is positive definite, V0 := ̂V (q0) is the natural binding energy, and

χ0 := ∂ξ
˜V

(

̂ξ(q0)
)

(5)

the self-stress at the natural equilibrium q0.
In the presence of external loads, the functional ̂V has to be replaced with

E = ̂E(q) := ̂V (q) − ̂P(q), ̂P(q) := f ·̂d(q), (6)

where the dead load f is work-conjugate to the generalized displacement ̂d(q); an equilib-
rium point q0 satisfies the condition:

δE = ∂ξ
˜V (ξ 0) · (∂q

̂ξ(q0)
)

δq − (

∂q̂d(q0)
)T

f · δq = 0, (7)

whence the balance equation

̂A(q0)χ̃(ξ 0) = (

∂q̂d(q0)
)T

f; (8)

in Appendix C, we have recourse to this general equation to solve the traction problem.
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Fig. 1 Four C atoms of an
hexagonal lattice, not necessarily
planar

3 Geometry and Kinematics of Hexagonal Carbon Lattices

When regarded as discrete mechanical structures, FGSs and single-walled CNTs can be
modeled in one and the same manner, because they all are carbon allotropes with hexagonal
lattices. In fact, while hereafter we focus on CNTs, our description of their geometry and
kinematics applies with minimal changes to FGSs.

3.1 Bond-Related Kinematic Variables

In this section, we introduce the kinematic variables associated with the interatomic bonds
involving first, second and third nearest neighbors of any given atom.

With the help of Fig. 1, consider the bond chain going from atom H to atom K . In this
chain, atoms H and J are the first nearest neighbors, and K the second nearest neighbor, of
atom I ; moreover, atom K is the third nearest neighbor of atom H . On denoting by rI the
position vector of atom I with respect to a chosen origin, let

rIJ := 1

rIJ
(rJ − rI ), rIJ := |rJ − rI |; (9)

here, rIJ is the IJ-bond vector, rIJ is the IJ-bond length, the length of the covalent bond
between atoms I and J . Two bond vectors rHI and rIJ span a plane, whose normal is:

nHIJ := rHI × rIJ

|rHI × rIJ | ; (10)

their angle is:

θHIJ := arccos(rHI · rIJ), (11)

the IJK-bond angle. Finally, the HIJK-dihedral angle

ΘHIJK := arccos(nHIJ · nIJK) (12)

is the angle between the planes spanned by the two pairs of bond vectors rIJ , rJK and rJI ,
rIH .

Bond length, bond angles, and dihedral angles, are the kinematic variables we consider;
their dependence on the positional coordinates of the related aggregates of structure points
is specified by definitions (9)–(12); we reiterate that all their changes have an energetic cost
to be computed when a form for the mapping ˜V is specified.

3.2 The Nominal Geometry of Achiral CNTs

In imagination, a single-walled CNT can be obtained by rolling and zipping up into a cylin-
drical shape a strip of graphene, that is, of a monolayer carbon allotrope with the atomic
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Fig. 2 The graphene part
involved in rolling up a chiral
CNT

structure of a two-dimensional flat Bravais lattice with hexagonal unit cell. There are in-
finitely many ways to roll a graphene strip up, sorted by introducing a geometrical object,
the chiral vector:

h = na1 + ma2, n ≥ m, (13)

where n,m are integers, and a1,a2 are lattice vectors, such as those at a mutual an-
gle of π/3 radians shown in Fig. 2; the chiral vector forms with a1 the chiral angle
ψ = arctan(

√
3m/(2n + m)).

When n > m > 0, the CNT in question is termed chiral. The nominal radius ρ0 of a
(n,m)-CNT is defined to be the radius of the cylinder on which the centers of the C atoms
would be placed after an ideal rolling-up operation entailing no energy expenditure for the
inevitable distortion of the C-C bonds; according to this definition,

ρ0 = ρ̂0(n,m) :=
√

3

2π
n
√

1 + m/n + (m/n)2 r0, (14)

where r0 is the length of the graphene C-C bond.
There are two types of achiral CNTs, namely, (n,0)-zigzag and (n,n)-armchair CNTs;

in Fig. 2, their chiral vectors are denoted by, respectively, hZ ≡ a1 (ψZ = 0 radians) and
hA (ψA = π/6 radians); their nominal radii are, respectively, ρZ

0 (n) = (
√

3/2π)nr0 and
ρA

0 (n) = (3/2π)nr0, so that

ρZ
0 (n) < ρ̂0(n,m) < ρA

0 (n), n > m > 0. (15)

Visualization of the rolling-up procedure is especially easy in the case of achiral CNTs;
the double inequality (15) gives us some confidence that qualitative predictions about the
natural geometry of (n,m)-chiral CNTs could be made on the basis of the corresponding
results for (n,0)-zigzag and (n,n)-armchair CNTs. In Sect. 5.4, we shall discuss how the
self-stress state of a set of chiral and achiral CNTs depend on curvature.

3.3 FGSs as Unzipped and Unrolled Achiral CNTs

The FGS depicted in the bottom part of Fig. 3 is thought of as obtained by unzipping and
unrolling, in imagination, the A- and a Z-CNT depicted on top, whose axes are parallel,
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Fig. 3 Achiral CNTs, ideally unzipped and unrolled

respectively, to the directions of axes 2 and 1, so as to have their chiral vectors hA and hZ

aligned with directions 1 and 2. Our considerations to follow hinge on well-known intrinsic
symmetries of FGSs and achiral CNTs. The FGSs we consider consist of n1 hexagonal cells
in direction 1 and of n2 hexagonal cells in direction 2; for (n,n)-CNTs, we set n1 = 2n, and
assume that n2 >> n1; for (n,0)-CNTs, we set n2 = n and n1 � n2.

On looking at the representative cell A1B1A2B3A3B2A1, we see that the sides A1B1 and
A3B3 are aligned with hA; we denote their common length by a, and call them a-type bonds;
we also see that the other four sides have equal length b (b-type bonds; see the cell located
at the upper left corner of the strip). As to bond angles, they can be of α-type and β-type
(e.g., respectively, ̂A3B2A1 and ̂B2A1B1; see the upper left cell again). There are only five
types of dihedral angles (Θ1, . . . ,Θ5), which can be individuated with the help of the col-
ored bond chains. In conclusion, the information carried by the 9-entry order-parameter
substring

ξ sub := (a, b,α,β,Θ1, . . . ,Θ5) (16)

is enough to determine the deformed configuration of a representative hexagonal cell, no
matter if that cell belongs to a FGS or to an achiral CNT.

Case-specific order-parameter strings might be obtained by exhaustive sequential juxta-
position, without information redundancies, of appropriately chosen substrings. However,
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Fig. 4 The deformed cell of an
A-CNT (chiral vector hA parallel
to axis 1)

as discussed later in Sect. 4, the total binding energy of a CNT in a natural equilibrium
configuration can be found by no-redundancy summation over diatomic bonds of their in-
dividual contributions, each of which depends also on the presence of certain related bond
and dihedral angles. In anticipation, we record here which and how many of these angle
variables are related to the one and the other type of diatomic bonds according to the 2nd-
generation REBO potential we are going to use: each a-type bond is related to four β-type
bond angles and two dihedral angles (in the case of A1B1, the bond angles in question are
̂B2A1B1, ̂B ′

2A1B1, ̂A1B1A2, and ̂A1B1A
′
2; the dihedral angles are Θ1 and Θ5); each b-type

bond is related to two α-type and two β-type bond angles, and to three dihedral angles (in

the case of B2A1, the α-type bond angles are ̂A3B2A1 and ̂B2A1B
′
2; the β-type bond angles

are ̂A′′
2B2A1 and ̂B2A1B1; and the dihedral angles are Θ2, Θ3, and Θ4).

3.4 Order-Parameter Substrings

3.4.1 A-CNTs

With reference to Fig. 4, let ϕA be the angle between the plane of A1B1B3 and the plane of
B1A2B3. Since 2π = 2n1ϕ

A, we have that

ϕA = π

n1
. (17)

For geometric compatibility, the bond angles α and β must satisfy the following condition:

cosβ = − cos
α

2
cosϕA, (18)

whence

βA = ˜βA
(

α,ϕA
) := arccos

(

− cos
α

2
cosϕA

)

. (19)

Moreover, the dihedral angles can be expressed in terms of α and β with the use of the
following relations:

sinβ sin
Θ1

2
= cos

α

2
sinϕ, sinβ sinΘ2 = sinϕ, Θ3 = 2Θ2, Θ4 = Θ5 = 0,

(20)
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Fig. 5 The deformed cell of a
Z-CNT (chiral vector hZ parallel
to axis 2)

whence expressions for ΘA
1 = ˜ΘA

1 (α,ϕA) and ΘA
2 = ˜ΘA

2 (α,ϕA) follow, that we here safely
omit (see Appendix A.1 for details). In conclusion, for an A-CNT of whatever length, the
substring (16) has the form:

ξA
sub = (

a, b,α, ˜βA
(

α,ϕA
)

, ˜ΘA
1

(

α,ϕA
)

, ˜ΘA
2

(

α,ϕA
)

,2˜ΘA
2

(

α,ϕA
)

,0,0
); (21)

only three out of nine kinematic variables—the bond lengths a, b and the bond angle α—
and n1, one of the two size variables, determine the exact configuration.

3.4.2 Z-CNTs

Consider now Fig. 5, and proceed in parallel to the previous subsection. Then, the angle ϕZ

between the planes of A1B1A2 and A2B3A3 is:

ϕZ = π

n2
; (22)

the geometric compatibility condition for bond angles is:

sinβ cos
ϕZ

2
= sin

α

2
, (23)

whence

βZ = ˜βZ
(

α,ϕZ
) := π − arcsin

(

sin α
2

cos ϕZ

2

)

; (24)

and, finally,

Θ1 = ϕ, sinα sinΘ2 = sinβ sinϕ, Θ3 = 0, Θ4 = 2Θ2, Θ5 = 0, (25)

whence the form of function ΘZ
2 = ˜ΘZ

2 (α,ϕZ). In conclusion, for a Z-CNT of whatever
length, the substring (16) has the form:

ξZ
sub = (

a, b,α, ˜βZ
(

α,ϕZ
)

, ϕZ, ˜ΘZ
2

(

α,ϕZ
)

,0,2˜ΘZ
2

(

α,ϕZ
)

,0
); (26)

once again, only three kinematic variables and one size variables count to determine the
exact configuration, namely, a, b,α and n2.
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Fig. 6 Local geometry of an
A-CNT

3.5 Radii and Lengths

We now show how exact radius and length of an achiral CNT can be computed in terms
of the relative (n1, n2) pair and the bond-related kinematic variables in the substrings (21)
and (26).

3.5.1 A-CNTs

It is not difficult to see, with the help of Fig. 6, that the following geometric compatibility
relation holds:

ρa sinϕA = b

2
cos

α

2
+ a

2
cosϕA, (27)

where ρa is the distance of the CNT’s axis from an a-type bond. On the other hand,

ρA =
√

ρ2
a + a2

4
, (28)

where ρA denotes the cylinder’s exact radius; consequently, ρA too depends only on the
kinematic parameters a, b,α and on the size parameter n1, by way of ϕA. Figure 6 is also
expedient to see that the exact length of an A-CNT depends as follows from the parameters
b,α, and n2:

λA = 2 sin
α

2
n2b. (29)

Formulae (27)-(28) and (29) give the exact dimensions of an A-CNT in terms of the equi-
librium bond lengths a, b and bond angle α and of its size parameters n1, n2.

The exact length given by (29) differs from the nominal length, which is:

λA
0 = √

3n2r0; (30)
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we have that

λA
0 /λA = sinπ/3

sinα/2
r0/b.

The exact radius must be compared with the nominal radius:

ρA
0 = 3

4π
n1r0 (31)

(cf. the relevant developments in Sect. 3.2); we expect the former to be slightly larger, an
intuitive prediction that our numerical computations generally confirm. The difference be-
tween ρA and ρA

0 becomes negligible for large size indices (e.g., this difference is less than
1 % for a (6,6)-CNT, for which ρA � 0.4 nm). For large diameters (that is, when ϕA is
small because n1 is large, due to (17)), we have that:

ρA � 1 + b/a cosα/2

2π
n1a; (32)

accordingly,

ρA
0 /ρA � 3

2(1 + b/a cosα/2)
r0/a. (33)

3.5.2 Z-CNTs

With the help of Fig. 7, it is not difficult to see that the exact radius of a Z-CNT is:

ρZ = sinβ

2 sinϕZ/2
b, (34)

while the nominal radius is

ρZ
0 =

√
3

2π
n1r0. (35)

As before, the difference between ρZ and ρZ
0 is negligible when the size index n is large

(e.g., this difference is less than 1 % for a (12,0)-CNT, for which ρZ � 0.5 nm).
As to the exact length, Fig. 7 helps to realize that

λZ = (1 − b/a cosβ)n1a, (36)

to be compared with the nominal length:

λZ
0 = 3

2
n1r0. (37)

4 The Self-stress State of CNTs

In this section, the bulk of our paper, we first determine the balance and constitutive equa-
tions to be solved for the self-stress state in an achiral CNT, under the assumption that the
interactions of C atoms are governed by a REBO interatomic potential (Sect. 4.1). To do
the same under the same assumption for chiral CNTs would be exceedingly complicated
and, at bottom, of modest importance, given that a numerical minimization of the relative
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Fig. 7 Local geometry of a
Z-CNT

potential (Sect. 5.4) yields, in addition to the equilibrium binding energy, the equilibrium
order-parameter string and hence the corresponding self-stress state, with the use the consti-
tutive equations we derive in Sect. 4.2.

Whatever the chirality, we ignore non-bonded interactions, whose contribution to the
self-stress state would be presumably of a lower order of magnitude.4

4.1 Achiral Case

The main outcome of Sect. 3.4 is that both order-parameter substrings (21) and (26) depend
solely on the three independent Lagrangian coordinates a, b, and α, and that, moreover, their
last entry Θ5 is null. Our first goal in this section is to specify what mapping

(a, b,α) = q 	→ V = ̂V (q)

of the type introduced in Sect. 2 is to be made stationary to find natural equilibria.
We begin by counting, type by type, the number of bond lengths, bond angles, and dihe-

dral angles, that take equal values in a natural equilibrium configuration of an achiral CNT
with a (n1, n2) parent strip as in Fig. 3. We find, respectively,

na = n1n2, nb = nα = 2n1n2, nβ = 4n1n2,

nΘ1 = 2na, nΘ2 = 2nb, nΘ3 = nΘ4 = nb.
(38)

Now, as anticipated at the end of Sect. 3, the total potential of an achiral CNT in equilibrium
can be written in terms of a no-redundancy sum over diatomic bonds; according to the 2nd-
generation REBO potential we use (see Appendix B), a specific set of bond and dihedral

4Non-bonded interactions are usually accounted for by including of a Lennard-Jones term in the interatomic
potential [47]. Given that the L-J potential is spherical, and that by symmetry all atoms in a CNT are equiv-
alent, the corresponding non-bonded self-stress would be the same as that produced by a small radial force
applied on each atom.
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angles is associated to each of the two types of diatomic bonds we distinguished. In view of
this state of affairs, we write the total potential V as follows:

V = naVa + nbVb = n1n2(Va + 2Vb), (39)

where

Va(a,β,Θ1) = VR(a) + ba(β,Θ1)VA(a),

Vb(b,α,β,Θ2,Θ3,Θ4) = VR(b) + bb(α,β,Θ2,Θ3,Θ4)VA(b).
(40)

The forms of the attraction and repulsion functions VA and VR and of the bond-order func-
tions ba and bb are found in Appendix B.2, Eq. (68); here, it is sufficient to know that they
all are as smooth as needed to justify our further developments, and to warn the reader that
the entries (β,Θ1) of ba and (β,Θ2,Θ3,Θ4) of bb must be thought of as depending either
on α and ϕA as specified by (19) and (20) or on α and ϕZ as specified by (24) and (25). With
slight abuse of the notation introduced in Sect. 2, we set

V = ˜V (ξ) := naVa(a,β,Θ1) + nbVb(b,α,β,Θ2,Θ3,Θ4),

ξ := (a, b,α,β,Θ1,Θ2,Θ3,Θ4).
(41)

We are now in a position to write the stationarity condition of the potential ̂V . We do it
in a form involving the stress mapping χ̃ :

δV = χ · δξ = 0,

χ = χ̃(ξ) := ∂ξ
˜V ,

(cf. (3)). Proceeding as in Sect. 2, this stationarity condition can be re-written equivalently
in a form involving also the equilibrium operator A = (∂qξ)T :

Aχ = 0 (42)

(cf. (4)). Now, the matrix form of A is:

[A] =
⎡

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 β,α Θ1,α Θ2,α Θ3,α Θ4,α

⎤

⎦ ; (43)

a stress-mapping string χ consists of the following entries:

[χ ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

naσa

nbσb

nατα

nβτβ

nΘ1T1

nΘ2T2

nΘ3T3

nΘ4T4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (44)

With the use of (38), the equilibrium equation (42) becomes:
{

σa = 0, σb = 0,

τα + 2β,α τβ + Θ1,α T1 + 2Θ2,α T2 + Θ3,α T3 + Θ4,α T4 = 0.
(45)
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As a glance to (43) reveals, the nullspace of A is five-dimensional; this means that an achi-
ral CNT can sustain five independent self-stress states, one work-conjugated to bond-angle
changes, the other four with dihedral-angle changes, and all of them having σa = σb = 0.

We term all of σa, σb, τα, τβ , and Ti , nanostresses, work-conjugate to changes of, respec-
tively, bond lengths, bond angles, and dihedral angles. Here is how individual nanostresses
depend on order-parameter strings:

σa = V ′
R(a) + ba(β,Θ1)V

′
A(a), σb = V ′

R(b) + bb(α,β,Θ2,Θ3,Θ4)V
′
A(b),

τα = bb,α (α,β,Θ2,Θ3,Θ4)VA(b),

τβ = 1

4

(

ba,β (β,Θ1)VA(a) + 2bb,β (α,β,Θ2,Θ3,Θ4)VA(b)
)

,

T1 = 1

2
ba,Θ1 (β,Θ1)VA(a), T2 = 1

2
bb,Θ2 (α,β,Θ2,Θ3,Θ4)VA(b),

T3 = bb,Θ3 (α,β,Θ2,Θ3,Θ4)VA(b), T4 = bb,Θ4 (α,β,Θ2,Θ3,Θ4)VA(b).

(46)

Remarkably, both the balance equations (45) and the constitutive equations (46) are valid
whatever REBO potential one chooses, no matter whether it is Tersoff’s or Brenner’s (of
first or second generation), or others.

It is important to realize that the solution of the nonlinear system (45)–(46) depend in
general not only on the type of the achiral CNT under attention but also on its size, because
functions ˜β and ˜Θi do (cf. (21) and (26)). Here is how the third of (45) depends on which
of the two achiral CNTs is dealt with:

τA
α + 2βA,α τA

β + ΘA
1 ,α T A

1 + 2ΘA
2 ,α T A

2 + ΘA
3 ,α T A

3 = 0,

τZ
α + 2βZ,α τZ

β + 2ΘZ
2 ,α T Z

2 + ΘZ
4 ,α T Z

4 = 0;
(47)

the expressions of the derivatives βN,α and ΘN
i ,α (where N = A or Z and i = 1, . . . ,4), are

found in Appendix A, Eqs. (55) and (58). We believe that, for each type and whatever the
size, there is only one natural solution qN

0 = (aN
0 , bN

0 , αN
0 ); our belief is substantiated by the

outcome of the numerical procedure we use to determine qN :

STEP 1: Compute the nominal set qN
0 (n) of an achiral CNT of very large size index n,

whose nominal and natural diameters almost coincide no matter how computed (by means
of DFT or TB techniques, say).

STEP 2: Solve numerically system (45) for qN(n), with qN
0 (n) as initial guess.

STEP 3: With qN(n) as initial guess, solve system (45) for a CNT of the same type and
smaller radius.

Step 3 is to be iterated as many times as desired and possible (we have decreased the size
index until n = 3 in the A case, until n = 5 in the Z case).5

Needless to say, given qN , the natural radius and length are computable with the formulae
derived in Sect. 3.5, the self-stress state with the use of (44) and (46).

Remark 1 The three types of nanostresses we consider, σ , τ and T , are—we repeat—work-
conjugate to changes in, respectively, bond lengths, bond angles, and dihedral angles. Were

5The numerical routine we employ is the one available in the software MATLAB (routine fsolve). This routine
is a realization of the so-called Trust-Region Method, according to which at each step an approximation of
the objective function (namely, the sum of squares of the residues) is minimized over a region whose size is
adjusted to improve convergence speed.
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Fig. 8 The bond unit of a chiral
CNT

CNTs be visualized as discrete mechanical structures consisting of pin-jointed sticks, those
nanostresses would be associated with the response to structural deformations of a set of ax-
ial, rotational, and dihedral springs. An order-parameter substring, together with the collec-
tion of nanostresses associated to it by the stress mapping, yields the information necessary
to evaluate the energy density per lattice cell, opening the way to the use of homogenization
techniques [10–12]. In this connection, it is worth mentioning that in [10, 33] a couple-stress
continuum is regarded to be the homogenized version of discrete mechanical structures of
the above type, in the absence of dihedral springs. It remains to be seen, were dihedral
springs included, what higher-gradient elasticity model would turn out to be the appropriate
continuum limit.

4.2 Chiral Case

To see why the chiral case is much more complicated to deal with than the achiral case, it
is expedient to begin by contrasting the respective order-parameter substrings. In the former
case, we have:

ξ c
sub = (r1, r2, r3, θ1, θ2, θ3,Θ11,Θ12,Θ13,Θ21,Θ22,Θ23,Θ31,Θ32,Θ33), (48)

where ri , θi are the typical bond lengths and bond angles, respectively, and Θij is the j -th
dihedral angle associated to the i-th bond (see Fig. 8; for each type of bond, there are three
types of dihedral angles, because, by symmetry, two of the four dihedral angles associated
to a bond are equivalent to each other). In the achiral case, there are only two distinct bond
lengths a, b and bond angles α,β , and only four nonnull dihedral angles Θ1, . . . ,Θ4:

ξ ac
sub = (a, b,α,β,Θ1, . . . ,Θ4) (49)

(cf. (16) and the second of (41); recall that the fifth dihedral angle is always null).
For the interatomic potential of a chiral bond unit we take:

V = ˜V c
(

ξ c
) :=

3
∑

i=1

˜V c
i

(

ξ c
)

, ˜V c
i = VR(ri) + bi(θi+1, θi+2,Θi1,Θi2,Θi3)VA(ri) (50)

where functions VA, VR , and bi , are defined in Appendix B.2 (here and henceforth subscripts
are to be chosen modulo 3). The associated constitutive equations are:

σi = V ′
R(ri) + biV

′
A(ri),

τi = 1

2

(

(bi+1),θi VA(ri+1) + (bi+2),θi VA(ri+2)
)

,

Ti1 = 1

2
bi,Θi1 VA(ri), Tij = bi,Θij VA(ri), j = 2,3.

(51)
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Fig. 9 Specific difference between natural and nominal radii vs. natural curvature (left). Specific difference
between natural and nominal lengths vs. natural curvature (right)

The mere fact that there are fifteen entries in (48) makes the writing of stationarity condi-
tions cumbersome and, at bottom, inessential: a direct minimization of the total interatomic
potential yields the equilibrium values of the kinematic variables, with which, on making
use of the appropriate constitutive equations, the equilibrium nanostresses, and hence the
equilibrium self-stress state, can be evaluated; this we do in Sect. 5.4. However, a station-
arity condition for the interatomic potential is particularly easy to find, the one obtained by
considering variations describing homothetic expansions of bond units, that is to say, vari-
ations such that all bond lengths ri are equally rescaled, while all bond and dihedral angles
are left unchanged. One finds:

3
∑

i=1

σiri = 0, (52)

with σi (i = 1,2,3) the bond-length nanostresses. Equation (52) implies that the σi ’s cannot
all have the same sign; they may be different from zero, though, at variance with the achiral
case, in which independent variations of the bond lengths a, b are geometrically compati-
ble.

5 Results

In this section we collect our results and compare them with those in the literature. In all of
Figs. 9–16 the abscissa is the natural curvature, that is, the inverse of natural radius; the data
we use to draw the plots are collected in Appendix D, alongside with a selection of similar
data taken from the literature. The first three subsections are dedicated to achiral CNTs and
FGSs, the fourth and last to chiral CNTs.

5.1 Natural vs. Nominal Geometry

The percentage of the specific difference between natural radius ρ and nominal radius ρ0

is plotted in Fig. 9 (left) as a function of the natural curvature 1/ρ. We see that the smaller
the radius, the larger the difference, a result of ours that confirms all previous calculations
[4, 5, 14, 26–28, 30, 37, 41]; the natural radii we and others computed for a few small
achiral CNTs are listed in Table 1. We also see from Fig. 9 (right) that the specific difference
between natural and nominal lengths is always positive for A-CNTs, while for Z-CNTs it is
negative for small radii, again positive and close to zero for large radii.
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Table 1 Natural radii (nm) of small CNTs

(n,m) Present
work
(2nd-g.
Brenner)

Machón et
al. [37]
(DFT)

Cabria et
al. [5]
(DFT)

Popov [41]
(TB)

Budyka
et al. [4]
(DFT)

Jiang
et al. [26]
(1st-g.
Brenner)

Jindal and
Imtani [27]
(Tersoff)

(3,3) 0.211 0.210 0.212 0.212 – – 0.211

(4,4) 0.277 – – – 0.277 0.280 –

(5,0) 0.208 0.204 0.206 0.205 – 0.208 –

Fig. 10 Bond-length specific differences vs. curvature, for A-CNTs (left) and Z-CNTs (right)

In a FGS, the length of a C–C bond, when computed via the interatomic potential we use
in this study, is r0 = 0.14204 nm (needless to say, bond angles measure 120◦, and dihedral
angles are null). For single-walled CNTs, natural bond lengths differ from their nominal
length r0, more and more when radii decrease. Figure 10 shows the percentage of the specific
difference between natural and nominal lengths of type a and type b bonds as a function of
natural curvature, for A- and Z-CNTs. The results for A-CNTs are consistent with those in
[30]; however, for Z-CNTs, DFT calculations shows that a-type bonds are shorter than r0

[28, 30].
The natural bond angles α and β we calculated are plotted in Fig. 11 (top); we see that

they are smaller than 120◦, except for α in the A case, which takes slightly higher values
at curvatures smaller than 3 nm−1. We also see that α decreases more in the Z case, and
that β decreases more in the A case, as expected on the basis of the RUM model. Figure 11
(bottom) shows how the natural dihedral angles Θi , i = 1, . . . ,4 behave when the natural
curvature varies; note that, as required by, respectively, (20)3 and (25)4, Θ3 = 2Θ2 in the
A-case and Θ4 = 2Θ2 in the Z-case.

Detailed information about all hexagonal-lattice parameters is collected in Appendix D,
Tables 2 and 3. By comparison with the results reported in [26], where a 1st-generation
REBO potential was used [2] (see Table 4 in Appendix D), we see that the CNTs’ radii are
always larger than those we computed, partly due to the fact that the potential employed in
[26] yields r̃0 = 0.14507 nm for the natural bond length in graphene; anyway, in [26] bond
lengths are always larger than r̃0, a result qualitatively identical to ours. Notice that in [27],
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Fig. 11 (Top) Bond angles α and β vs. curvature, in A-CNTs (left) and Z-CNTs (right). (Bottom) Dihedral
angles Θ1, Θ2, Θ3 vs. curvature, in A-CNTs (left); dihedral angles Θ1, Θ2, Θ4 vs. curvature, in Z-CNTs
(right)

where Tersoff potential [48] is employed for studying A-CNTs, b-type bonds are shorter
than r̃0, a result which disagrees with the DFT calculations in [30].

5.2 The Self-stress State of Achiral CNTs and FGSs

Once the natural geometry has been determined, the self-stress can be evaluated with the
use of (5). Figure 12 shows how bond-angle self-stresses τα and τβ (top) and dihedral self-
stresses Ti (bottom) depend on the natural curvature of achiral CNTs (see Table 5, Appendix
D, for the relative numerical information). On setting a = b = r0, α = β = 2π/3, and Θi = 0
(i = 1, . . . ,4) in relations (46)—and this defines the process of taking the infinite-radius
limit defining a FGS—we see that, while the dihedral self-stress is null, the bond-angle self-
stress takes the value τg = −0.2209 nN nm: hence, FGSs too are stressed in their natural
state.

To provide evidence that the self-stress state of FGSs is far from being negligible, we
made use of the developments in Appendix C and showed that a traction load in the di-
rection of hZ (hA) of 30 nN/nm—some 3/4 of the failure load, according to [31]—induces
variations of τα and τβ that are equal, respectively, to −77 % and +18 % (+53 % and
−49 %) of τg , their identical value prior to load application. It is worth noticing that a use
of 1st-generation potentials [2, 48, 49] would lead to overestimating τg , in spite of the fact
that those potentials were calibrated with reference to a collection of physical and chemical
properties quite similar to that used for the 2nd-generation Brenner potential we adopted:
according to our computations, the value of τg is −0.3253 nN × nm for the Tersoff poten-
tial [48, 49], and −0.2554 nN nm for the 1st-generation Brenner potential [2]. Needless to
say, a re-parametrization of these 1st-generation potential intended to achieve a fair predic-
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Fig. 12 (Top) Bond-angle self-stresses τα and τβ vs. curvature in A-CNTs (left) and Z-CNTs (right). (Bot-
tom) Dihedral-angle self-stresses T1, T2, T3 vs. curvature in A-CNTs (left); dihedral-angle self-stresses T1,
T2, T4 vs. curvature in Z-CNTs (right)

tion of the self-stress state is likely to offset the predictions of other kinds of mechanical
properties.

Remark 2 In [54], graphene’s bending stiffness is presumed to be related to a bond-angle
nanostress, and it is argued that, if such a nanostress were actually present, then the
bending stiffness would be equal to τg/2, that is, the value the bending stiffness should
have in the absence of a dihedral contribution, according to the computations reported in
[35].

5.3 Roll-up Energy

We call roll-up energy the difference in energy per atom of a CNT and its parent FGS, in
their respective natural configurations; the energy of the latter is equal to −7.3951 eV/atom,
when estimated by a 2nd-generation Brenner potential.

Our findings about roll-up energy are plotted in Fig. 13 (left), as functions of the natural
curvature squared, for A-CNTs whose size index ranges from 3 to 25 and for Z-CNTs whose
size index ranging from 5 to 30 (the corresponding radii fall in the (0.208,1.696) nm inter-
val). Our choice of abscissa is motivated by the fact that the roll-up energy is often evaluated
by a formula, 1

2Dρ−2, which imitates the formula for a bent linearly elastic thin plate, and
consistently called folding energy; the value of the stiffness constant D, which depends on
the material and the third power of the thickness in the case a thin plate, is taken equal to
0.03675 eV nm2/atom [35]. Of course, as some DFT and TB calculations confirm [24, 28,
30, 34, 44, 45], the above ‘thin-plate formula’ is less and less reliable as a CNT’s curvature
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Fig. 13 (Left) Roll-up energy vs. natural curvature squared (the dashed line is drawn on taking
D = 0.03675 eV nm2/atom in the ‘thin-plate formula’ 1

2 Dρ−2). (Right) Percentage difference of roll-up
and ‘thin-plate’ energies vs. natural curvature

grows big; for us, at variance with what is reported in [30], that formula always provides an
estimate from above of the roll-up energy (see Fig. 13 (right)).6

The dihedral contribution to the roll-up energy is depicted vs. natural curvature in Fig.
14. We see that this contribution decreases when curvature increases, a fact indicating that
changes in bond angles have a prevailing role for small radii: the lower the curvature the
smaller (larger) the bond-angle (dihedral-angle) roll-up energy. For large diameters, our
numerical results are in complete agreement with those of [35]. The numerical information
we used to construct Figs. 13 and 14 is collected in Table 6, Appendix D.

To better appreciate the relevance of self-stress in CNT mechanics, we have computed
what axial traction uniformly applied along the rim would induce in a CNT an additional
energy storage equal to its roll-up energy; this we did by exploiting again the solution of
the axial traction problem formulated and solved in Appendix C. Our results are plotted in
Fig. 15; we see that f , the axial traction to be applied to each rim atom in order to have
an energy increment equal to the roll-up energy, is a monotonically increasing function of
natural curvature (e.g., it is 2.05 nN/atom for a (12,12)-CNT and it goes up to 5.86 nN/atom
for a (3,3)-CNT; for more information, see Table 7 in Appendix D). For F the total traction
applied to the rim, F/2πρ, the load per unit length, should be compared with the ultimate
tensile load of single-wall CNTs. Due to their small size, testing individual CNTs is very
difficult. Nevertheless, according to [13, 15, 50], their ultimate tensile load is of the same
order of magnitude as graphene’s, that is, about �40 nN/nm (see the last column of Table 7,
where it is shown that, for achiral CNTs whose radius ranges from 0.20778 nm to 1.17601

6Although CNTs are never manufactured by rolling FGSs up, this ideal procedure is sometimes evoked

to justify the dependence of the folding energy on ρ−2 and, more generally, to motivate the building of
continuum theories for CNTs and FGs. In [36], a non-linear continuum model for graphene is proposed; the
bending of an FGS into a cylindrical CNT of given radius is regarded as the outcome of a geometrically
defined process and not of an energy minimization; the final rolled-up configuration is assumed to be stressed
(although, in principle, energy minimization might have produced an unstressed configuration) and serves as
a reference for further mechanical deformations, this time regarded as minimizers of a total energy functional
to be found under the constraint that the CNT’s radius stays fixed. In the same spirit, a finite-element model
for CNTs was developed in [40], where the self-stress state is computed by means of the classical linear shell

theory, on the assumption that the energy stored per unit area because of the roll-up procedure is Et3

24ρ2(1−ν2)
,

with E the Young modulus, ν the Poisson ratio and t the wall thickness. If not for other reasons, adopting
model equations from the linear theory of thin elastic structures where an evaluation of an elusive quantity
like structure thickness is essential seems to us questionable (see [1] and [25] for a discussion about the notion
of thickness in continuum models for CNTs).



Geometry and Self-stress of Single-Wall Carbon Nanotubes and Graphene 23

Fig. 14 Dihedral contribution to
the roll-up energy vs. natural
curvature

Fig. 15 Axial force to be
applied to each rim atom to have
an energy increment equal to the
roll-up energy vs. curvature

nm, the load inducing the same energy as the roll-up energy approximately ranges from
66 % to 11 % of the ultimate load).

5.4 The Self-stress State of Chiral CNTs

We carried out a numerical minimization of the potential (50), with the chiral order-
parameter string ̂ξ

c
(q) expressed in terms of the same Lagrangian coordinates as in [41].

As expected, we found that the self-energy of a chiral CNT depends on its size more or
less like it does in the achiral case, with approximately the same roll-up energy difference
with respect to the thin-plate model, and approximately the same dihedral contribution to
the roll-up energy (cf. Tables 8 and 9 in Appendix D).

The main qualitative difference between chiral and achiral CNTs regards the bond-
length nanostresses, which cannot be all null in the chiral case (recall the developments
in Sect. 4.2). However, as shown in Fig. 16 (top right), these nanostresses are rather small,
in the range [−0.6,0.6] nN. For a comparison, to obtain a value of 0.6 nN of the bond-
length stress in graphene, a uniform traction load of 3.23 nN/nm (2.44 nN/nm), that is,
less than 1/10 of the failure load, should be applied along the direction hZ (hA). As to the
bond-angle and dihedral-angle nanostresses, their values are in the same range as in the
achiral case (cf. Fig. 16 (bottom) with Fig. 12) (for further information, see Table 8 in Ap-
pendix D).

6 Conclusions

We have proposed a geometrically and physically nonlinear discrete mechanical model of
single-wall carbon nanotubes, both achiral and chiral, and flat graphene strips. We have
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Fig. 16 Nanostresses vs. natural curvature in chiral CNTs: bond-length nanostress (top), bond-angle nanos-
tress (bottom left), and maximum dihedral-angle nanostress (bottom right); the blue and red lines in the
bottom right figure represent the envelop of maximum dihedral nanostresses in achiral CNTs

shown that all these carbon allotropes are stressed in their equilibrium configurations prior
to the application of external loads. We have termed such configurations natural, the relative
stress distributions self-stress states, and the relative stored energy self-energy. We have
shown that self-stresses and self-energies are by no means negligible with respect to load-
related energies. Two other types of energies we have computed and compared with self-
energy are: the folding energy, that is, the fictitious self-energy assigned to a CNT by the
use of a formula borrowed from the cylindrical bending of thin elastic plates; and the roll-
up energy, that is, the difference in energy per atom of a CNT and its parent FGS, in their
respective natural configurations.

Atomic interactions have been specified by a suitable form of the 2nd-generation Bren-
ner potential, in terms of convenient order-parameter strings consisting of bond lengths,
bond angles, and dihedral angles. Governing equations have been written in terms of nanos-
tresses, i.e., force-like objects in one-to-one correspondence with the kinematic descriptors
just listed: precisely, a nanostress state is nothing but a string of equilibrium nanostresses
work-conjugated to (i) changes in length of atomic bonds; (ii) changes in angle between two
adjacent bonds; (iii) changes in dihedral angles (in particular, a self-stress state is a string of
equilibrium nanostresses, evaluated according to (5)). Nonlinear constitutive equations for
individual nanostresses in terms of these changes have been written. Equilibrium solutions
for armchair and zigzag CNTs whose radii ranged from very large to very small have been
obtained numerically, with minimal computational effort, by the use of slightly adjusted but
otherwise standard computational tools; moreover, a body of qualitative and quantitative re-
sults have been presented in terms of self-energy and self-stresses for a number of chiral
CNTs.
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In our opinion, our major achievement consists in characterizing the natural equilibria
of CNTs and FGSs and, in particular, in identifying and evaluating quantitatively the var-
ious individual sources of self-stress states in such carbon allotropes. We surmise that our
predictions may serve well as benchmarks for whatever MD code implementing REBO po-
tentials.
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Appendix A: Details about the Computation of Dihedral Angles

A.1 Armchair CNTs

With reference to Fig. 4, and for c1, c2, c3 the basis vectors of the Cartesian frame there
shown, let us introduce the following unit vectors:

a := vers
−−→
HB2 = − cosϕAc1 + sinϕAc3,

a1 := vers
−−−→
H ′A2 = cosϕAc1 + sinϕAc3,

a2 := vers
−−−→
B2A

′′
2 = − cos 2ϕAc1 + sin 2ϕAc3,

b := vers
−−→
A1B1 = c1,

c := vers
−−→
A1B2 = cos

α

2
a + sin

α

2
c2,

d := vers
−−→
A1B

′
2 = cos

α

2
a − sin

α

2
c2,

d1 := vers
−−→
B1A

′
2 = cos

α

2
a1 − sin

α

2
c2.

(53)

In terms of these unit vectors, the cosines of the dihedral angles ΘA
1 ,ΘA

2 ,ΘA
3 read:

cosΘA
1 = b × c

|b × c| · d1 × b
|d1 × b| = 1

sin2 βA

(

sin2 α

2
− cos2 α

2
sin2 ϕA

)

,

cosΘA
2 = c × a2

|c × a2| · b × c
|b × c| = 1

sin2 βA

(

cos2 ϕA sin2 α

2
− sin2 ϕA

)

,

cosΘA
3 = c × a2

|c × a2| · d × c
|d × c| = − 1

sinβA
sin

α

2
cosϕA.

(54)
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Together with (18), these relations, which are equivalent to the first three of (20), permit to
compute the first derivatives of βA and ΘA

i (i = 1,2,3) with respect to α:

βA,α = − sin α
2 cosϕA

2 sinβA
,

ΘA
1 ,α = − sin α

2 sinϕA + 2βA,α cosβA sin
ΘA

1
2

sinβA cos
ΘA

1
2

,

ΘA
2 ,α = −βA,α cosβA sinΘA

2

sinβA cosΘA
2

,

ΘA
3 ,α = 2ΘA

2 ,α .

(55)

A.2 Zigzag CNTs

With reference to Fig. 5, we introduce the unit vectors

a := vers
−−→
A1H = cosϕZc2 + sinϕZc3,

a1 := vers
−−→
HA3 = cos 2ϕZc2 + sin 2ϕZc3,

b := vers
−−→
A1B

′
2 = − sinβZc2 + cosβZc1,

b1 := vers
−−→
B1A

′
2 = − sinβZc2 − cosβZc1,

d := vers
−−→
A1B2 = sinβZa + cosβZc1,

d1 := vers
−−→
B1A2 = sinβZa − cosβZc1,

d2 := vers
−−→
A2B3 = sinβZa1 + cosβZc1.

(56)

For the dihedral angles, we find:

cosΘZ
1 = d1 × c1

sinβZ
· c × b

sinβZ
= cosϕZ,

cosΘZ
2 = d1 × d2

sinα
· b1 × d1

sinα
= 1

sin2 α

(

sin2 α − 2 sin2 βZ sin2 ϕZ
)

,

cosΘZ
4 = d1 × d2

sinβZ
· c1 × d1

sinβZ
= (

1 + cosϕZ
)

cosβZ,

(57)

a set of relations equivalent to the first, second, and fourth, of (25). With these and (23), we
find:

βZ,α = cos α
2

2 cosβZ cos ϕZ

2

,

ΘZ
1,α = 0,

ΘZ
2 ,α = βZ,α cosβZ sinϕZ − cosα sinΘZ

2

sinα cosΘZ
2

,

ΘZ
4 ,α = 2ΘZ

2 ,α .

(58)
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Appendix B: 2nd-Generation REBO Potentials for Hexagonal Lattices

B.1 General Form

As anticipated in Sect. 2, the 2nd-generation REBO potentials developed for hydrocarbons
by Brenner et al. in [3] accommodate up third-nearest-neighbor interactions, through a bond-
order function depending also on dihedral angles. In general, given a substance or a group
of substances in the hydrocarbon family, the appropriate potential is tailored by fitting the
parameters to the available experimental data and ab initio calculations; the behavior of
electron clouds is not accounted for explicitly, and quantum effects are ignored. In spite of
these limitations, the predictions obtained with the use of REBO potentials, when compared
with those obtained by ab initio or TB methods, have been always found accurate quali-
tatively, and sometimes even quantitatively. In fact, REBO potentials do incorporate much
of the physics and chemistry involved in covalent bonding, as well as Coulomb interac-
tions and many-body effects; if necessary, they also can accommodate bond-breaking and
bond-formation.

The binding energy V of an atomic aggregate is written as a sum over nearest neighbors:

V =
∑

I

∑

J<I

VIJ; (59)

the interatomic potential VIJ is given by the construct

VIJ = VR(rIJ) + bIJVA(rIJ), (60)

where the individual effects of the repulsion and attraction functions VR(rIJ) and VA(rIJ),
which model pair-wise interactions of atoms I and J depending on their distance rIJ , are
modulated by the bond-order function bIJ . The repulsion and attraction functions have the
following forms:

VA(r) = −f C(r)

3
∑

n=1

Bne
−βnr ,

VR(p) = f C(r)

(

1 + Q

r

)

Ae−αr ,

(61)

where f C(r) is a cutoff function limiting the range of covalent interactions, and where Q,
A, Bn, α, and β , are parameters to be chosen fit to a material-specific dataset. The remaining
ingredient in (60) is the bond-order function:

bIJ = 1

2

(

bσ−π
IJ + bσ−π

JI

) + bπ
IJ, (62)

where apexes σ and π refer to two types of bonds: the strong covalent σ -bonds between
atoms in one and the same given plane, and the π -bonds responsible for interlayer interac-
tions, which are perpendicular to the plane of σ -bonds. We now describe functions bσ−π

IJ

and bπ
IJ .

The role of function bσ−π
IJ is to account for the local coordination of, and the bond angles

relative to, atoms I and J ; its form is:
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bσ−π
IJ =

(

1 +
∑

K �=I,J

f C
IK(rIK)G(cos θIJK)eλIJK + PIJ

(

NC
I ,NH

I

)

)−1/2

. (63)

Here, for each fixed pair of indices (I, J ), (a) the cutoff function f C
IK limits the interactions

of atom I to those with its nearest neighbors; (b) λIJK is a string of parameters designed
to prevent attraction in some specific situations; (c) function PIJ depends on NC

I and NH
I ,

the numbers of C and H atoms that are nearest neighbors of atom I ; it is meant to adjust
the bond-order function according to the environment of the C atoms in one or another
molecule; (d) for solid-state carbon, the values of both the string λIJK and the function
PIJ are taken null; (e) function G modulates the contribution of each nearest neighbor of
atom I in terms of the cosine of the angle between the IJ and IK bonds; its analytic form
is given by three sixth-order polynomial splines. Function bπ

IJ is given a split representa-
tion:

bπ
IJ = ΠRC

IJ + bDH
IJ , (64)

where the first addendum ΠRC
IJ depends on whether the bond between atoms I and J has a

radical character and on whether it is part of a conjugated system, while the second adden-
dum bDH

IJ depends on dihedral angles and has the following form:

bDH
IJ = TIJ

(

Nt
I ,N

t
J ,N

conj
IJ

)

(

∑

K(�=I,J )

∑

K(�=I,J )

(

1 − cos2 ΘIJKL

)

f C
IK(rIK)f C

JL(rJL)

)

, (65)

where function TIJ is a tricubic spline depending on Nt
I = NC

I + NH
I , Nt

J , and N
conj
IJ , a

function of local conjugation.

B.2 The Form Used in This Paper

We write here the expressions we use for the functions VA, VR and bIJ defined in (61) and
(62); we also record the form of their first derivatives, because they enter Eqs. (46) and
(51).

The attractive and repulsive part of the potential, and their first derivatives are:

VA(r) = −
3

∑

n=1

Bne
−βnr , V ′

A(r) =
3

∑

n=1

βnBne
−βnr ,

VR(r) =
(

1 + Q

r

)

Ae−αr , V ′
R(r) = −Q

r2
Ae−αr − α

(

1 + Q

r

)

Ae−αr .

(66)

The bond order function bIJ (62) specializes to ba and bb , respectively, for a- and b-type
bonds in achiral CNTs (cf. Eqs. (40)), and it specializes to bi for the typical bond in chiral
CNTs (cf. the second of (50)):

ba = (

1 + 2G(β)
)− 1

2 + 2T
(

1 − cos2 Θ1

)

,

bb = (

1 + G(α) + G(β)
)− 1

2 + T
(

2
(

1 − cos2 Θ2
) + (

1 − cos2 Θ3
) + (

1 − cos2 Θ4
))

,

bi = (

1 + G(θi+1) + G(θi+2)
)− 1

2 + T
(

2
(

1 − cos2 Θi1

) + (

1 − cos2 Θi2

) + (

1 − cos2 Θi3

))

.

(67)
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The following derivatives of bond-order functions are found in Eq. (46):

ba,β = −(

1 + 2G(β)
)− 3

2 G′(β), (68)

ba,Θ1 = 4T cosΘ1 sinΘ1, (69)

bb,α = −1

2

(

1 + G(α) + G(β)
)− 3

2 G′(α), (70)

bb,β = −1

2

(

1 + G(α) + G(β)
)− 3

2 G′(β), (71)

bb,Θ2 = 4T cosΘ2 sinΘ2, (72)

bb,Θ3 = 2T cosΘ3 sinΘ3, (73)

bb,Θ4 = 2T cosΘ4 sinΘ4.; (74)

the derivatives found in Eq. (51) are:

(bi+1),θi = −1

2

(

1 + G(θi) + G(θi+2)
)− 3

2 G′(θi), (75)

bi,Θi1 = 4T cosΘi1 sinΘi1, (76)

bi,Θij
= 2T cosΘij sinΘij , i = 1,2,3, j = 2,3 (77)

(subscripts should be taken modulo 3).
In Eq. (63), the angular-contribution function G is:

G(θ) =

⎧

⎪

⎨

⎪

⎩

G1(θ), 0 ≤ θ < 0.6082π

G2(θ), 0.6082π ≤ θ < 2π
3

G3(θ), 2π
3 ≤ θ ≤ π

, Gj (θ) =
5

∑

i=0

dji (cos θ)i, j = 1,2,3, (78)

whence

G′
j (θ) = − sin θ

(

5
∑

i=1

idji(cos θ)i−1

)

, j = 1,2,3. (79)

The polynomial coefficients dji are computed following [3]; they are reported in the follow-
ing table:

dji i

0 1 2 3 4 5

j 1 0.37545 1.40678 2.25438 2.03128 1.42971 0.50240

2 0.70728 5.67744 24.09702 57.59183 71.88287 36.27886

3 −0.64440 −6.20800 −20.05900 −30.22800 −21.72400 −5.99040
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The parameters of the binding energy V , the same as in [3, 47], are:

B1 = 12388.79197798 eV, β1 = 47.204523127 nm−1, Q = 0.03134602960833 nm,

B2 = 17.56740646509 eV, β2 = 14.332132499 nm−1, A = 10953.544162170 eV,

B3 = 30.71493208065 eV, β3 = 13.826912506 nm−1, α = 47.465390606595 nm−1,

T = −0.004048375.

Appendix C: The Traction Problem

We here derive the explicit form of the balance equations for the case when a pure-traction
load is applied to an achiral CNT. We made use of the solution to this problem in Sect. 5.2,
when we compared the folding energy of CNTs with the energy stored in such a traction
problem.

With reference to (6), for F be the magnitude of the axial traction, the load potential
takes the following form:

f ·̂d(q) = Fδ̂λ(a, b,α), (80)

where δ̂λ(a, b,α) is the load-induced change in length of the CNT under study. It follows
that the balance equations are:

σa = F
̂λ,a

n1n2
,

σb = F
̂λ,b

2n1n2
,

τα + 2β,α τβ + Θ1,α T1 + 2Θ2,α T2 + Θ3,α T3 + Θ4,α T4 = F
̂λ,α

2n1n2
.

(81)

The mappings (a, b,α) 	→̂λA(a, b,α) and (a, b,α) 	→̂λZ(a, b,α) are here defined with the
use of Eqs. (29) and (36)), respectively; hence, we have that:

⎡

⎣

̂λA,a (a, b,α)
̂λA,b (a, b,α)
̂λA,α (a, b,α)

⎤

⎦ =
⎡

⎣

0
2n2 sin α

2
n2b cos α

2

⎤

⎦ ,

⎡

⎣

̂λZ,a (a, b,α)
̂λZ,b (a, b,α)
̂λZ,α (a, b,α)

⎤

⎦ =
⎡

⎣

n1

−n1 cosβZ

bn1β
Z,α sinβZ

⎤

⎦ . (82)

Equations (81)–(82) can be so specialized as to hold in the case of a FGS subject to a
uniform traction load along the armchair or the zigzag direction: it is enough to take ϕ = 0
and, consequently, α + 2β = 2π , Θi = 0, i = 1, . . . ,4.

Appendix D: Computational Results

In this Appendix we collect a number of tables summarizing the results of our computa-
tions. Numerical values for the natural geometric parameters are shown in Tables 2 and 3.
Table 2 also shows: (i) the percent difference of bond lengths a and b with respect to
r0 = 0.14204 nm, the C–C distance in graphene computed according to the potential chosen
in this study; (ii) the percent differences between the natural and nominal values of the bond
angles α and β (α0 and β0 have been computed by substituting αA

0 = 2π/3 in (19), solving
for βA

0 (A case), and by substituting βZ
0 = 2π/3 in (23), solving for αZ

0 (Z case)).
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Table 3 Dihedral angles
(degrees). (n,m) Θ1 Θ2 Θ3 Θ4

(3,3) 32.93 33.85 67.70 0

(4,4) 25.09 25.60 51.20 0

(5,5) 20.24 20.57 41.13 0

(6,6) 16.96 17.18 34.37 0

(7,7) 14.60 14.75 29.51 0

(8,8) 12.82 12.93 25.85 0

(10,10) 10.30 10.36 20.72 0

(12,12) 8.60 8.64 17.28 0

(18,18) 5.76 5.77 11.53 0

(25,25) 4.15 4.15 8.31 0

(5,0) 36.00 34.92 0 69.84

(6,0) 30.00 29.26 0 58.52

(7,0) 25.71 25.17 0 50.33

(8,0) 22.50 22.08 0 44.16

(9,0) 20.00 19.67 0 39.33

(10,0) 18.00 17.73 0 35.46

(12,0) 15.00 14.82 0 29.64

(15,0) 12.00 11.89 0 23.78

(20,0) 9.00 8.95 0 17.89

(30,0) 6.00 5.98 0 11.96

Table 4 Geometry of CNTs
using a 1st-generation REBO
potential (from [26])

(n,m) ρ

(nm)

a

(nm)

b

(nm)

α

(degrees)
β

(degrees)

(4,4) 0.28036 0.14604 0.14548 120.45 117.31

(5,5) 0.34899 0.14568 0.14533 120.26 118.27

(6,6) 0.41782 0.14549 0.14525 120.17 118.80

(12,12) 0.83230 0.14517 0.14511 120.04 119.70

(18,18) 1.24750 0.14511 0.14509 120.02 119.87

(5,0) 0.20761 0.14542 0.14669 112.59 118.99

(7,0) 0.28552 0.14528 0.14586 116.28 119.40

(10,0) 0.40386 0.14518 0.14544 118.20 119.69

(20,0) 0.80180 0.14510 0.14516 119.55 119.92

(30,0) 1.20105 0.14508 0.14511 119.80 119.96
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Table 5 Nanostresses associated to bond and dihedral angles (nN nm).

(n,m) τα τβ T1 T2 T3 T4

(3,3) −0.2142 −0.2738 0.0119 0.0120 0.0091 0
(4,4) −0.2119 −0.2465 0.0103 0.0105 0.0131 0
(5,5) −0.2130 −0.2358 0.0089 0.0090 0.0136 0
(6,6) −0.2143 −0.2306 0.0077 0.0078 0.0129 0
(7,7) −0.2155 −0.2276 0.0068 0.0068 0.0119 0
(8,8) −0.2164 −0.2258 0.0060 0.0061 0.0109 0
(10,10) −0.2177 −0.2238 0.0049 0.0050 0.0093 0
(12,12) −0.2186 −0.2229 0.0042 0.0042 0.0080 0
(18,18) −0.2198 −0.2217 0.0028 0.0028 0.0055 0
(25,25) −0.2203 −0.2213 0.0020 0.0020 0.0040 0

(5,0) −0.3078 −0.2344 0.0127 0.0119 0 0.0082
(6,0) −0.2786 −0.2252 0.0118 0.0111 0 0.0116
(7,0) −0.2623 −0.2212 0.0108 0.0102 0 0.0131
(8,0) −0.2521 −0.2195 0.0098 0.0094 0 0.0135
(9,0) −0.2454 −0.2188 0.0090 0.0086 0 0.0133
(10,0) −0.2406 −0.2186 0.0082 0.0079 0 0.0129
(12,0) −0.2345 −0.2186 0.0070 0.0068 0 0.0119
(15,0) −0.2295 −0.2190 0.0057 0.0056 0 0.0103
(20,0) −0.2257 −0.2196 0.0044 0.0043 0 0.0082
(30,0) −0.2230 −0.2202 0.0029 0.0029 0 0.0057

Table 6 Natural curvature, roll-up energy, percent difference of roll-up and ‘thin-plate’ energy, dihedral
contribution to the roll-up energy

(n,m) Natural curvature
1/ρ (nm−1)

Roll-up energy
(eV/atom)

Difference from 1
2

D

ρ2

behavior (%)

Dihedral contribution
to the energy (%)

(3,3) 4.7381 0.3814 −7.5 37.7
(4,4) 3.6154 0.2256 −6.1 43.2
(5,5) 2.9150 0.1489 −4.7 45.9
(6,6) 2.4389 0.1054 −3.6 47.3
(7,7) 2.0953 0.0784 −2.8 48.2
(8,8) 1.8359 0.0605 −2.3 48.8
(10,10) 1.4710 0.0391 −1.6 49.5
(12,12) 1.2268 0.0273 −1.1 49.9
(18,18) 0.8186 0.0122 −0.5 50.4
(25,25) 0.5896 0.0064 −0.3 50.6

(5,0) 4.8160 0.4193 −1.6 35.9
(6,0) 4.0887 0.2982 −2.9 40.1
(7,0) 3.5445 0.2235 −3.2 42.7
(8,0) 3.1243 0.1739 −3.1 44.5
(9,0) 2.7910 0.1391 −2.8 45.7
(10,0) 2.5207 0.1137 −2.6 46.6
(12,0) 2.1099 0.0800 −2.1 47.8
(15,0) 1.6938 0.0519 −1.6 48.8
(20,0) 1.2735 0.0295 −1.1 49.6
(30,0) 0.8504 0.0132 −0.5 50.3
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Table 7 f is the axial traction to be applied to each rim atom in order to have an energy increment equal
to the roll-up energy; F is the total axial traction; F/2πρ, the axial traction per unit rim length, should be
compared with the ultimate load reported in the literature [13]

(n,m) CNT self-energy
(eV/atom)

Roll-up energy
(eV/atom)

f

(nN/atom)

F

(nN)

F/2πρ

(nN/nm)

(3,3) −7.0137 0.3814 5.8567 35.1402 26.4919

(4,4) −7.1695 0.2256 5.0431 40.3447 23.2091

(5,5) −7.2463 0.1489 4.3480 43.4800 20.1676

(6,6) −7.2898 0.1054 3.7888 45.4661 17.6455

(7,7) −7.3167 0.0784 3.3413 46.7778 15.5971

(8,8) −7.3346 0.0605 2.9795 47.6715 13.9280

(10,10) −7.3560 0.0391 2.4367 48.7350 11.4090

(12,12) −7.3678 0.0273 2.0531 49.2746 9.6205

(18,18) −7.3829 0.0122 1.3810 49.7152 6.4772

(25,25) −7.3887 0.0064 0.9917 49.5842 4.6530

(5,0) −6.9758 0.4193 6.9570 34.7852 26.6452

(6,0) −7.0969 0.2982 6.4790 38.874 25.2821

(7,0) −7.1716 0.2235 5.9658 41.7607 23.5461

(8,0) −7.2212 0.1739 5.4881 43.9049 21.8213

(9,0) −7.2561 0.1391 5.0596 45.5366 20.2189

(10,0) −7.2814 0.1137 4.6799 46.7993 18.7681

(12,0) −7.3151 0.0800 4.0480 48.5755 16.3072

(15,0) −7.3432 0.0519 3.3415 50.1225 13.5090

(20,0) −7.3656 0.0295 2.5643 51.2859 10.3937

(30,0) −7.3819 0.0132 1.7261 51.7824 7.0080

Table 8 Natural radius and nanostresses in chiral CNTs

(n,m) ρ

(nm)

σa

(nN)

σb

(nN)

σc

(nN)

τa
(nN nm)

τb
(nN nm)

τc
(nN nm)

maxT
(nN nm)

(20,1) 0.8054 0.0004 −0.0044 0.0040 −0.2254 −0.2197 −0.2196 0.0082

(11,10) 0.7139 0.0045 −0.0048 0.0003 −0.2240 −0.2231 −0.2180 0.0090

(10,1) 0.4173 0.0083 −0.0474 0.0391 −0.2387 −0.2180 −0.2190 0.0129

(6,5) 0.3771 0.0462 −0.0522 0.0060 −0.2362 −0.2290 −0.2139 0.0134

(6,3) 0.3161 0.1459 −0.2336 0.0877 −0.2527 −0.2216 −0.2169 0.0136

(7,1) 0.3027 0.0374 −0.1559 0.1184 −0.2570 −0.2176 −0.2220 0.0134

(6,2) 0.2891 0.1421 −0.3034 0.1613 −0.2621 −0.2180 −0.2214 0.0133

(5,3) 0.2799 0.1908 −0.2694 0.0784 −0.2609 −0.2271 −0.2158 0.0135

(6,1) 0.2651 0.0697 −0.2543 0.1845 −0.2703 −0.2181 −0.2259 0.0131

(5,2) 0.2521 0.2365 −0.4419 0.2048 −0.2777 −0.2206 −0.2235 0.0134

(4,3) 0.2447 0.1916 −0.2325 0.0406 −0.2697 −0.2410 −0.2142 0.0124

(5,1) 0.2279 0.1396 −0.4372 0.2968 −0.2929 −0.2199 0.2338 0.0134

(4,2) 0.2159 0.3783 −0.6042 0.2239 −0.3022 −0.2300 −0.2258 0.0129
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Table 9 Roll-up energy and
dihedral contribution to energy
for chiral CNTs

(n,m) Roll-up energy
(ev/atom)

Dihedral contribution
(%)

(20,1) 0.0280 49.7

(11,10) 0.0355 49.7

(10,1) 0.1029 47.0

(6,5) 0.1240 46.7

(6,3) 0.1762 44.7

(7,1) 0.1941 43.8

(6,2) 0.2115 43.3

(5,3) 0.2224 43.2

(6,1) 0.2529 41.7

(5,2) 0.2765 41.1

(4,3) 0.2872 41.0

(5,1) 0.3435 38.6

(4,2) 0.3746 37.8
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