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a b s t r a c t

An analytical benchmark and a simple consistent Mathematica program are proposed for graphene
and carbon nanotubes, that may serve to test any molecular dynamics code implemented with
REBO potentials. By exploiting the benchmark, we checked results produced by LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) when adopting the second generation Brenner potential,
wemade evident that this code in its current implementation produces resultswhich are offset from those
of the benchmark by a significant amount, and provide evidence of the reason.
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1. Introduction

Molecular dynamics (MD) simulations are nowadays more and
more popular in scientific applications, especially in those fields of
material science involving nanotechnology and advanced material
design. On one side, there are advantages in the speed and accuracy
of the simulations, with the model of the potential for atomic
interactions being optimized to reproduce either experimental
values or quantities estimated by first principles calculations
(considered, as a matter of facts, just like experimental results). On
the other side, it is more and more frequent to use commercial or
open-source codes implementing off-the-shelf potential models,
and use them as a black box, without having a precise feeling
with the code itself. One of the most used simulator is LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator), able
to implement several interatomic potentials. By using an analytical
discrete mechanical model, we present a benchmark for the
equilibriumproblemof graphene and carbonnanotubes,which can
be applied to any kind of REBO (reactive empirical bond-order)
potential. The analytical condition proposed produces results
in complete agreement with First Principles, Density Functional
Theory and Monte Carlo simulations. With the aid of this
benchmark, we show that LAMMPS code, when implementedwith
the second generation Brenner potential, produces results which
are offset from those of the benchmark by a significant amount,
and provide evidence of the reason. The analytical formulation is
implemented in a Mathematica program, intended to provide a
set of easy-to-get benchmark solutions; combination of symbolic
manipulation and numerical routinesmake the program easy to be
adapted to any REBO potential, providing a general tool for testing
MD codes.

2. An analytical discrete model for equilibrium configurations
of FGSs and CNTs

The benchmark solutionwe propose has been developedwithin
the context of carbon macromolecules, such as Flat Graphene
Strips (FGSs) or Carbon Nanotubes (CNTs). When regarded from
the point of view of MD, such aggregates are modeled as sets of
mass points, whose configuration is described by the Cartesian
coordinates of each point with respect to a chosen reference
frame; each point is then interacting with the others – at least
with the closest ones – and the interaction is captured by a
suitable empirical potential, whose shape and parameters are
fitted with a set of selected experiments and ab initio calculations.
The last generation potentials usually take into account multi-
particle interactions, up to the third nearest neighbor, which is
indispensable to capture the mechanics of complex systems, such
as carbon macromolecules.

In order to provide an easy-to-visualize mechanical picture,
the perspective we here adopt is not the one of MD, we consider
instead the approach of Favata et al. [1], where a discrete
mechanicalmodel is detailed for 2D carbon allotropes. In this view,
the configuration of a molecular aggregate is not identified by
the coordinates of the mass points, but rather by a suitable finite
list of order parameters. In particular, the conditions of natural
equilibrium of the aggregate can be determined and expressed in
terms of such list and independently of the choice of the REBO
potential. Aswewill see, the prediction of such equations is in total
agreement with First Principles, Density Functional Theory and
Monte Carlo simulations; moreover, given their generality, they
can be exploited to establish benchmark solutions.

In order to understand the physical meaning of the conditions
we propose, we summarize some of the results of Favata et al. [1].
We make reference to Fig. 1, which depicts a FGS before being
rolled up into an achiral CNT. Let the axes 1 and 2 be respectively

Fig. 1. Order parameters in a graphene sheet.

aligned with the armchair and zigzag directions, and let n1, n2
be the number of hexagonal cells counted along these axes. On
identifying a CNT by its chiral numbers (n,m), armchair CNTs have
m = n and are rolled up from a FGS with n1 = 2 n and n2 very
large; zigzag CNTs have m = 0 and are rolled up from a FGS with
n2 = n and n1 very large. Let us consider now the representative
hexagonal cell A1B1A2B3A3B2A1, with sides A1B1 and A3B3 aligned
with the axis 1; the common length of corresponding bonds will
be denoted by a, and we will call a-type the corresponding bonds.
We see that the other four sides have equal length b (b-type
bonds). We pass to introduce the bond angles and, since we intend
to consider interactions up to the third neighbor, the dihedral
angles. As to the bond angles, we notice that they can be of α-type
and β-type (e.g., respectively, A3B2A1 and B2A1B1; see Fig. 1). As
to the dihedral angles, there are five types (Θ1, . . . , Θ5), which
can be identified with the help of the colored bond chains in
Fig. 1. In conclusion, to determine the deformed configuration of
a representative hexagonal cell, no matter if that cell belongs to a
FGS or to an achiral CNT, we need to determine the 9-entry order-
parameter substring:

ξsub := (a, b, α, β, Θ1, . . . , Θ5). (1)

The complete order-parameter string for the whole molecular ag-
gregate can be obtained by sequential juxtaposition of substrings.
Due to the geometric compatibility conditions induced by the
built-in symmetry (see Favata et al. [1] for details), only three of
the nine kinematic variables determine the natural configuration,
which are chosen to be a, b, and α. In particular, by distinguishing
the armchair (superscript A) from the zigzag (superscript Z) case,
the order-parameter substrings are given by, respectively:

ξAsub = (a, b, α,βA(α, ϕA), ΘA
1 (α, ϕA), ΘA

2 (α, ϕA),

2ΘA
2 (α, ϕA), 0, 0);

ξZsub = (a, b, α,βZ (α, ϕZ ), ϕZ , ΘZ
2 (α, ϕZ ), 0, 2 ΘZ

2 (α, ϕZ ), 0).
(2)

The explicit form of the functionsβA,Z , ΘA
1 , ΘA,Z

2 is given in Favata
et al. [1]. In (2),ϕA

= π/n1 is the angle between the plane ofA1B1B3
and the plane of B1A2B3 when an armchair CNT is considered, and
ϕZ

= π/n2 the angle between the planes of A1B1A2 and A2B3A3,
when a zigzag CNT is considered. In case of a FGS,wehaveϕA,Z

= 0,βA,Z
= π − α/2, and ΘA

1 = ΘA,Z
2 ≡ 0.

The equilibrium equations turn out to be the following ones:

σa = 0, σb = 0,
τα + 2β,α τβ + Θ1,α T1 + 2Θ2,α T2 + Θ3,α T3 + Θ4,α T4,

(3)

where σa, σb, τα, τβ , and Ti, are the so-called nanostresses, work-
conjugate to changes of, respectively, bond lengths, bond angles,
and dihedral angles of each type considered. The form of the third
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of (3) depends onwhich of the two achiral CNTs is dealt with;more
precisely, we have that

τ A
α + 2βA,α τ A

β + ΘA
1 ,α T A

1 + 2ΘA
2 ,α T A

2 + ΘA
3 ,α T A

3 = 0,
τ Z
α + 2βZ ,α τ Z

β + 2ΘZ
2 ,α T Z

2 + ΘZ
4 ,α T Z

4 = 0.
(4)

Due to their generality, the conditions (3) may serve as a
benchmark for any REBO potential. To express the equilibrium
equations in terms of the Lagrangian coordinates a, b, and α, it
is necessary to introduce the constitutive equations for the stress,
which result from the assignment of an intermolecular potential.
In the next section, we detail the formulas in the Brenner 2nd
generation REBO potential [2] which are needed to solve (3) in
terms of the order parameters.

2.1. The traction problem

Starting from the geometry and the energy gathered by means
of (3), it is possible to obtain secondary quantities. The Young
modulus can be computed by solving the equilibrium problem in
the presence of a traction load F , whose corresponding governing
equations are the following:
σa = 0, (5)

σb −
F
n1

sin
α

2
= 0, (6)

τα + 2τββ,α +Θ1,α T1 + 2Θ2,α T2

+ Θ3,α T3 −
1
2

F
n1

b cos
α

2
= 0, (7)

for the armchair traction direction and

σa −
F
n2

= 0, (8)

σb +
F

2n2
cosβ = 0, (9)

τα + 2τββ,α +2Θ2,α T2 + Θ4,α T4 −
1
2

F
n2

bβ,α sinβ = 0, (10)

for the zigzag direction. Once these equations have been solved,
with the constitutive equations (17), the axial deformation can be
computed as:

F → ε(F) :=
λ(F) − λ0

λ0
, (11)

where λ(F) is the deformed length of the CNT due to the load F and
the λ0 the initial length. The Young modulus is defined to be

E(F) =
F

ε(F)

1
2πρ(F)t

, (12)

whereρ(F) is the deformed radius of the CNT after the deformation
consequent to the load F and t is the nominal thickness. The
evaluation of this latter value is still object of debate, giving rise
to the so-called Yakobson’s paradox [3]; valuable contributions on
the subject are Huang et al. [4], Pine et al. [5] Bajaj et al. [6] and
references cited therein. An accurate account of this issue is out of
the scope of this paper. Be that as it may, the thickness value does
not affect the significance of the present work; in order to compare
results from our benchmark with those obtained in LAMMPS, we
set t = 0.34 nm, a value commonly used by several authors.

For F → 0, the Youngmodulus in a neighborhood of the natural
configuration is computed. As to the Poisson coefficient, we define
it as

ν(F) = −
ρ(F) − ρ0

ρ0

1
ε(F)

, (13)

where ρ0 is the radius in the natural configuration. For F → 0, its
value in a neighborhood of the natural configuration is determined.

3. REBO potentials

In the Brenner 2nd generation REBO potential, the binding
energy V REBO of a molecular aggregate is written as a sum over
nearest neighbors:

V REBO
=


i


J<I

VIJ; (14)

the interatomic potential VIJ is given by the construct

VIJ = VR(rIJ) + bIJVA(rIJ), (15)

where the individual effects of the repulsion and attraction functions
VR(rIJ) and VA(rIJ), which model pair-wise interactions of atoms I
and J depending on their distance rIJ , are modulated by the bond-
order function bIJ , which depends on the bond angles θIJK between
bonds IJ and JK and on the dihedral angle ΘIJKL between the planes
of I, J, K and I, J, L.

When the point of view described in Section 2 is assumed, the
expressions of the potentials have to be specialized and written in
terms of the order parameters in the substrings (1). On introducing
the potentials Va and Vb for the a- and b-type bonds, we have,
respectively:

Va(a, β, Θ1) = VR(a) + ba(β, Θ1) VA(a),
Vb(b, α, β, Θ2, Θ3, Θ4) = VR(b) + bb(α, β, Θ2, Θ3, Θ4) VA(b)

(16)

(see Favata et al. [1] for details).
Once this has been done, the nanostresses entering the balance

equations (3) can be expressed in terms of the order parameters by
means of the following constitutive relations:

σa = V ′

R(a) + ba(β, Θ1) V ′

A(a),
σb = V ′

R(b) + bb(α, β, Θ2, Θ3, Θ4) V ′

A(b),
τα = bb,α(α, β, Θ2, Θ3, Θ4) VA(b),

τβ =
1
4


ba,β(β, Θ1) VA(a) + 2bb,β(α, β, Θ2, Θ3, Θ4) VA(b)


,

T1 =
1
2
ba,Θ1(β, Θ1) VA(a),

T2 =
1
2
bb,Θ2(α, β, Θ2, Θ3, Θ4) VA(b),

T3 = bb,Θ3(α, β, Θ2, Θ3, Θ4) VA(b),
T4 = bb,Θ4(α, β, Θ2, Θ3, Θ4) VA(b).

(17)

4. Mathematica program vs LAMMPS results

The most direct outcomes of our solution are natural geometry
and energy, which can be used to check the correctness of
whateverMD code. The analytical model described has been coded
in a Mathematica program, that computes the natural radius and
the cohesive energy of armchair and zigzag CNTs. The program
implements the 2nd generation Brenner potential, but other or
customized REBO potentials can be assigned by the user by
changing the functions VR, VA, ba, and bb appearing in (16). Possible
alternatives to the Brenner 2nd generation potential are the
Tersoff potential [7,8] or the Brenner 1st generation potential [9],
which are also readily available in LAMMPS. It is worth noticing
that a benchmark for density functional-based codes (such as
DFTB, see Aradi et al. [10]), which could serve as alternative
methods of computation when samples are not too large, would
bemuch harder to formulate and implement. The results obtained
with the program are in good agreement with First Principles,
Density Functional Theory (DFT) and Diffusion Monte Carlo (DMC)
simulations, as Tables 1 and 2 show. A related point to consider
is that our evaluation of the radii is different from that obtained
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Table 1
Cohesive energy (eV/atom).

Our El-Barbery Shin
benchmark et al. [12] et al. 2014 [13]

(First Principles) (DMC)

−7.3951 −7.4 −7.464

by classical Roll-Up Model (RUM), which adopts bond lengths
shorter in CNTs than in their parent flat graphene sheets, due to the
difference between the length of a helix segment and the distance
between its endpoints. In an elegant study initiated by Cox andHill,
see Lee et al. [11] and the references cited therein, the geometrical
approximation of RUM has been overcome, and precise analytical
expressions for the radius have beenproposed, in terms of the bond
lengths and bond angles. We verified that on inserting our values
of bond lengths and bond angles in those formulas, the resulting
values for the radius are equal to ours, up to the fourth significant
digit, for all considered CNTs.

As an application of the possibility of exploiting the benchmark
solutions, we present in Table 3 the results for a number of
CNTs, showing that standard LAMMPS code underestimates the
geometry and highly overestimates the energy. The origin of
the discrepancies can be found only by a close inspection of
LAMMPS source code. In fact, although in Brenner et al. [2] it
is indicated that the values of the function PIJ should be taken
null for solid-state carbon, the code assigns the value 0.027603.
This latter value is actually dictated in Table VIII of Stuart et al.
[18] for AIREBO potentials, due to the additional terms included
in this potential. Whenever a LAMMPS user wants to adopt
REBO potentials, he needs to change the hard-wired number for
the variable PCCf[2][0] in ‘‘pair_airebo.cpp’’; unfortunately, the
LAMMPS manual does not provide any information on this issue,
and most studies based on LAMMPS REBO calculations are likely
to have underestimation or overestimation of mechanical and
geometrical properties presented in our Tables. An example of
the use of LAMMPS with 2nd generation Brenner potential is
Zhang et al. [19]. When the value assigned in Brenner et al. [2]
is implemented, the LAMMPS code produces the same results as
the benchmark solution, letting alone a tiny difference due to
numerical effects, as Table 3 undeniably makes evident.1

Starting from the geometry and the energy gathered by means
of (3), it is possible to obtain secondary quantities. Besides the
radius and cohesive energy, the Mathematica program yields
as output the Young’s modulus and the Poisson coefficient of
armchair and zigzag CNTs. In Table 4 some results are reported and
compared with standard LAMMPS code: the latter overestimates
the Young’s modulus and underestimates the Poisson coefficient.
Our results are in very good agreement with the literature (see
e.g. Agrawal et al. [20]). The differences between our benchmark
and the LAMMPS code with modified parameters are ascribable
to numerical effects, more accentuated because Young’s modulus
and Poisson coefficients are quantities not directly evaluated, but
rather derived, and an increment of numerical error is foreseeable.

5. Description of the software structure and the individual
software components

A simple program for solving Eqs. (3) has been implemented
in Mathematica, version 9. The program, entitled MDBenchmarks,

1 Oftentimes, numerical instabilities (such as ’exploding’ results) have been
reported in internet forums dedicated to LAMMPS simulations. These can be caused
by a variety of reasons, not necessarily related to a problem in the potential. At
present, we are not aware of any examplewhere the issuewe found in the potential
causes numerical instabilities.

is written in two files: the Package Benchmark_code.m and the
Computable Document Format Benchmark_solutions.cdf, which
needs the package to be loaded. In the CDF file it is sufficient to
choose armchair or zigzag CNTs and assign the chiral number n
to get the benchmark solutions for the 2nd generation Brenner
potential, set as default potential. Other REBO potentials can be
defined in the package file.

The program Benchmark_code.m is divided into four chapters:
1. REBO Potentials.

In this chapter the form of the REBO potential to be tested is
assigned. In the section ‘‘2nd generation Brenner potential’’,
the default setting for this potential is implemented, according
to [2]; in particular, in the subsection ‘‘Potential components’’
the components introduced in (15) are specified. In the section
‘‘Analytical discrete model’’ the definition of the nanostresses
(17) is implemented; this definition is independent of the REBO
potential one chooses.

2. Armchair CNTs.
In this chapter the equilibrium problem for armchair CNTs is
solved. In the section ‘‘Generalities’’ the geometric conditions
on the order parameters are established and the nanostresses
are computed. In the section ‘‘Solution of the equilibrium
equations’’ the solution of the systems (3)1 and (4)1 is
determined as a function of the applied force F and the
chiral number n. In the section ‘‘Radius’’ the natural radius is
computed as a function of F and n and then determined for
F = 0, namely in the natural configuration. In the section
‘‘Energy’’ the natural energy is computed as a function of F and n
and then determined for F = 0, namely the cohesive energy. In
the section ‘‘Young’s modulus’’ the current and the referential
lengths of a CNT are determined, and the strain measure is
defined, as a function of F and n; on introducing the nominal
thickness, the Young’s modulus is defined as a function of F and
n, and then computed for a tiny value of F , up to convergence.
In section ‘‘Poisson coefficient’’, the named material parameter
is defined as a function of F and n, and then computed for a tiny
value of F , up to convergence.

3. Zigzag CNTs.
This chapter has the same sections as the previous one, but
implemented for the zigzag case; the different geometric
constraints are properly included.

4. Summary of results.
In this chapter the benchmark solutions are collected for the
visualization in the CDF file Benchmark_solutions.cdf.

The software package is supplemented by three folders:
1. Original_and_Modified_REBOpotFiles, containing the two

LAMMPS files for the original and the modified REBO potential,
‘‘pair_airebo.cpp’’, instrumental to make the comparison of Ta-
bles 3 and 4.

2. CNT_Graphene_DATAFiles, containing LAMMPS input files with
the coordinates of nanotubes and grapheneweexamined. These
coordinates are obtained by simplymapping atomic locations in
graphene to a cylinder. These files can be converted into input
files for any other molecular dynamics package.

3. CNT_Graphene_OUTPUTFiles, containing files with the coordi-
nates of nanotubes and graphene resulting from the energy
minimization in LAMMPS using the modified REBO potential.
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Table 2
Radii (nm) of small CNTs.

(n,m) Our Machón Cabria Popov Budyka
benchmark et al. 2002 [14] et al. 2003 [15] 2004 [16] et al. 2005 [17]

(DFT) (DFT) (TB) (DFT)

(3, 3) 0.211 0.210 0.212 0.212 –
(4, 4) 0.277 – – – 0.277
(5, 0) 0.208 0.204 0.206 0.205 –

Table 3
Geometry and energy.

(n,m) Radii (nm) Cohesive energy (ev/atom)
Our LAMMPS LAMMPS Our LAMMPS LAMMPS
benchmark (standard) (modified) benchmark (standard) (modified)

(3, 3) 0.2111 0.2079 0.2110 −7.0137 −7.3838 −7.0137
(4, 4) 0.2767 0.2723 0.2766 −7.1695 −7.5569 −7.1695
(5, 5) 0.3431 0.3371 0.3404 −7.2463 −7.6422 −7.2462
(6, 6) 0.4101 0.4035 0.4100 −7.2898 −7.6905 −7.2896
(7, 7) 0.4773 0.4697 0.4773 −7.3167 −7.7204 −7.3166
(8, 8) 0.5447 0.5361 0.5447 −7.3346 −7.7403 −7.3345
(10, 10) 0.6798 0.6690 0.6798 −7.3560 −7.7640 −7.3558
(12, 12) 0.8151 0.8022 0.8151 −7.3678 −7.7771 −7.3676
(18, 18) 1.2216 1.2020 1.2215 −7.3829 −7.7038 −7.3827
(25, 25) 1.6961 1.6689 1.6960 −7.3887 −7.8003 −7.3886

(5, 0) 0.2076 0.2046 0.2076 −6.9758 −7.3417 −6.9759
(6, 0) 0.2446 0.2409 0.2446 −7.0969 −7.4763 −7.0969
(7, 0) 0.2821 0.2778 0.2821 −7.1716 −7.5593 −7.1715
(8, 0) 0.3201 0.3151 0.3201 −7.2212 −7.6144 −7.2212
(9, 0) 0.3583 0.3527 0.3583 −7.2561 −7.6531 −7.2560
(10, 0) 0.3967 0.3905 0.3967 −7.2814 −7.6812 −7.2813
(12, 0) 0.4739 0.4665 0.4739 −7.3151 −7.7186 −7.3149
(15, 0) 0.5904 0.5810 0.5904 −7.3432 −7.7499 −7.3431
(20, 0) 0.7853 0.7274 0.7852 −7.3656 −7.7747 −7.3655
(30, 0) 1.1760 1.1572 1.1759 −7.3819 −7.7927 −7.3818

Graphene −7.3951 −7.8074 −7.3950

Table 4
Material properties.

(n,m) Young’s modulus (GPa) Poisson coefficient
Our LAMMPS LAMMPS Our LAMMPS LAMMPS
benchmark (standard) (modified) benchmark (standard) (modified)

(3, 3) 890.5525 987.0102 885.0631 0.1490 0.1237 0.1563
(4, 4) 848.7784 944.4810 840.1351 0.2343 0.2078 0.2388
(5, 5) 793.9856 901.869 799.7630 0.2997 0.2578 0.2963
(6, 6) 817.0959 891.6427 789.8102 0.3012 0.2794 0.3115
(7, 7) 779.4158 881.2895 778.2888 0.3202 0.2937 0.3318
(8, 8) 766.6752 872.9931 767.9165 0.3325 0.3020 0.3458
(10, 10) 754.2882 856.9461 756.7625 0.3629 0.3194 0.3526
(12, 12) 755.9326 846.2911 746.5046 0.3458 0.3306 0.3626
(18, 18) 740.6592 831.2163 732.5252 0.3816 0.3426 0.3740
(25, 25) 733.2746 823.3865 726.4968 0.3808 0.3507 0.3790

(5, 0) 947.9966 1046.3569 943.9120 0.0655 0.0362 0.0661
(6, 0) 972.9604 1075.4912 968.5679 0.0868 0.0600 0.0840
(7, 0) 976.4790 1082.0265 971.5102 0.1100 0.0800 0.1105
(8, 0) 969.7586 1076.6910 965.8188 0.1328 0.1045 0.1307
(9, 0) 958.1857 1066.6410 954.9396 0.1544 0.1234 0.1511
(10, 0) 944.4616 1053.1830 941.3135 0.1743 0.1424 0.1737
(12, 0) 916.1866 1025.8253 915.1339 0.2086 0.1725 0.2032
(15, 0) 877.4224 986.5745 877.9641 0.2493 0.2138 0.2447
(20, 0) 830.2633 940.5973 835.7993 0.2949 0.2564 0.2835
(30, 0) 779.997 890.5147 789.0504 0.3405 0.2991 0.3461

2015M1A2A2056561, funded by the Ministry of Science, ICT &
Future Planning. The authorswould like to thank Prof. Paolo Podio-
Guidugli for fruitful discussions.
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Clear"Global`*⋆"

MD Benchmark Code
The program is divided in four chapters:

1. REBO Potentials.
In this chapter the form of the REBO potential to be tested is assigned. In the section "2nd genera-
tion Brenner potential", the default setting for this potential is implemented, according to [2]; in 
particular, in the subsection "Potential components" the components introduced in (17) are speci-
fied.  In the section "Analytical discrete model'' the definition of the nanostresses (19) is imple-
mented; this definition is independent of the REBO potential one choses.

2. Armchair CNTs
In this chapter the equilibrium problem for armchair CNTs is solved. In the section "Generalities'' the 
geometric conditions on the order parameters are established and the nanostresses are computed. 
In the section "Solution of the equilibrium equations'' the solution of the system 3_1 and  4_1 is 
determined as a function of the applied force F and the chiral number n. In the section "Radius'' the 
natural radius is computed as a function of F and n and then determined for F=0, namely in the 
natural configuration. In the section "Energy" the natural energy is computed as a function of F and 
n and then determined for F=0, namely the cohesive energy. In the section "Young's modulus'' the 
current and the referential lengths of a CNT are determined, and the strain measure is defined, as a 
function of F and n; on introducing the nominal thickness, the Young's modulus is defined as a 
function of F and n, and then computed for a tiny value of F, up to convergence. In section "Poisson 
coefficient'', the named material parameter is defined as a function of F and n, and then computed 
for a tiny value of F, up to convergence.

3. Zigzag CNTs.
This chapter has the same section as the previous one, but implemented for the zigzag case; the 
different geometric constraints are properly included.

4. Summary of Results.
In this chapter the benchmark solutions are collected for the visualization in the CDF file Bench-
mark_solutions.cdf.

Equation numbers and bibliographic reference numbers are those of the article associated to this 
code.

1. REBO Potentials

2nd generation Brenner potential

G Function

According to the definition in reference [2]



d1=Subscriptd, 0-−> 0.375449999999999,Subscriptd, 1-−>1.406776475152104,
Subscriptd, 2-−>2.254377494462425,Subscriptd, 3-−>2.031282890266629,
Subscriptd, 4-−>1.429711740681566,Subscriptd, 5-−>0.502401399437276;
G1[θ_]=i=0

5 di*⋆Cos[θ]i/∕.d1;

d2=Subscriptd, 0-−>0.707277245734129,Subscriptd, 1-−>5.677435848489921,
Subscriptd, 2-−>24.09701877750397,Subscriptd, 3-−>57.59183195999613,
Subscriptd, 4-−>71.88287000288395,Subscriptd, 5-−>36.27886067346856;
G2[θ_]=i=0

5 di*⋆Cos[θ]i/∕.d2;

d3=Subscriptd, 0-−>-−0.644399999999948,Subscriptd, 1-−>-−6.207999999999618,
Subscriptd, 2-−>-−20.05899999999891,Subscriptd, 3-−>-−30.22799999999852,
Subscriptd, 4-−>-−21.72399999999905,Subscriptd, 5-−>-−5.990399999999763;
G3[θ_]=i=0

5 di*⋆Cos[θ]i/∕.d3;

G[θ_]=PiecewiseG1[θ],0<=θ<0.6082*⋆π,G2[θ],0.6082*⋆π<=θ<23*⋆π,G3[θ],23*⋆π<=θ<=π;

Potential parameters

ev=0.1602176487;(*⋆unit conversion constant*⋆)

potparameters=Subscript[B, 1]-−> 12388.79197798,Subscript[B, 2]-−>17.56740646509,
Subscript[B, 3]-−>30.71493208065, Subscript[β, 1]-−>4.7204523127,Subscript[β, 2]-−>1.4332132499,
Subscript[β, 3]-−>1.3826912506,Q-−>0.3134602960833,A-−>10953.544162170,α0-−>4.7465390606595;

T=-−0.004048375;

Potential components

equation (17)
(reference  [2])

VA[r_]=-−n=1
3 Bn*⋆E-−βn*⋆r/∕.potparameters;

VR[r_]=1+Qr*⋆A*⋆E^-−α0*⋆r/∕.potparameters;
DVA[r_]=D[VA[r],r];
DVR[r_]=D[VR[r],r];
ba=1+2*⋆G[β]^-−12+2*⋆T*⋆1-−Cos[Θ1]^2;
bb=1+G[α]+G[β]^-−12+T*⋆2*⋆1-−Cos[Θ2]^2+1-−Cos[Θ3]^2+1-−Cos[Θ4]^2;

Analytical discrete model

Geometry  

n1[n_]:=2*⋆n;
n2[n_]:=n;

Nanostresses

Equation (19)
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σa=DVR[a]+ba*⋆DVA[a];
σb=DVRb+bb*⋆DVAb;
τα=Dbb,α*⋆VAb;
τβ=14*⋆Dba,β*⋆VA[a]+2*⋆Dbb,β*⋆VAb;

T1=12*⋆Dba,Θ1*⋆VA[a];
T2=12*⋆Dbb,Θ2*⋆VAb;
T3=Dbb,Θ3*⋆VAb;
T4=Dbb,Θ4*⋆VAb;

2. Armchair CNTs

Generalities

Geometric constraints

Reference [1]

ϕ[n_]:=πn1[n];

β[n_]:=ArcCos-−Cosα2*⋆Cos[ϕ[n]];
Θ1[n_]:=2*⋆ArcSinCosα2*⋆Sin[ϕ[n]]Sin[β[n]];

Θ2[n_]:=ArcSinSin[ϕ[n]]Sin[β[n]];
Θ3[n_]:=2*⋆Θ2[n];
Θ4[n_]:=0;

σan[n_]:=σa/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
σbn[n_]:=σb/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
ταn[n_]:=τα/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
τβn[n_]:=τβ/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
T1n[n_]:=T1/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
T2n[n_]:=T2/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
T3n[n_]:=T3/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]
T4n[n_]:=T4/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]

Solution of the equilibrium equations
solA[F_,n_]:=FindRootσan[n]==0,σbn[n]-−Fn1[n]*⋆Sinα2==0,ταn[n]+
2*⋆D[β[n],α]*⋆τβn[n]+D[Θ1[n],α]*⋆T1n[n]+2*⋆D[Θ2[n],α]*⋆T2n[n]+D[Θ3[n],α]*⋆T3n[n]
-−12*⋆Fn1[n]*⋆b*⋆Cosα2==0,a,1.4,b,1.4,α,2

Radius
Reference [1]

ρa[n_]:=b2*⋆Cosα2+a2*⋆Cos[ϕ[n]]Sin[ϕ[n]];

ρ[n_]:=Sqrtρa[n]^2+a^24;
rA[F_,n_]:=ρ[n]10/∕.solA[F,n];(*⋆radius in nm*⋆)
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Natural radius (output in Table 3)

ρA[n_]:=rA[0,n]

Energy 
Va=VR[a]+ba*⋆VA[a];
Vb=VRb+bb*⋆VAb;

V[F_,n_]:=Va+2*⋆Vb2/∕.β-−>β[n],Θ1-−>Θ1[n],Θ2-−>Θ2[n],Θ3-−>Θ3[n],Θ4-−>Θ4[n]/∕.solA[F,n]

Cohesive energy (output of Table 3)

Reference [1]

EnergyA[n_]:=V[0,n](*⋆evatom*⋆)

Young Modulus
Equations (13)-(14)

λA[n_]:=2*⋆Sinα2*⋆n2[n]*⋆b;(*⋆current length*⋆)
λ0A[n_]:=λA[n]/∕.solA[0,n];(*⋆referential length*⋆)
ϵA[n_]:=λA[n]-−λ0A[n]λ0A[n];(*⋆strain measure*⋆)
eA[F_,n_]:=ϵA[n]/∕.solA[F,n];

t=0.34(*⋆nm*⋆);(*⋆nominal thickness*⋆)

YA[F_,n_]:=FeA[F,n]*⋆ev*⋆12*⋆π*⋆rA[F,n]*⋆t*⋆10(*⋆Young modulus, GPa*⋆)

Young modulus in the origin (output in Table 4)

YoungA[n_]:=If[n<20,YA[10^-−10,n],YA[10^-−9,n]](*⋆GPa*⋆)

Poisson coefficient
Equation (15)

νA[F_,n_]:=-−rA[F,n]-−rA[0,n]rA[0,n]*⋆1eA[F,n]

Poisson coefficient in the origin (output in Table 4)

PoissonA[n_]:=If[n<20,νA[10^-−10,n],νA[10^-−9,n]]

3. Zigzag CNTs

Generalities
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Generalities

Geometric constraints

Reference [1]

ϕz[n_]:=π/∕n;

βz[n_]:=π-−ArcSinSinα2Cosϕz[n]2;
Θ1z[n_]:=ϕz[n];
Θ2z[n_]:=ArcSinSin[βz[n]]*⋆Sin[ϕz[n]]Sin[α];
Θ3z[n_]:=0;
Θ4z[n_]:=2*⋆Θ2z[n];

σaz[n_]:=σa/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
σbz[n_]:=σb/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
ταz[n_]:=τα/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
τβz[n_]:=τβ/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
T1z[n_]:=T1/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
T2z[n_]:=T2/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
T3z[n_]:=T3/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]
T4z[n_]:=T4/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]

Solution of the equilibrium equations
solZ[F_,n_]:=FindRootσaz[n]-−Fn2[n]==0,σbz[n]+F2*⋆n2[n]*⋆Cos[βz[n]]==0,
ταz[n]+2*⋆D[βz[n],α]*⋆τβz[n]+2*⋆D[Θ2z[n],α]*⋆T2z[n]+D[Θ4z[n],α]*⋆T4z[n]
-−12*⋆Fn2[n]*⋆b*⋆D[βz[n],α]*⋆Sin[βz[n]]==0,a,1.4,b,1.4,α,2

Radius
Reference [1]

rz[n_]:=Sin[βz[n]]2*⋆Sinϕz[n]2*⋆b;

r[F_,n_]:=rz[n]10/∕.solZ[F,n];(*⋆radius in nm*⋆)

Natural radius (output in Table 3)

ρZ[n_]:=r[0,n](*⋆nm*⋆)

Energy
VZ[F_,n_]:=Va+2*⋆Vb2/∕.β-−>βz[n],Θ1-−>Θ1z[n],Θ2-−>Θ2z[n],Θ3-−>Θ3z[n], Θ4-−>Θ4z[n]/∕.solZ[F,n]

Cohesive energy (output in Table 3)

EnergyZ[n_]:=VZ[0,n](*⋆evatom*⋆)

Young Modulus
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Young Modulus
Equations (13)-(14)

λZ[n_]:=1-−ba*⋆Cos[βz[n]]*⋆n1[n]*⋆a;(*⋆current length*⋆)
λ0Z[n_]:=λZ[n]/∕.solZ[0,n];(*⋆referential length*⋆)
ϵZ[n_]:=λZ[n]-−λ0Z[n]λ0Z[n];(*⋆strain measure*⋆)
eZ[F_,n_]:=ϵZ[n]/∕.solZ[F,n];

YZ[F_,n_]:=FeZ[F,n]*⋆ev*⋆12*⋆π*⋆r[F,n]*⋆t*⋆10(*⋆Young modulus,GPa*⋆)

Young modulus in the origin (output in Table 4)

YoungZ[n_]:=YZ[10^-−8,n](*⋆GPa*⋆)

Poisson ratio
Equation (15)

ν[F_,n_]:=-−r[F,n]-−r[0,n]r[0,n]*⋆1eZ[F,n]

Poisson coefficient in the origin (output in Table 4)

PoissonZ[n_]:=ν[10^-−8,n]

4. Summary of Results
Radius[0,n_]:=ρA[n]
Radius[1,n_]:=ρZ[n]
Energy[0,n_]:=EnergyA[n]
Energy[1,n_]:=EnergyZ[n]
Young[0,n_]:=YoungA[n]
Young[1,n_]:=YoungZ[n]
Poisson[0,n_]:=PoissonA[n]
Poisson[1,n_]:=PoissonZ[n]

Creation of the shell for cdf file

Manipulate
Column NumberFormRadius[q,n],4 "radius [nm]:",NumberForm[Energy[q,n],5] "cohesive energy
NumberForm[Young[q,n],7] "Young modulus [GPa]:", NumberForm[Poisson[q,n],4] "Poisson coefficient

Left,", ",
q,0,"show",0-−>"armchair",1-−>"zigzag",Setter,
n,3,30,
AutorunSequencing-−>1,2,
TrackedSymbols:>{q,n},
ControlPlacement-−>Top,
SaveDefinitions-−>True,
ControlType-−>InputField
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Benchmark solutions for REBO potentials
Get["/∕mydirectory/∕Benchmark_code.m"]

show armchair zigzag

n 3

radius [nm]: 0.2111
cohesive energy [ev/∕atom]: -−7.0137
Young modulus [GPa]: 890.5525
Poisson coefficient: 0.149

Instructions
1. Load the package “Benchmark_code.m” inserting the directory in “Get” command and press “Shift+Enter”
2. Choose armchair or zigzag CNTs
3. Choose the chiral number n
4. Press Enter to visualize the benchmark results

Note
The code is set for 2nd generation Brenner potential. In order to check another REBO potential, it is necessary to define the proper potential 
functions and all the corresponding parameters in the “Benchmark_code.m” file.
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