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Abstract
Earthquakes represent one of themost catastrophic natural events affectingmankind. At present, a
universally accepted riskmitigation strategy for seismic events remains to be proposed.Most
approaches are based on vibration isolation of structures rather than on the remote shielding of
incomingwaves. In this work, we propose a novel approach to the problem and discuss the feasibility
of a passive isolation strategy for seismic waves based on large-scalemechanicalmetamaterials,
including for the first time numerical analysis of both surface and guidedwaves, soil dissipation
effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be
effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided,
exploring differentmetamaterial configurations, combining phononic crystals and locally resonant
structures and different ranges ofmechanical properties. Dispersion analysis and full-scale 3D
transient wave transmission simulations are carried out onfinite size systems to assess the seismic
wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic
waves can be considerably attenuated,making this strategy viable for the protection of civil structures
against seismic risk. The proposed remote shielding approach could open up new perspectives in the
field of seismology and in related areas of low-frequency vibration damping or blast protection.

1. Introduction

Of all the possible natural hazards, earthquakes are among themost catastrophic in terms of human, socio-
economic and environmental impacts. Every yearmore than amillion earthquakes (roughly two earthquakes
perminute) occurworldwide, accounting for nearly 60%of all disaster-relatedmortality [1, 2]. Traditional
seismic isolation systems aim at extending the lifetime of protected structures bymeans of various passive, active
and hybrid control techniques [3, 4]. In general, these systems are inefficient for large earthquakes and cannot be
adapted to structural changes [5]. In addition, they produce dangerously large horizontal displacements [6] and
ignore soil-foundation interactions that play a key role in the overall earthquake response of buildings [7]. The
dynamic behaviour of a structure embedded in the ground is included in a recently-proposed type of foundation
with incorporated vibrating inclusions, which can significantly reduce seismicwave energy in certain frequency
ranges [5]. However, newly built foundations cannot be used to protect existing buildings of civil, historical,
cultural or economic importance. The attenuation of seismicwaves before they reach critical targets would be a
largely preferable strategy, additionally providing themeans to protect distributed areas rather than individual
structures. This approach can be implemented via seismic wave barriersmade ofmechanicalmetamaterials
(phononic crystals and locally resonantmetamaterials), which provide wavemanipulation possibilities,

OPEN ACCESS

RECEIVED

26April 2016

REVISED

4 July 2016

ACCEPTED FOR PUBLICATION

21 July 2016

PUBLISHED

25August 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/8/083041
mailto:federico.bosia@unito.it
mailto:nicola.pugno@unitn.it
http://dx.doi.org/10.1088/1367-2630/18/8/083041
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/8/083041&domain=pdf&date_stamp=2016-08-25
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/8/083041&domain=pdf&date_stamp=2016-08-25
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


exploiting their unconventional properties such as negative refraction [8, 9], cloaking [10], frequency band gaps
(BGs) [11], etc. From ahistorical point of view, the concept ofmetamaterials was derived from
electromagnetism [12] inwhich properties associated to negative permittivity and permeability werefirst
observed. Following this approach,Wu et al [13]developed an effectivemedium theory for elasticmetamaterials
showing that effective parameters (bulkmodulus, shearmodulus andmass density) can become negative near
resonances by choosing appropriate resonant scatterers, leading to eight possible types of wave propagation. In
the following years, drawing inspiration fromdouble-negative electromagneticmaterials, an elastic
metamaterial comprisingfluid-solid composite inclusions was proposed [14], with both negative shearmodulus
and negativemass density over a large frequency region, and the unique property of only allowing transverse
waves to propagate with negative dispersion, while forbidding longitudinal waves. Finally, an innovative
metamaterial was proposed (a so-called ‘hybrid elastic solid’), exhibitingmultiple resonances in its building
blocks and allowing band structures to display two negative dispersion bands [15]. Thismaterial exhibits a
region supporting only compressional waves and another displaying ‘super anisotropy’ inwhich compressional
waves and shearwaves can propagate only along different directions. Among the aforementioned properties of
metamaterials, in the present workwe exploit their ability to exhibit frequency BGs, i.e. frequency rangeswithin
whichwave propagation is inhibited regardless of the incidence angle of an incomingwave.

Seismic waves are generally divided into body and surfacewaves, both of which are a superposition of
longitudinal and shear bulkwaves [16]. Data relative to different earthquakes show that themain frequency
components of thesewaves span the range of 1–20 Hz [5, 17]. Surfacewaves travel slower than bodywaves, with
exponentially decaying amplitudes into the depth, and cause surface groundmotion that can be destructive for
buildings [18]. Thefirst attempts to applymechanicalmetamaterials for seismic surfacewaves were performed
experimentally, showing the presence of BGs in scaledmarble quarries with cylindrical holes at kHz frequencies
[19, 20] and numerically for scarcely realistic structures with kilometre-sized cylindrical holes [21]. Later, it was
proposed to attenuate the shear component of surface waves by using gigantic chiral locally resonant
metamaterials around isolated buildings [22].

Seismic bodywaves are usually considered less destructive than surface waves.However, for specific
geological configurations, such as a deep layer with a smaller shear-wave velocity compared to that in overlying
layers, a substantial part of the seismic energy can be channelled in the stiffer layer and propagate in the formof
guided or Lambwaves [23]. Recent experiments on real-size and scaledmetamaterials [24–26] consisting of
arrays of cylindrical bore holes or tubes with local resonators, have demonstrated the presence of BGs for surface
waves around 50–100 Hz, which remain above themost destructive frequencies of any earthquake. The
theoretical and numericalmodelling in all of these studies was performed separately for surface and bulkwaves
and only for simplified two-dimensional-models, whereas seismicwaves arise from the superposition of these
waves and are essentially three-dimensional (3D) . In particular, 2Dmodellingmay lead to BGwidth
overestimation in the case of locally resonantmetamaterials [26] or phononic crystals [27], since couplingwith
out-of-planemodes is ignored. Furthermore, wave dissipation in the ground is usually completely ignored,
while itmay play a key role in the earthquake response of structures and should be accounted for in the design of
real seismic shields. In addition, the results obtained for scaledmechanicalmetamaterials are not fully
transferable to real earthquake scales [26], while the thus far proposed real-size structures appear to be unfeasible
and difficult tomanufacture bymeans of existing technologies due to the huge sizes involved. Finally, no attempt
has beenmade thus far to compare the shielding performance of phononic crystals with that of locally resonant
metamaterials.

In this paper, we propose and numerically analyse 3DLarge-ScaleMechanicalMetaMaterials (LSM3) for the
shielding of seismicwaves propagating in dissipative soils.We perform a detailed investigation of the influence
of geometric andmechanical parameters on the attenuation potential of feasible phononic crystal and locally
resonantmetamaterial configurations in typical frequency and intensity ranges for seismicwaves. To do this,
finite-elementmodal analysis and dynamic transient simulations are performed for both surface and guided
seismicwaves. The efficiency of the proposedmetamaterial structures to protect sensitive sites are evaluated
through full-scale numerical experiments and practical guidelines are provided.

2.Methods

The proposed strategy aims at attenuating typical frequencies of seismicwaves via ad-hoc designed LSM3s. The
metamaterial configurations are realized bymeans of cavities, also called boreholes [24, 25], and periodic
inclusions in the soil in a square array surrounding the structure to be protected, as schematically shown in
figures 1(a)–(c) (a representative unit cell of the corresponding reciprocal space is indicated infigure 1(d)). Three
different architectures are considered for the periodic unit cells representative of LSM3 structures:
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(i) a cross-like cavity (figure 1(e)), proven to be more effective in inducing large BGs [28] compared to other
geometries with the same cavity volume (see supplementarymaterial);

(ii) a hollow cylinder (figure 1(f)), made of a stiffer material with respect to the surrounding material, filled with
soil, chosen for its fabrication simplicity [29];

(iii) a locally resonant inclusion (figure 1(g)), made of a soft rubber layer around a heavy core cylinder, chosen due
to its ability to generate subwavelength BGs compared to characteristic seismicwavelengths [30].

The corresponding geometrical parameters are summarised in table 1.We consider a sandy-type soilmatrix
with (Young’smodulus =E 20 MPa,soil Poisson’s ratio n = 0.3,soil mass density r = 1800soil kg m−3) [31], and
concrete ( =E 30 GPa,concrete n = 0.25,concrete r = 2500concrete kg m−3) or steel ( =E 207 GPa,steel n = 0.3,steel

r = 7784steel kg m−3) inclusions [32]. The coating for the locally resonant inclusion ismade of rubber
( =E 120 kPa,rubber n = 0.47rubber and r = 1300rubber kg m−3). The soil is at firstmodelled as a linear elastic
isotropicmaterial, while the effects of intrinsic viscoelastic losses are considered later. Note that though the
introduced elastic parameters characterize typical sandy soils, results can be generalised for other ground
materials by scaling the BG frequencies and unit cell dimensions according to thewave velocity value. The
sensitivity of the results tomechanical properties of the soil is studied in detail in the next section.

Figure 1. Schematic representation of the proposed seismic shield based on LSM3s: (a) 3D and (b) cross-sectional (yz-plane) view; (c)
unit cells of a LSM3 consisting of periodic inclusions embedded in amatrix (top view). (d)The first Brillouin zonewith the irreducible
part (light grey triangle of vertices G - - )X M for a square arrangement of inclusions. (e)Cross-like cavity unit cell; (f) hollow
cylinder unit cell; (g) coated cylinder unit cell.
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Thewave attenuation performance of the proposed LSM3 is numerically evaluated throughwave dispersion
analysis and time-transient finite-element simulations. Dispersion properties of individual unit cells are
computed using the Floquet-Bloch theory [33] and the commercial software COMSOLMultiphysics 4.3. Bloch
conditions are applied to the four vertical sides of the unit cell, while traction-free conditions are imposed at the
top free boundary. At the bottom surface, either perfectlymatched layer (PML) or traction-free boundary
conditions are applied tomodel surface or guidedwaves, respectively. For a square lattice of inclusions as in
figure 1(d), the eigenmodes are evaluated for thewave vectors along the G - -X M directions of the highest
symmetry of the Brillouin zone. Standardwave equations are solved neglecting the gravity term,which is of
importance for normalmode seismology only and is uninmportant in calculations for surface and bodywaves at
typically observed seismicwavelengths [34]. For afixed real-valuedwavevector = [ ]k k k, ,x y the frequencies w
are then determined by solving an appropriate eigenvalue problem that allows the construction of dispersion
curves w ( )k .Performing standard finite-element discretization, each unit cell ismeshed bymeans of 4-node
Lagrange tetrahedral linear elements. Good convergence is obtained considering at least 8 elements for the
shortest wavelength associated to the highest frequencymode reported (for instance, amaximum finite element
size =L 1 mFE is used for the case of cross-like holes considering amaximum frequency of 6 Hz).

In the case of simulations for viscoelastic soils, the dispersion relations are calculated bymeans of an in-
houseMatlab-based code capable of determining complex-valued solutions of eigenvalue problems. Since the
viscoelastic stress–strain relation is usually represented in terms of hereditary integrals [16], thewave
propagation problem in a viscoelasticmedium is essentially nonlinear, and the dispersion relation cannot be
derived straightforwardly as in the elastic case. However, the problem can be solved in the frequency-domain by
employing the classic elastic-viscoelastic correspondence principle [16, 35]. According to the latter, the solution
of the transformed viscoelastic equations is obtained in the samemanner as for the corresponding elastic case
(i.e. for a representative unit cell of the same configuration and dimensions, subject to the same initial and
boundary conditions as the viscoelastic structure) by replacing thematerial constants with their frequency-
dependent counterparts. The bulkmodulus ( )K x is thus replaced by w( )K x, , the shearmodulus ( )G x is
replaced by w( )G x, , etc. Tomodel physically realistic scenarios, we assume the frequencyω to be a real-valued
independent variable, and thewave vectors k ,x ky to be complex-valued vectors representing spatial wave
attenuation. Thus, the dispersion curves are calculated for specified values ofω by solving the complex-valued
eigenproblem for kx or ky [36]. The boundary conditions andmesh resolution are the same as for the linear
elastic structures. This in-house code is validated by calculating the dispersion spectra for zero viscosity values
and comparing results for propagatingmodes with those for corresponding linear elastic structures evaluated by
COMSOLMultiphysics.

Finally, time-transient 3DFEManalysis is performed using the commercial code Abaqus©. Ameshwith
approximately 4 000 000 linear hexahedral elements of typeC3D8R is usedwith software integrated hourglass
control for time integration in order to guarantee solution accuracy.

3. Results

3.1. Lambwaves
The seismicwave shielding potential of the proposed LSM3 isfirst evaluated through dispersion analysis of
guided Lambwaves. Dispersion diagrams for the three considered unit cells are shown infigure 2 for different
height towidth ratios (H/a=1, 2, 3). In this case free-free boundary conditions are considered on the top and
the bottomof the unit cell in order to reproduce the scenario of quasi-Lambwaves observed in some seismic
events [37, 38] (when for instance one portion of the soil is in contact with another portion or half space that is
less stiff, or if the soil is bounded by a deep layerfilledwith gas, or in the presence of a horizontal fracturewithin a
consolidated rock, in correspondence withwhich the stiffness virtually vanishes [38]). Guidedwaves usually
dominate in seismic records of local and regional events andmay propagate over thousands kilometres [34].

Table 1.Case studies and corresponding geometric parameters used in the calculations. In-plane parameters for the cross-like holes and
circular inclusions are taken from [28] and [32], respectively. Shielding potential in specific frequency ranges according to I/I0=exp[−(N/
NC)

β] is also provided for the first two geometries.

Parameter Shielding potential (β;NC)

Case study a (m) b/a c/a Re/a Ri/a H/a 3.75 Hz 5 Hz 6 Hz 8 Hz

Cross-like cavity 10 0.90 0.25 — — 1÷3 (0.66; 1.39) (0.68; 1.07) — —

Hollow cylinder 10 — — 0.40 0.30 1÷3 — — (0.77; 1.09) (0.90; 0.86)
Coated cylinder 2 — — 0.48 0.40 1÷5 — — — —
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For cross-like cavities (figure 1(e)), the height of the unit cells plays a fundamental role in the nucleation of
the BGs. In general, as /H a increases, the BG size is reduced, andmoremodes appear in the same frequency
range. The physical reason for this is the increasing appearance of higher order slabmodes as the ratio /H a
increases [39]. Thus, for small values of /H a, the BG is opened due to the ‘folding’ of the three lowest bands [39].

Figure 2.Dispersion diagrams for Lambwaves: Band structures for various /H a ratios for (a) cross-like cavities, (b) hollow cylinders
and (c) coated cylinders, respectively.Mode shapes (MS) at (d)Xpoint, =f 3.28 Hz, and (e)Γ point, =f 4.58 Hz, for the 1st
geometry, (f)Γ point, =f 5.47 Hz, (g),Γ point, =f 8.38 Hz for the second geometry, (h), X point, =f 3.92 Hz, (i)Xpoint
=f 4.58 Hz for the third geometry.
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For larger /H a ratios, higher-ordermodes appearwith the cut-off frequency decreasingwith the increase of
/H a andfinally close the BGs.Moreover, the coupling of 2D in-planewith out-of-planemodes results in the

splitting of awide BGpredicted by 2D simulations into two separate BGswithmid frequencies around 2.5 and
4 Hz. Indeed, the broad BG in the left diagram (blue curves) for / =H a 1 is divided into 2 parts by the 7th pass
band, whosemode shape is shown infigure 2(d) for the high-symmetry X point at =f 3.28 Hz.The
correspondingmotionmainly originates from the out of plane bending of a square block and is similar to a
flexural vibration of a clamped beam. The adjacent pair of blocks in a unit cell vibrates in anti-phase, whereas the
diagonal pair vibrates in phase. By increasing /H a, the rotational component of the blockmotion becomes
more conspicuous, since the rigidity of the narrow connectors decreases, whereas, in themode located above the
BGwith themode shape reported infigure 2(e) ( /p= =( ) )k a f10 , 0 , 4.58 Hz , flexuralmotion dominates.

For the inclusion-based phononic unit cell shown infigure 1(f), the unit cell height influences the inhibited
frequencies less compared to the previous case, at least for the lowest BG. As the /H a ratio increases, additional
slabmodes appear, but all of them are located above 7 Hz.Hence, the size of the lowest BG is preserved, while the
higher BG, in general, decreases in size.Note that for / =H a 2 the secondBG is even larger than for / =H a 1,
and its bounds are related to themodes localised in the inclusion, e.g. as shown infigure 2(g).

In the case of the locally resonant inclusion shown infigure 1(g), the chosen thickness of the rubber coating
provides the best compromise between BGwidth and sufficiently lowBG frequency (a parametric study relative
to the influence of the coating thickness is provided in the supplementarymaterial). Only one absolute BG is
found in the considered frequency range, and a dependence of the BG size on the unit cell height is also observed.
In this case, no additional slabmodes are generated as the ratio /H a increases, and instead, the BG size
decreases. This can be explained by considering themode shape at the lower bound of this BG, the frequency of
which increases with the increase of /H a.As shown infigure 2(h), thismode shape corresponds to a localised
modewithmixed in-plane and out-of-plane displacements.With the increase of height, the coupling of in-plane
and out-of-planemotions occurs at higher frequencies, finally leading to the closing of the BG.Vibration
patterns for othermodes are also characterised by localisedmotions within the inclusion (e.g., see figure 2(i)).

3.2. Surfacewaves
Wenext investigate the performance of the two chosen structures in attenuating surfacewaves by checking
whether the previously found BGs for guidedwaves are preserved in a half-space structure. The solutions
describingwaves in a half-space can be found by solving an equivalent PMLproblem,when the PMLboundary
condition is applied to the bottomof the unit cell. The dispersion diagrams of the surface guidedwaves for both
unit cell types are shown infigure 3 for different height towidth ratios. The radiative region, or sound cone, is
indicated by the shaded violet area [40]. The boundary of this region is formed by the slowest bulkwave
propagating in the soil [40]. Therefore, propagating surfacewaves, the velocity of which is slower than that of
bulkwaves [16, 41], are located outside the cone, while bulkmodes, leaky surfacemodes aswell as spurious
(unphysical)PMLmodes can be foundwithin the cone [42]. For the unit cell with a cross-like cavity, two or three
BGs for surface waves exist in the corresponding band structure for various values of the unit cell height. These
BGs are located at almost the same frequencies as those predicted for the Lambwaves. Again, as for guided
waves, an increase of the LSM3 height leads to a decrease in BG size (figure 3).Themode shapes for propagating
waves are shown infigures 3(d) and (e) indicating the localisation ofmotion near the free surface of the unit cell,
as expected for surfacemodes.

For phononic structures with hollow cylinders, the BGs predicted for guidedwaves are completely preserved
in the dispersion diagrams shown infigure 3(b). However, the BGs are located inside the sound cone and can
only inhibit the propagation of bulk or surface leakywaves. Hence, phononic-typemetamaterials appear to be
inefficient for shielding propagating surface seismicwaves, as was also found in previousworks [24, 25].

Thus, among the three considered LSM3 configurations, it ismainly the onewith cross-like cavities that is
capable of efficiently attenuating destructive surface waves. Since the cavities are dug in sandy soil, the problem
of the technical feasibility and stability of the cavitiesmay arise.However, this problem could be addressed by
containing the soil in a cavity boundarymade of a thin layer of stiffermaterial, e.g. aluminium. This additional
layer results in a shift the BGs to slightly higher frequencies, but ensures sufficient soil compaction to avoid
failure due toflexural-torsional deformations (see supplementarymaterial). Additionally, the presented analysis
remains valid forwave dispersion in stiffer soils, for which stability problems are less relevant, with appropriate
scaling to higher frequencies.

3.3. Time transient analysis
To validate the filtering capability of the proposed seismic shields based on LSM3s, wemodel the 3D
transmission of surface waves in realistic wave propagation scenarios. Themodel is afinite volume consisting of
a homogeneous soil block of dimensions ´ ´ = ⋅ ⋅L L L 200 200 100 m1 2 3

3 containing an array of LSM3s. The
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shielding region is formed by an array of unit cells of cross-like cavities or hollow cylinders with = =H a 10 m,
arranged in a square grid around the area to be protected, as shown infigure 4(a). The unit cells are arranged in
four concentric square rings around an area of 10×10 m2. Themechanical constants for the soil are listed in
the previous section. In this case, soil damping is not accounted for, to evaluate the attenuation capability of the
introduced periodic structure only. Since unit cells with cross-like cavities can attenuate both bulk and surface
waves, as shown in the previous section, herewe present results for this geometry only (see supplementary
material for the case of hollow cylinders).

To assess seismic shield performance, two different input signals are considered, both representative of a
seismic eventwith amulti-frequency content centred in the range of interest for the protected structures. The
two pulse shapes and their frequency contents are shown infigure 4(b): (i) 3Hanningmodulated sine cycles and
(ii) 19Hanningmodulated sine cycles both centred at 5 Hz. Time transient explicit simulationswith durations of
4.5 and 10 s, respectively, are performed for the two inputs, respectively, to ensure that the pulses launched at
emission pointE reach the acquisition pointsA1 andA2, which are equally distanced at =d 90 m from E (see
figure 4(a)), but simultaneously to avoid reflections from the bottomboundary of themodel.

Full-field out-of-plane displacement andVonMises stressmaps are calculated at various consecutive time
instants (see supplementarymaterial) and reported at time step =t 3.4 s for the 19-cycle excitation in
figures 4(c) and (d), respectively. This analysis shows that ground vibration is efficiently attenuated for surface
waveswith a frequency content falling inside the BGs, and therefore the seismic shield can provide a virtually
unperturbed area, even if reflections at the free boundaries of the volume are included. Furthermore, the

Figure 3.Dispersion diagrams for Surface waves: Band structures for various /H a ratios for (a) cross-like cavity and (b) hollow
cylinder geometries, respectively.Mode shapes at theX point on (c) =f 1.86 Hz for / =H a 1 and (d), =f 2.78 Hz for / =H a 1 for
the first geometry.
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amplitude of the incomingwave rapidly decays on the surface and through the depth after thefirst 2–3 rows of
the LSM3 inclusions.Moreover, the LSM3 deviates thewave stressfield below the shielded area at an angle that is
sufficient to protect the building foundations (figure 4(d)). Results show that only four LSM3 rows in the shield
are sufficient to reliably reflect the incomingwave energy, effectively limiting the impact of seismicwaves on the
protected area. Time transient displacements in the z direction are recorded at the two acquisition pointsA1 and
A2 for broadband andnarrowband excitations (upper boxes offigures 4(e) and (f)), to allow quantitative
comparison between themotion registered in an ordinary portion of the soil (pointA1) and inside the designed
LSM3 region (pointA2), respectively. After acquisition, signals are Fourier transformed and their frequency
content is compared considering both actuation pulses (lower boxes offigures 4(e) and (f)). BGs predicted for
Lambwaves in the infinite system are also highlighted as shaded grey rectangles. Results show that the
introduction of the LSM3 region reduces the groundmotion considerably. In the case of the broadband
excitation, the peak displacement is decreased by approximately one order ofmagnitudewith only 4 rows (from
3.32 down to 0.34—displacements are normalised to themaximumpositive value of the displacement registered
inside the LSM3). Analysis of the frequency content of the signals shows that in the BG regions the spectrumof
the response atA2 is reduced by a factor varying between 10 and 43 compared to that of signals taken atA1.

Figure 4.Time transient analysis: (a) schematic representation of the finite elementmodel. (b)Time evolution and frequency content
of the applied pulses: 3 (left) and 19 (right) sinusoidal cycles of a 5 Hz-centred signalmodulated by aHanningwindow. (c)Out-of-
plane displacement and (d)VonMises stressfieldmaps at time step t=3.4 s for the 19-cycle excitation. (e)Normalised out-of-plane
displacement at points A1 andA2 (upper box) and its Fourier spectrum (lower box) for the case of broadband and (f)narrowband
excitations. The complete BGs are also indicated in the light grey regions.
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Similar results are obtainedwhen the depth of the source of excitation is varied, with an increasing reduction in
barrier efficiency for increasing impinging angles (see supplementarymaterial). However, the surface source
hypothesis remains valid for surfacewaves that decaymore slowly and are themost destructive among seismic
waves.

The effect of the proposed seismic shields is further verified includingmodel structures in the simulations.
One example is a cultural heritage site such as the ‘Castello delleQuattro Torra’, near Siena,modelled
schematically in the FEM simulation. Figure 5(a) shows the normalisedVonMises stress fieldmap (blue and red
colours representminimumandmaximum stress, respectively) for a shielded and non-shielded structure at
time step t=5.3 s for a 5 Hz centredwave (19modulated sine cycles). The non-shielded structure clearly
exhibits very high stress and deformation levels, inevitably leading to its collapse, whilst the shielded one is
subjected to sufficiently attenuated deformation levels to guarantee its structural integrity (see supplementary
material).

The screening efficiency of the proposed LSM3s is also investigated for different numbers of unit cell rowsN,
and the riskmitigation capability is quantified relative to theMSK-76 Intensity scale and the associated peak
values of ground displacement [43]. Numericalmodels of cross-like-cavity or hollow-cylinder structures with 0,
1, 2, 3 and 4 rows of LSM3s are considered. Figure 5(b) reports themaximumdisplacement Imeasured at the
surface as a function of the cross-like LSM3number of rowsN for wave frequencies centred in the lowest BGs (at
3.75 and )5 Hz .Displacements are normalisedwith respect to themaximumdisplacement I0 obtained in the
case of no LSM3. Thefigure includes in the background the correspondingMSK-76 earthquake intensity ranges
(MX,M IX,MVIIIK). The same type of plot is provided infigure 5(c) for hollow-cylinder geometry LSM3 and
wave excitation centred at its corresponding BGs at 6 and 8 Hz. In all cases, thewave amplitude significantly
decays as the number of unit cells increases, with an exponential-type decrease. Notably, the introduction of 4
rows of LSM3 can lead to a seismic threat reduction between two and five orders ofmagnitude, from a highest
devastating-eventmagnitude of X to amedium level earthquake ofmagnitudeVII or amoderate seismof level

Figure 5.Riskmitigation: (a)normalisedVonMises stressfieldmap (blue and red representminimumandmaximum stress,
respectively) for a shielded and non-shielded structure such as a cultural heritage site for a 5 Hz centredwave. (b)Normalised
displacement registered at the ground as a function of the LSM3 number of rows for 3.75 Hz (circles) and 5 Hz (squares)waves. The
correspondingmagnitude ranges (MX,M IX,MVIIIK) for the intensity scaleMSK-76 and associated normalised values of ground
displacement are also shown as background colours.
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V,with a decrease of the corresponding perceived shaking level. The calculated reduction as a function of LSM3

rows can befittedwith an exponential-type phenomenological relation (also included infigure 5(a) and (b)) as

= -
b( )I I e ,

N
N0 C whereβ andNC arefitting parameters, the latter indicating a ‘critical’number of LSM3 rows

that provides a shielding factor of e. Parameter values are reported in table 1 for the corresponding LSM3

geometry. This equation can provide an approximate rule of thumb for the design of LSM3s in the low-
frequency range, according to the required shielding potential and specific BG frequency range.Overall results
lead to the conclusion that all considered LSM3 geometries can usefully be exploited and adapted to the specific
requirements, depending on the soil characteristics and properties (e.g. resonant frequencies) of the shielded
structures.

3.4. Parametric study
Next, we analyse the effects of the elastic parameters of the unit cell constituents on the BG frequencies. This
study is performed for LSM3 comprising hollow and locally resonant inclusions. In the case of hollow cylinders,
thematerial density r andYoung’smodulus E are varied, while Poisson’s ratio and the cell size a remain
unaltered to the reference parametersmentioned above. Simulations show thatmass density does not play a
significant role, while BGs are nucleatedwhen the cylindermaterial is at least 250 times stiffer than thematrix. In
the case of a sandy soil, thismeans that concrete or steel inclusions would be adequate. Figure 6(a) shows the
width variation of the first twoBGs for different values of E E .soil The lower boundaries of the BGs are almost
unaltered, while the BG sizes are enlarged due to the shift of pass bands towards higher frequencies. This occurs
due to the increase of the stiffness of the cylinder inclusion, resulting in corresponding changes of themode
shapes. The influence of the cylinder thickness -R Re i on thewidth of thefirst three BGs is shown in
figure 6(b). Thefirst BGwidens as the thickness of the inclusion increases, whereas the sizes of the second and
third BGs remain almost unaltered for inclusion thickness values beyond a0.1 , i.e. 1 m. The influence of the
filling fraction R ae is shown infigure 6(c), highlighting BGwidening and shifting towards higher frequencies
as R ae increases. The optimal filling fraction is around =R a0.4 .e This analysis allows us to define optimal
parameters for this type of geometry, i.e. 8 mdiameter, 1 m thick, hollow concrete cylinders.

In the case of locally resonant inclusions, only one BG appears, which is narrower compared to the previous
case. By changing themechanical parameters, i.e. the E Erubber soil ratio, a shift of the BG central frequency
occurs (figure 6(d)). The increase of both the internal coremass density (figure 6(e)) and the R ae ratio
(figure 6(f)) allows enlarging the BG size. However, thewidest BG is smaller than the BGs nucleated in the case
with hollow cylinders. Also, the BG is found to nucleate only above the threshold of =R a 0.47.e Thus, the
design solutions using cross-like cavities or hollow cylinders prove to be preferable compared to the case of
coated cylinders for seismic applications. Optimal geometric andmaterial parameters for a square unit cell
arrangement are indicated infigures 6(a)–(f)with dashed-dotted lines, considering both sufficient BGproperties
and ease of practical realisation of the structures. Further BG frequency enlargementmay be achieved by using a
triangular arrangement of the scatterers, choosing the position in accordance with the suppression of the shear
potential energy of the first optical band, as demonstrated by Lai andZhang [44] in a two-dimensional triangular
lattice of aluminium cylinders embedded in an epoxy host.

In general, seismic isolation systems based on local resonance effects allow the use ofmuch smaller unit cells
(a=2 m instead of a =10 m for the other cases) to obtain BGs at approximately the same frequencies.
However, the chosen configuration of the locally resonantmetamaterial is characterised by very narrow
inhibited frequency ranges and, thus, seems to be practically inefficient compared to two other proposed
configurations.Moreover, a small unit cell size in the depth directionmay be counterproductive, since the
seismicwaveswith larger wavelengths can propagate below the locally resonant inclusions. Therefore, detailed
analysis of thewave attenuation performance for LSM3 has been limited to unit cells with cross-like cavities and
hollow cylinders in this work.

3.5. Viscoelastic effects
Due to the presence of undergroundwater, oil and gas, soil exhibits energy losses and time-dependent
mechanical characteristics. These effects can be taken into account bymodelling the sandy soil, at least as thefirst
approximation, as a linear viscoelasticmedium [45].We thus analyse the influence of soil viscoelasticity on the
shielding capability and the BG sizes for the proposed LSM3 in a low-frequency range. The simulations are
performed here for Lambwaves in the case of cross-like cavities withH=10 m (table 1).Material damping in
the soil is presumed to increase linearly with frequency, as normally assumedwhenmodelling wave propagation
in viscoelasticmetamaterials [41, 46]. The shearmodulus of thematerialG( ve) therefore becomes complex-
valued: w= + ( ) ( )G G Gi ,ve el with n= +[ ( )( )G E 2 1el ], whilst the bulkmodulus is assumed to remain
unchanged from the elastic case to simplify the analysis: n= = -[ ( )( ) ( )K K E 3 1 2ve el ]. Since viscoelastic
parameters depend on specific soil structure and differ for various compositions, we choose representative
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values for the viscosity G in order to perform a qualitative study of these effects (a parametric study is presented
in the supplementarymaterial).

For viscoelasticmetamaterials, the difference between propagating (with real-valuedwavenumbers) and
evanescent (with imaginary or complex-valuedwavenumbers)modes disappears due to the losses, and the
concept of BGs no longer applies [47]. Therefore, the analysis is performed by solving dispersion relations
between complex-valuedwavenumbers = +( )*k k kRe i Im and real-valued frequencies f .The attenuation
properties of viscoelasticmetamaterials can be evaluated by analysing the so-called attenuation spectrum
relating thewave attenuation level h = ( ) ( )k k2Im Re to the frequency [48]. The attenuation spectrum for
waves propagating in the G - X direction is given infigure 7with red lines representing the attenuation of
seismicwaves in the viscoelastic LSM3, blue and black lines showing attenuation of propagating and evanescent
waves, respectively, in the corresponding elastic structure (i.e. with zero viscosity). According to the definition of
h, thewave attenuation for the propagating waves in the elastic LSM3 is zero outside the BGs and hasfinite values
for the evanescentmodes. The BGs for the linear elastic case are highlighted by shaded regions infigure 7.
According to the adopted assumption, thewave attenuation increases linearly with the frequency but proves to
bemore pronounced for frequencies falling between the BGs, i.e. between 3.2 and 3.4 Hz (highlighted rectangle

Figure 6.Parametric study on BG extension: BGupper and lower frequency bounds for hollow cylinders (a)–(c) and locally resonant
inclusions (d)–(f), as a function of: (a) the ratio between the Young’smodulus of the inclusion (E) and thematrix (Esoil), (b) the
inclusion thickness -R Re i and (c) theRe/a ratio; (d) the ratio between the Young’smodulus of the rubber ( )Erubber and thematrix
(Esoil), (e) the external coatingmass density r( )core and the inclusion r( ),steel and (f) theRe/a ratio withfixed ring thickness equal to
0.8a. Optimal parameter values are indicatedwith dashed–dotted lines.
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infigure 7). At these frequencies, the attenuation is comparable to that inside the lowest BG and further increases
with the growth of the viscosityG″ (see supplementarymaterial). Therefore, the viscoelastic properties of the soil
improve thewave attenuation near the BGboundaries andmay lead to the additional effect of ‘joining’ closely
located BGs.Hence, we can conclude that the viscoelasticity of the ground enhances the shielding capability of
the proposed LSM3s and results inwider BGswith respect to those predicted by the corresponding linear elastic
model. The same conclusion remains valid forwaves propagating in other directions and for hollow cylinder or
locally resonant inclusion cases (see supplementarymaterial). In the case of locally resonant inclusions, the
viscoelastic behaviour of thematrixmay lead to the decrease of the attenuation level inside the BG.However, the
shielding performance of thewhole structure can be improved by choosing for the soft coating amore viscous
material than thematrix [46].

4.Discussion and conclusions

In summary, we have applied the concepts of phononic crystals andmechanicalmetamaterials to thefield of
seismic protection and demonstrated their feasibility in attenuating low-frequency bulk, plate and surface
waves. The proposed systems, contrary to traditional structural foundation isolation strategies, which cause a
shift in the fundamental vibrating frequency of civil engineering structures, reduce the seismicwave energy by
means of BG attenuationmechanisms and prevent it from reaching the protected site.While this concept has
already been proposed in a limited number of recent papers, the present work is thefirst realistic and
comprehensive study on the topic, given that the study is performedwith 3D simulations, it takes into account
the layered structure of the soil, includes viscoelastic effects, and is based on both phononic crystal and locally
resonant structures. Various design configurations, based on both cross-like cavities and cylindrical inclusions,
have been explored and all display shielding potential in the seismic frequency range of interest of a fewHz. All
analysed geometries can be constructed relatively easily and cheaplywith the current technological state-of-the-
art. The lateral dimension of the phononic-type LSM3s are approximately 10 m, but reduce to only 2 m in the
case of locally resonant structures,making the practical realisation of these structures possible from a technical
point of view and feasible from an economic point of viewwhen compared to the costs involvedwith earthquake
damage. Locally resonant systems have rather narrowBGs, so that alternative design solutionsmay be required
to broaden the frequency attenuation range, e.g. arrays of locally resonant inclusions each having different BG
frequencies [26], depending on the specific site and on the structures to be protected. Parametric analysis shows
that BGnucleation in locally resonant structures occurs for LSM3 depths of the order of their lateral size (∼2 m ),
and that a further increase of the depth results in decreased BG size for both surface and Lambwaves. Since these
depth dimensions are small compared towavelengths of typical seismicwaves, vertical arrays of inclusions can
be used down to the necessary depth to improve the attenuation efficiency of these structures. In the case of both
considered cylindrical geometries, optimal stiffness and thickness values can be found tomaximise the BG size.
Furthermore, analysis of soil viscoelastic effects shows that any level of viscosity (from small tomediumvalue)
improves the attenuation potential of the designed structures and their extension towider frequency ranges.

These results indicate that the proposed seismic isolation strategy is theoretically effective aswell as
technically feasible. For example, during the El Centro earthquake, themaximummeasured displacement was

Figure 7.Effects of viscoelasticity: attenuation spectrum for cross-like cavities, assuming viscoelastic or elastic soil behaviour. The BGs
for the elastic LSM3 are highlighted by the shaded regions.High attenuation occurs between the BGs for the viscoelasticmaterial, as
highlighted in the dashed-line rectangle.
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of approximately 21.64 cm, corresponding to an event between IX andXdegrees of severity in theMSK-76
intensity scale [43]. The application of 4 rows of hollow-cylinder geometry LSM3would have locally reduced the
event by five degrees in the 8 Hz range, inwhich only slight damage to a few poorly constructed buildings would
be expected. The performed 3D time-transient numerical simulations confirm results obtained fromunit cell
analysis and prove the shielding capability of the proposed LSM3s. An approximate exponential-type relation is
also derived for the normalised earthquake intensity as a function of LSM3 rows in the low-frequency regime, to
provide an indicative design tool for seismic shields. The presented analysis can be exploited to provide
schematic practical guidelines for the design of LSM3 seismic shields in real cases, as follows:

-Estimate themain frequencies at which risk is concentrated (e.g., the resonance frequencies of the structure);

-Determine themechanical properties of the surrounding soil and choose LSM3 unit cell dimensions based
on the resultingmaximal threat wavelength;

-Select optimal LSM3 type, parameters and number of rows to obtain the desired shielding effect based on
results from figure 6 and table 1.

These structures can be further optimised and adapted to the specific application of interest, e.g. to
distributed as well as localised sites. Nevertheless, the present study already demonstrates the feasibility of the
proposed innovative seismic isolation strategy, which could potentially lead to a considerable reduction of
human casualties and socio-economic impacts.
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