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Abstract

Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a
universally accepted risk mitigation strategy for seismic events remains to be proposed. Most
approaches are based on vibration isolation of structures rather than on the remote shielding of
incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility
of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials,
including for the first time numerical analysis of both surface and guided waves, soil dissipation
effects, and adoptinga full 3D simulations. The study focuses on realistic structures that can be
effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided,
exploring different metamaterial configurations, combining phononic crystals and locally resonant
structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D
transient wave transmission simulations are carried out on finite size systems to assess the seismic
wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic
waves can be considerably attenuated, making this strategy viable for the protection of civil structures
against seismic risk. The proposed remote shielding approach could open up new perspectives in the
field of seismology and in related areas of low-frequency vibration damping or blast protection.

1. Introduction

Ofall the possible natural hazards, earthquakes are among the most catastrophic in terms of human, socio-
economic and environmental impacts. Every year more than a million earthquakes (roughly two earthquakes
per minute) occur worldwide, accounting for nearly 60% of all disaster-related mortality [1, 2]. Traditional
seismic isolation systems aim at extending the lifetime of protected structures by means of various passive, active
and hybrid control techniques [3, 4]. In general, these systems are inefficient for large earthquakes and cannot be
adapted to structural changes [5]. In addition, they produce dangerously large horizontal displacements [6] and
ignore soil-foundation interactions that play a key role in the overall earthquake response of buildings [7]. The
dynamic behaviour of a structure embedded in the ground is included in a recently-proposed type of foundation
with incorporated vibrating inclusions, which can significantly reduce seismic wave energy in certain frequency
ranges [5]. However, newly built foundations cannot be used to protect existing buildings of civil, historical,
cultural or economic importance. The attenuation of seismic waves before they reach critical targets would be a
largely preferable strategy, additionally providing the means to protect distributed areas rather than individual
structures. This approach can be implemented via seismic wave barriers made of mechanical metamaterials
(phononic crystals and locally resonant metamaterials), which provide wave manipulation possibilities,
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exploiting their unconventional properties such as negative refraction [8, 9], cloaking [ 10], frequency band gaps
(BGs) [11], etc. From a historical point of view, the concept of metamaterials was derived from
electromagnetism [12] in which properties associated to negative permittivity and permeability were first
observed. Following this approach, Wu et al [13] developed an effective medium theory for elastic metamaterials
showing that effective parameters (bulk modulus, shear modulus and mass density) can become negative near
resonances by choosing appropriate resonant scatterers, leading to eight possible types of wave propagation. In
the following years, drawing inspiration from double-negative electromagnetic materials, an elastic
metamaterial comprising fluid-solid composite inclusions was proposed [14], with both negative shear modulus
and negative mass density over a large frequency region, and the unique property of only allowing transverse
waves to propagate with negative dispersion, while forbidding longitudinal waves. Finally, an innovative
metamaterial was proposed (a so-called ‘hybrid elastic solid’), exhibiting multiple resonances in its building
blocks and allowing band structures to display two negative dispersion bands [15]. This material exhibits a
region supporting only compressional waves and another displaying ‘super anisotropy’ in which compressional
waves and shear waves can propagate only along different directions. Among the aforementioned properties of
metamaterials, in the present work we exploit their ability to exhibit frequency BGs, i.e. frequency ranges within
which wave propagation is inhibited regardless of the incidence angle of an incoming wave.

Seismic waves are generally divided into body and surface waves, both of which are a superposition of
longitudinal and shear bulk waves [16]. Data relative to different earthquakes show that the main frequency
components of these waves span the range of 1-20 Hz [5, 17]. Surface waves travel slower than body waves, with
exponentially decaying amplitudes into the depth, and cause surface ground motion that can be destructive for
buildings [18]. The first attempts to apply mechanical metamaterials for seismic surface waves were performed
experimentally, showing the presence of BGs in scaled marble quarries with cylindrical holes at kHz frequencies
[19,20] and numerically for scarcely realistic structures with kilometre-sized cylindrical holes [21]. Later, it was
proposed to attenuate the shear component of surface waves by using gigantic chiral locally resonant
metamaterials around isolated buildings [22].

Seismic body waves are usually considered less destructive than surface waves. However, for specific
geological configurations, such as a deep layer with a smaller shear-wave velocity compared to that in overlying
layers, a substantial part of the seismic energy can be channelled in the stiffer layer and propagate in the form of
guided or Lamb waves [23]. Recent experiments on real-size and scaled metamaterials [24—26] consisting of
arrays of cylindrical bore holes or tubes with local resonators, have demonstrated the presence of BGs for surface
waves around 50—-100 Hz, which remain above the most destructive frequencies of any earthquake. The
theoretical and numerical modelling in all of these studies was performed separately for surface and bulk waves
and only for simplified two-dimensional-models, whereas seismic waves arise from the superposition of these
waves and are essentially three-dimensional (3D) . In particular, 2D modelling may lead to BG width
overestimation in the case of locally resonant metamaterials [26] or phononic crystals [27], since coupling with
out-of-plane modes is ignored. Furthermore, wave dissipation in the ground is usually completely ignored,
while it may play a key role in the earthquake response of structures and should be accounted for in the design of
real seismic shields. In addition, the results obtained for scaled mechanical metamaterials are not fully
transferable to real earthquake scales [26], while the thus far proposed real-size structures appear to be unfeasible
and difficult to manufacture by means of existing technologies due to the huge sizes involved. Finally, no attempt
has been made thus far to compare the shielding performance of phononic crystals with that of locally resonant
metamaterials.

In this paper, we propose and numerically analyse 3D Large-Scale Mechanical MetaMaterials (LSM?) for the
shielding of seismic waves propagating in dissipative soils. We perform a detailed investigation of the influence
of geometric and mechanical parameters on the attenuation potential of feasible phononic crystal and locally
resonant metamaterial configurations in typical frequency and intensity ranges for seismic waves. To do this,
finite-element modal analysis and dynamic transient simulations are performed for both surface and guided
seismic waves. The efficiency of the proposed metamaterial structures to protect sensitive sites are evaluated
through full-scale numerical experiments and practical guidelines are provided.

2. Methods

The proposed strategy aims at attenuating typical frequencies of seismic waves via ad-hoc designed LSM?s. The
metamaterial configurations are realized by means of cavities, also called boreholes [24, 25], and periodic
inclusions in the soil in a square array surrounding the structure to be protected, as schematically shown in
figures 1(a)—(c) (arepresentative unit cell of the corresponding reciprocal space is indicated in figure 1(d)). Three
different architectures are considered for the periodic unit cells representative of LSM? structures:
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Figure 1. Schematic representation of the proposed seismic shield based on LSM?s: (a) 3D and (b) cross-sectional (yz-plane) view; (c)
unit cells of a LSM? consisting of periodic inclusions embedded in a matrix (top view). (d) The first Brillouin zone with the irreducible
part (light grey triangle of vertices I' — X — M) for a square arrangement of inclusions. (e) Cross-like cavity unit cell; (f) hollow
cylinder unit cell; (g) coated cylinder unit cell.

(i) a cross-like cavity (figure 1(e)), proven to be more effective in inducing large BGs [28] compared to other
geometries with the same cavity volume (see supplementary material);

(ii) a hollow cylinder (figure 1(f)), made of a stiffer material with respect to the surrounding material, filled with
soil, chosen for its fabrication simplicity [29];

(iii) alocally resonant inclusion (figure 1(g)), made of a soft rubber layer around a heavy core cylinder, chosen due
to its ability to generate subwavelength BGs compared to characteristic seismic wavelengths [30].

The corresponding geometrical parameters are summarised in table 1. We consider a sandy-type soil matrix
with (Young’s modulus Eg,;; = 20 MPa, Poisson’s ratio 14, = 0.3, mass density p,;; = 1800 kg m ) [31],and
concrete (Econcrete = 30 GPa, Veoncrete = 0.25; f.o1crete = 2500 kg m ) or steel (Egeel = 207 GPa, e = 0.3,
el = 7784 kg m ™) inclusions [32]. The coating for the locally resonant inclusion is made of rubber
(Erubber = 120 kPa, 4ypber = 0.47 and g, 1., = 1300 kg m ). The soil is at first modelled as a linear elastic
isotropic material, while the effects of intrinsic viscoelastic losses are considered later. Note that though the
introduced elastic parameters characterize typical sandy soils, results can be generalised for other ground
materials by scaling the BG frequencies and unit cell dimensions according to the wave velocity value. The
sensitivity of the results to mechanical properties of the soil is studied in detail in the next section.
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Table 1. Case studies and corresponding geometric parameters used in the calculations. In-plane parameters for the cross-like holes and
circular inclusions are taken from [28] and [32], respectively. Shielding potential in specific frequency ranges according to I/I, = exp[—(N/
N¢)?lisalso provided for the first two geometries.

Parameter Shielding potential (5; Nc)
Case study a(m) b/a c/a R./a Ri/a H/a 3.75Hz 5Hz 6 Hz 8 Hz
Cross-like cavity 10 0.90 0.25 — — 1+3 (0.66; 1.39) (0.68;1.07) — —
Hollow cylinder 10 — — 0.40 0.30 1+3 — — (0.77;1.09) (0.90; 0.86)
Coated cylinder 2 — — 0.48 0.40 1+5 — — — —

The wave attenuation performance of the proposed LSM? is numerically evaluated through wave dispersion
analysis and time-transient finite-element simulations. Dispersion properties of individual unit cells are
computed using the Floquet-Bloch theory [33] and the commercial software COMSOL Multiphysics 4.3. Bloch
conditions are applied to the four vertical sides of the unit cell, while traction-free conditions are imposed at the
top free boundary. At the bottom surface, either perfectly matched layer (PML) or traction-free boundary
conditions are applied to model surface or guided waves, respectively. For a square lattice of inclusions as in
figure 1(d), the eigenmodes are evaluated for the wave vectors alongthe I' — X — M directions of the highest
symmetry of the Brillouin zone. Standard wave equations are solved neglecting the gravity term, which is of
importance for normal mode seismology only and is uninmportant in calculations for surface and body waves at
typically observed seismic wavelengths [34]. For a fixed real-valued wavevector k = [k, k,], the frequencies w
are then determined by solving an appropriate eigenvalue problem that allows the construction of dispersion
curves w (k). Performing standard finite-element discretization, each unit cell is meshed by means of 4-node
Lagrange tetrahedral linear elements. Good convergence is obtained considering at least 8 elements for the
shortest wavelength associated to the highest frequency mode reported (for instance, a maximum finite element
size Lgg = 1 m is used for the case of cross-like holes considering a maximum frequency of 6 Hz).

In the case of simulations for viscoelastic soils, the dispersion relations are calculated by means of an in-
house Matlab-based code capable of determining complex-valued solutions of eigenvalue problems. Since the
viscoelastic stress—strain relation is usually represented in terms of hereditary integrals [16], the wave
propagation problem in a viscoelastic medium is essentially nonlinear, and the dispersion relation cannot be
derived straightforwardly as in the elastic case. However, the problem can be solved in the frequency-domain by
employing the classic elastic-viscoelastic correspondence principle [16, 35]. According to the latter, the solution
of the transformed viscoelastic equations is obtained in the same manner as for the corresponding elastic case
(i.e. for arepresentative unit cell of the same configuration and dimensions, subject to the same initial and
boundary conditions as the viscoelastic structure) by replacing the material constants with their frequency-
dependent counterparts. The bulk modulus K (x) is thus replaced by K (x, w), the shear modulus G (x) is
replaced by G (x, w), etc. To model physically realistic scenarios, we assume the frequency wto be a real-valued
independent variable, and the wave vectors k,, k, to be complex-valued vectors representing spatial wave
attenuation. Thus, the dispersion curves are calculated for specified values of w by solving the complex-valued
eigenproblem for k, or k,, [36]. The boundary conditions and mesh resolution are the same as for the linear
elastic structures. This in-house code is validated by calculating the dispersion spectra for zero viscosity values
and comparing results for propagating modes with those for corresponding linear elastic structures evaluated by
COMSOL Multiphysics.

Finally, time-transient 3D FEM analysis is performed using the commercial code Abaqus©. A mesh with
approximately 4 000 000 linear hexahedral elements of type C3D8R is used with software integrated hourglass
control for time integration in order to guarantee solution accuracy.

3. Results

3.1. Lamb waves

The seismic wave shielding potential of the proposed LSM? is first evaluated through dispersion analysis of
guided Lamb waves. Dispersion diagrams for the three considered unit cells are shown in figure 2 for different
height to width ratios (H/a = 1, 2, 3). In this case free-free boundary conditions are considered on the top and
the bottom of the unit cell in order to reproduce the scenario of quasi-Lamb waves observed in some seismic
events [37, 38] (when for instance one portion of the soil is in contact with another portion or half space that is
less stiff, or if the soil is bounded by a deep layer filled with gas, or in the presence of a horizontal fracture within a
consolidated rock, in correspondence with which the stiffness virtually vanishes [38]). Guided waves usually
dominate in seismic records of local and regional events and may propagate over thousands kilometres [34].
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Figure 2. Dispersion diagrams for Lamb waves: Band structures for various H /a ratios for (a) cross-like cavities, (b) hollow cylinders
and (c) coated cylinders, respectively. Mode shapes (MS) at (d) X point, f = 3.28 Hz, and (e) I' point, f = 4.58 Hz, for the 1st
geometry, (f) I" point, f = 5.47 Hz, (), I" point, f = 8.38 Hz for the second geometry, (h), X point, f = 3.92 Hz, (i) X point

f = 4.58 Hz for the third geometry.

For cross-like cavities (figure 1(e)), the height of the unit cells plays a fundamental role in the nucleation of
the BGs. In general, as H /a increases, the BG size is reduced, and more modes appear in the same frequency
range. The physical reason for this is the increasing appearance of higher order slab modes as the ratio H/a
increases [39]. Thus, for small values of H /a, the BG is opened due to the ‘folding’ of the three lowest bands [39].
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Forlarger H /a ratios, higher-order modes appear with the cut-off frequency decreasing with the increase of

H /a and finally close the BGs. Moreover, the coupling of 2D in-plane with out-of-plane modes results in the
splitting of a wide BG predicted by 2D simulations into two separate BGs with mid frequencies around 2.5 and

4 Hz. Indeed, the broad BG in the left diagram (blue curves) for H/a = 1 isdivided into 2 parts by the 7th pass
band, whose mode shape is shown in figure 2(d) for the high-symmetry X pointat f = 3.28 Hz. The
corresponding motion mainly originates from the out of plane bending of a square block and is similar to a
flexural vibration of a clamped beam. The adjacent pair of blocks in a unit cell vibrates in anti-phase, whereas the
diagonal pair vibrates in phase. By increasing H /a, the rotational component of the block motion becomes
more conspicuous, since the rigidity of the narrow connectors decreases, whereas, in the mode located above the
BG with the mode shape reported in figure 2(e) (k = (7/10a, 0), f = 4.58 Hz), flexural motion dominates.

For the inclusion-based phononic unit cell shown in figure 1(f), the unit cell height influences the inhibited
frequencies less compared to the previous case, at least for the lowest BG. As the H /a ratio increases, additional
slab modes appear, but all of them are located above 7 Hz. Hence, the size of the lowest BG is preserved, while the
higher BG, in general, decreases in size. Note that for H/a = 2 the second BG is even larger than for H/a = 1,
and its bounds are related to the modes localised in the inclusion, e.g. as shown in figure 2(g).

In the case of the locally resonant inclusion shown in figure 1(g), the chosen thickness of the rubber coating
provides the best compromise between BG width and sufficiently low BG frequency (a parametric study relative
to the influence of the coating thickness is provided in the supplementary material). Only one absolute BG is
found in the considered frequency range, and a dependence of the BG size on the unit cell height is also observed.
In this case, no additional slab modes are generated as the ratio H/a increases, and instead, the BG size
decreases. This can be explained by considering the mode shape at the lower bound of this BG, the frequency of
which increases with the increase of H /a. As shown in figure 2(h), this mode shape corresponds to a localised
mode with mixed in-plane and out-of-plane displacements. With the increase of height, the coupling of in-plane
and out-of-plane motions occurs at higher frequencies, finally leading to the closing of the BG. Vibration
patterns for other modes are also characterised by localised motions within the inclusion (e.g., see figure 2(i)).

3.2. Surface waves

We next investigate the performance of the two chosen structures in attenuating surface waves by checking
whether the previously found BGs for guided waves are preserved in a half-space structure. The solutions
describing waves in a half-space can be found by solving an equivalent PML problem, when the PML boundary
condition is applied to the bottom of the unit cell. The dispersion diagrams of the surface guided waves for both
unit cell types are shown in figure 3 for different height to width ratios. The radiative region, or sound cone, is
indicated by the shaded violet area [40]. The boundary of this region is formed by the slowest bulk wave
propagating in the soil [40]. Therefore, propagating surface waves, the velocity of which is slower than that of
bulk waves [16, 41], are located outside the cone, while bulk modes, leaky surface modes as well as spurious
(unphysical) PML modes can be found within the cone [42]. For the unit cell with a cross-like cavity, two or three
BGs for surface waves exist in the corresponding band structure for various values of the unit cell height. These
BGs are located at almost the same frequencies as those predicted for the Lamb waves. Again, as for guided
waves, an increase of the LSM” height leads to a decrease in BG size (figure 3). The mode shapes for propagating
waves are shown in figures 3(d) and (e) indicating the localisation of motion near the free surface of the unit cell,
as expected for surface modes.

For phononic structures with hollow cylinders, the BGs predicted for guided waves are completely preserved
in the dispersion diagrams shown in figure 3(b). However, the BGs are located inside the sound cone and can
only inhibit the propagation of bulk or surface leaky waves. Hence, phononic-type metamaterials appear to be
inefficient for shielding propagating surface seismic waves, as was also found in previous works [24, 25].

Thus, among the three considered LSM” configurations, it is mainly the one with cross-like cavities that is
capable of efficiently attenuating destructive surface waves. Since the cavities are dug in sandy soil, the problem
of the technical feasibility and stability of the cavities may arise. However, this problem could be addressed by
containing the soil in a cavity boundary made of a thin layer of stiffer material, e.g. aluminium. This additional
layer results in a shift the BGs to slightly higher frequencies, but ensures sufficient soil compaction to avoid
failure due to flexural-torsional deformations (see supplementary material). Additionally, the presented analysis
remains valid for wave dispersion in stiffer soils, for which stability problems are less relevant, with appropriate
scaling to higher frequencies.

3.3. Time transient analysis

To validate the filtering capability of the proposed seismic shields based on LSM’s, we model the 3D
transmission of surface waves in realistic wave propagation scenarios. The model is a finite volume consisting of
ahomogeneous soil block of dimensions L; x L, x Ls = 200-200-100 m? containing an array of LSM’s. The
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Figure 3. Dispersion diagrams for Surface waves: Band structures for various H /a ratios for (a) cross-like cavity and (b) hollow
cylinder geometries, respectively. Mode shapes at the X point on (¢) f = 1.86 Hz for H/a = 1and(d), f = 2.78 Hz for H/a = 1for
the first geometry.

shielding region is formed by an array of unit cells of cross-like cavities or hollow cylinders with H = ¢ = 10 m,
arranged in a square grid around the area to be protected, as shown in figure 4(a). The unit cells are arranged in
four concentric square rings around an area of 10 x 10 m?. The mechanical constants for the soil are listed in
the previous section. In this case, soil damping is not accounted for, to evaluate the attenuation capability of the
introduced periodic structure only. Since unit cells with cross-like cavities can attenuate both bulk and surface
waves, as shown in the previous section, here we present results for this geometry only (see supplementary
material for the case of hollow cylinders).

To assess seismic shield performance, two different input signals are considered, both representative of a
seismic event with a multi-frequency content centred in the range of interest for the protected structures. The
two pulse shapes and their frequency contents are shown in figure 4(b): (i) 3 Hanning modulated sine cycles and
(if) 19 Hanning modulated sine cycles both centred at 5 Hz. Time transient explicit simulations with durations of
4.5and 10 s, respectively, are performed for the two inputs, respectively, to ensure that the pulses launched at
emission point E reach the acquisition points A; and A,, which are equally distanced at d = 90 m from E (see
figure 4(a)), but simultaneously to avoid reflections from the bottom boundary of the model.

Full-field out-of-plane displacement and Von Mises stress maps are calculated at various consecutive time
instants (see supplementary material) and reported at time step t = 3.4 s for the 19-cycle excitation in
figures 4(c) and (d), respectively. This analysis shows that ground vibration is efficiently attenuated for surface
waves with a frequency content falling inside the BGs, and therefore the seismic shield can provide a virtually
unperturbed area, even if reflections at the free boundaries of the volume are included. Furthermore, the

7
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Figure 4. Time transient analysis: (a) schematic representation of the finite element model. (b) Time evolution and frequency content
of the applied pulses: 3 (left) and 19 (right) sinusoidal cycles of a 5 Hz-centred signal modulated by a Hanning window. (c) Out-of-
plane displacement and (d) Von Mises stress field maps at time step ¢ = 3.4 s for the 19-cycle excitation. (e) Normalised out-of-plane
displacement at points A1 and A2 (upper box) and its Fourier spectrum (lower box) for the case of broadband and (f) narrowband
excitations. The complete BGs are also indicated in the light grey regions.

amplitude of the incoming wave rapidly decays on the surface and through the depth after the first 2-3 rows of
the LSM” inclusions. Moreover, the LSM? deviates the wave stress field below the shielded area at an angle that is
sufficient to protect the building foundations (figure 4(d)). Results show that only four LSM? rows in the shield
are sufficient to reliably reflect the incoming wave energy, effectively limiting the impact of seismic waves on the
protected area. Time transient displacements in the z direction are recorded at the two acquisition points A; and
A, for broadband and narrowband excitations (upper boxes of figures 4(e) and (f)), to allow quantitative
comparison between the motion registered in an ordinary portion of the soil (point A; ) and inside the designed
LSM” region (point A,), respectively. After acquisition, signals are Fourier transformed and their frequency
content is compared considering both actuation pulses (lower boxes of figures 4(e) and (f)). BGs predicted for
Lamb waves in the infinite system are also highlighted as shaded grey rectangles. Results show that the
introduction of the LSM? region reduces the ground motion considerably. In the case of the broadband
excitation, the peak displacement is decreased by approximately one order of magnitude with only 4 rows (from
3.32 down to 0.34—displacements are normalised to the maximum positive value of the displacement registered
inside the LSM?). Analysis of the frequency content of the signals shows that in the BG regions the spectrum of
the response at A, is reduced by a factor varying between 10 and 43 compared to that of signals taken at A;.
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Similar results are obtained when the depth of the source of excitation is varied, with an increasing reduction in
barrier efficiency for increasing impinging angles (see supplementary material). However, the surface source
hypothesis remains valid for surface waves that decay more slowly and are the most destructive among seismic
waves.

The effect of the proposed seismic shields is further verified including model structures in the simulations.
One example is a cultural heritage site such as the ‘Castello delle Quattro Torra’, near Siena, modelled
schematically in the FEM simulation. Figure 5(a) shows the normalised Von Mises stress field map (blue and red
colours represent minimum and maximum stress, respectively) for a shielded and non-shielded structure at
time step t = 5.3 sfor a5 Hz centred wave (19 modulated sine cycles). The non-shielded structure clearly
exhibits very high stress and deformation levels, inevitably leading to its collapse, whilst the shielded one is
subjected to sufficiently attenuated deformation levels to guarantee its structural integrity (see supplementary
material).

The screening efficiency of the proposed LSM’s is also investigated for different numbers of unit cell rows N,
and the risk mitigation capability is quantified relative to the MSK-76 Intensity scale and the associated peak
values of ground displacement [43]. Numerical models of cross-like-cavity or hollow-cylinder structures with 0,
1,2, 3 and 4 rows of LSM’s are considered. Figure 5(b) reports the maximum displacement I measured at the
surface as a function of the cross-like LSM> number of rows N for wave frequencies centred in the lowest BGs (at
3.75and 5 Hz). Displacements are normalised with respect to the maximum displacement I, obtained in the
case of no LSM”. The figure includes in the background the corresponding MSK-76 earthquake intensity ranges
(M X, MIX, M VIIL...). The same type of plot is provided in figure 5(c) for hollow-cylinder geometry LSM? and
wave excitation centred at its corresponding BGs at 6 and 8 Hz. In all cases, the wave amplitude significantly
decays as the number of unit cells increases, with an exponential-type decrease. Notably, the introduction of 4
rows of LSM? can lead to a seismic threat reduction between two and five orders of magnitude, from a highest
devastating-event magnitude of X to a medium level earthquake of magnitude VII or a moderate seism of level
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V, with a decrease of the corresponding perceived shaking level. The calculated reduction as a function of LSM?
rows can be fitted with an exponential-type phenomenological relation (also included in figure 5(a) and (b)) as

5]
I/I, = 67(1\%) , where 3and N are fitting parameters, the latter indicating a ‘critical’ number of LSM? rows
that provides a shielding factor of e. Parameter values are reported in table 1 for the corresponding LSM”
geometry. This equation can provide an approximate rule of thumb for the design of LSM’s in the low-
frequency range, according to the required shielding potential and specific BG frequency range. Overall results
lead to the conclusion that all considered LSM? geometries can usefully be exploited and adapted to the specific
requirements, depending on the soil characteristics and properties (e.g. resonant frequencies) of the shielded
structures.

3.4. Parametric study

Next, we analyse the effects of the elastic parameters of the unit cell constituents on the BG frequencies. This
study is performed for LSM? comprising hollow and locally resonant inclusions. In the case of hollow cylinders,
the material density p and Young’s modulus E are varied, while Poisson’s ratio and the cell size a remain
unaltered to the reference parameters mentioned above. Simulations show that mass density does not play a
significant role, while BGs are nucleated when the cylinder material is at least 250 times stiffer than the matrix. In
the case of a sandy soil, this means that concrete or steel inclusions would be adequate. Figure 6(a) shows the
width variation of the first two BGs for different values of E/E,;. The lower boundaries of the BGs are almost
unaltered, while the BG sizes are enlarged due to the shift of pass bands towards higher frequencies. This occurs
due to the increase of the stiffness of the cylinder inclusion, resulting in corresponding changes of the mode
shapes. The influence of the cylinder thickness R, — R; on the width of the first three BGs is shown in

figure 6(b). The first BG widens as the thickness of the inclusion increases, whereas the sizes of the second and
third BGs remain almost unaltered for inclusion thickness values beyond 0.1a, i.e. 1 m. The influence of the
filling fraction R, /a is shown in figure 6(c), highlighting BG widening and shifting towards higher frequencies
as R, /a increases. The optimal filling fraction is around R, = 0.4a. This analysis allows us to define optimal
parameters for this type of geometry, i.e. 8 m diameter, 1 m thick, hollow concrete cylinders.

In the case of locally resonant inclusions, only one BG appears, which is narrower compared to the previous
case. By changing the mechanical parameters, i.e. the E,per /Esoi Tatio, a shift of the BG central frequency
occurs (figure 6(d)). The increase of both the internal core mass density (figure 6(e)) and the R, /a ratio
(figure 6(f)) allows enlarging the BG size. However, the widest BG is smaller than the BGs nucleated in the case
with hollow cylinders. Also, the BG is found to nucleate only above the threshold of R, /a = 0.47. Thus, the
design solutions using cross-like cavities or hollow cylinders prove to be preferable compared to the case of
coated cylinders for seismic applications. Optimal geometric and material parameters for a square unit cell
arrangement are indicated in figures 6(a)—(f) with dashed-dotted lines, considering both sufficient BG properties
and ease of practical realisation of the structures. Further BG frequency enlargement may be achieved by using a
triangular arrangement of the scatterers, choosing the position in accordance with the suppression of the shear
potential energy of the first optical band, as demonstrated by Lai and Zhang [44] in a two-dimensional triangular
lattice of aluminium cylinders embedded in an epoxy host.

In general, seismic isolation systems based on local resonance effects allow the use of much smaller unit cells
(a = 2minstead ofa = 10 m for the other cases) to obtain BGs at approximately the same frequencies.
However, the chosen configuration of the locally resonant metamaterial is characterised by very narrow
inhibited frequency ranges and, thus, seems to be practically inefficient compared to two other proposed
configurations. Moreover, a small unit cell size in the depth direction may be counterproductive, since the
seismic waves with larger wavelengths can propagate below the locally resonant inclusions. Therefore, detailed
analysis of the wave attenuation performance for LSM? has been limited to unit cells with cross-like cavities and
hollow cylinders in this work.

3.5. Viscoelastic effects

Due to the presence of underground water, oil and gas, soil exhibits energy losses and time-dependent
mechanical characteristics. These effects can be taken into account by modelling the sandy soil, at least as the first
approximation, as a linear viscoelastic medium [45]. We thus analyse the influence of soil viscoelasticity on the
shielding capability and the BG sizes for the proposed LSM? in a low-frequency range. The simulations are
performed here for Lamb waves in the case of cross-like cavities with H = 10 m (table 1). Material damping in
the soil is presumed to increase linearly with frequency, as normally assumed when modelling wave propagation
in viscoelastic metamaterials [41, 46]. The shear modulus of the material G** therefore becomes complex-
valued: G0 = G@ + jwG”, with G = E/[2(1 + v)], whilst the bulk modulus is assumed to remain
unchanged from the elastic case to simplify the analysis: K("® = K() = E/[3(1—2v)]. Since viscoelastic
parameters depend on specific soil structure and differ for various compositions, we choose representative
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Figure 6. Parametric study on BG extension: BG upper and lower frequency bounds for hollow cylinders (a)—(c) and locally resonant
inclusions (d)—(f), as a function of: (a) the ratio between the Young’s modulus of the inclusion (E) and the matrix (E;o), (b) the
inclusion thickness R, — R; and (c) the R./a ratio; (d) the ratio between the Young’s modulus of the rubber (E,ppe;) and the matrix
(Esoi); (e) the external coating mass density (p,,.) and the inclusion (pg), and (f) the R, /a ratio with fixed ring thickness equal to
0.8a. Optimal parameter values are indicated with dashed—dotted lines.

values for the viscosity G” in order to perform a qualitative study of these effects (a parametric study is presented
in the supplementary material).

For viscoelastic metamaterials, the difference between propagating (with real-valued wavenumbers) and
evanescent (with imaginary or complex-valued wavenumbers) modes disappears due to the losses, and the
concept of BGs no longer applies [47]. Therefore, the analysis is performed by solving dispersion relations
between complex-valued wavenumbers (k = Rek + i*Imk) and real-valued frequencies f. The attenuation
properties of viscoelastic metamaterials can be evaluated by analysing the so-called attenuation spectrum
relating the wave attenuation level 7 = 2Im (k) / Re (k) to the frequency [48]. The attenuation spectrum for
waves propagatinginthe I' — X direction is given in figure 7 with red lines representing the attenuation of
seismic waves in the viscoelastic LSM?, blue and black lines showing attenuation of propagating and evanescent
waves, respectively, in the corresponding elastic structure (i.e. with zero viscosity). According to the definition of
7, the wave attenuation for the propagating waves in the elastic LSM” is zero outside the BGs and has finite values
for the evanescent modes. The BGs for the linear elastic case are highlighted by shaded regions in figure 7.
According to the adopted assumption, the wave attenuation increases linearly with the frequency but proves to
be more pronounced for frequencies falling between the BGs, i.e. between 3.2 and 3.4 Hz (highlighted rectangle
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Figure 7. Effects of viscoelasticity: attenuation spectrum for cross-like cavities, assuming viscoelastic or elastic soil behaviour. The BGs
for the elastic LSM? are highlighted by the shaded regions. High attenuation occurs between the BGs for the viscoelastic material, as
highlighted in the dashed-line rectangle.

in figure 7). At these frequencies, the attenuation is comparable to that inside the lowest BG and further increases
with the growth of the viscosity G” (see supplementary material). Therefore, the viscoelastic properties of the soil
improve the wave attenuation near the BG boundaries and may lead to the additional effect of joining’ closely
located BGs. Hence, we can conclude that the viscoelasticity of the ground enhances the shielding capability of
the proposed LSM?s and results in wider BGs with respect to those predicted by the corresponding linear elastic
model. The same conclusion remains valid for waves propagating in other directions and for hollow cylinder or
locally resonant inclusion cases (see supplementary material). In the case of locally resonant inclusions, the
viscoelastic behaviour of the matrix may lead to the decrease of the attenuation level inside the BG. However, the
shielding performance of the whole structure can be improved by choosing for the soft coating a more viscous
material than the matrix [46].

4. Discussion and conclusions

In summary, we have applied the concepts of phononic crystals and mechanical metamaterials to the field of
seismic protection and demonstrated their feasibility in attenuating low-frequency bulk, plate and surface
waves. The proposed systems, contrary to traditional structural foundation isolation strategies, which cause a
shift in the fundamental vibrating frequency of civil engineering structures, reduce the seismic wave energy by
means of BG attenuation mechanisms and prevent it from reaching the protected site. While this concept has
already been proposed in a limited number of recent papers, the present work is the first realistic and
comprehensive study on the topic, given that the study is performed with 3D simulations, it takes into account
the layered structure of the soil, includes viscoelastic effects, and is based on both phononic crystal and locally
resonant structures. Various design configurations, based on both cross-like cavities and cylindrical inclusions,
have been explored and all display shielding potential in the seismic frequency range of interest of a few Hz. All
analysed geometries can be constructed relatively easily and cheaply with the current technological state-of-the-
art. The lateral dimension of the phononic-type LSM’s are approximately 10 m, but reduce to only 2 min the
case of locally resonant structures, making the practical realisation of these structures possible from a technical
point of view and feasible from an economic point of view when compared to the costs involved with earthquake
damage. Locally resonant systems have rather narrow BGs, so that alternative design solutions may be required
to broaden the frequency attenuation range, e.g. arrays of locally resonant inclusions each having different BG
frequencies [26], depending on the specific site and on the structures to be protected. Parametric analysis shows
that BG nucleation in locally resonant structures occurs for LSM? depths of the order of their lateral size (~2 m ),
and thata further increase of the depth results in decreased BG size for both surface and Lamb waves. Since these
depth dimensions are small compared to wavelengths of typical seismic waves, vertical arrays of inclusions can
be used down to the necessary depth to improve the attenuation efficiency of these structures. In the case of both
considered cylindrical geometries, optimal stiffness and thickness values can be found to maximise the BG size.
Furthermore, analysis of soil viscoelastic effects shows that any level of viscosity (from small to medium value)
improves the attenuation potential of the designed structures and their extension to wider frequency ranges.
These results indicate that the proposed seismic isolation strategy is theoretically effective as well as
technically feasible. For example, during the El Centro earthquake, the maximum measured displacement was
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of approximately 21.64 cm, corresponding to an event between IX and X degrees of severity in the MSK-76
intensity scale [43]. The application of 4 rows of hollow-cylinder geometry LSM” would have locally reduced the
event by five degrees in the 8 Hz range, in which only slight damage to a few poorly constructed buildings would
be expected. The performed 3D time-transient numerical simulations confirm results obtained from unit cell
analysis and prove the shielding capability of the proposed LSM?s. An approximate exponential-type relation is
also derived for the normalised earthquake intensity as a function of LSM? rows in the low-frequency regime, to
provide an indicative design tool for seismic shields. The presented analysis can be exploited to provide
schematic practical guidelines for the design of LSM” seismic shields in real cases, as follows:

-Estimate the main frequencies at which risk is concentrated (e.g., the resonance frequencies of the structure);

-Determine the mechanical properties of the surrounding soil and choose LSM? unit cell dimensions based
on the resulting maximal threat wavelength;

-Select optimal LSM” type, parameters and number of rows to obtain the desired shielding effect based on
results from figure 6 and table 1.

These structures can be further optimised and adapted to the specific application of interest, e.g. to
distributed as well as localised sites. Nevertheless, the present study already demonstrates the feasibility of the
proposed innovative seismic isolation strategy, which could potentially lead to a considerable reduction of
human casualties and socio-economic impacts.
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