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Towards Chaos in Vibrating
Damaged Structures—Part II:
Parametrical Investigation
The aim of the present paper is to evaluate the complex oscillatory behavior, i.e., the
transition to chaos, in damaged nonlinear structures under excitation. In the present
paper, Part II, we apply the theoretical approach described in Part I to perform an
extensive parametrical investigation. We focus our attention on a cantilevered beam with
several breathing cracks subjected to sinusoidal excitation. The numerical simulations
have been performed by varying the number of cracks, their depth and position, as well
as the amplitude, frequency and position of the excitation, for a total of 83 different
cases. �DOI: 10.1115/1.1934631�
1 Introduction

As shown in Part I, the proposed theoretical and numerical
approach can be successfully applied to the study of damaged
structures. The aim of the present paper, Part II, is to perform an
extensive parametrical investigation to describe the influence of
the main parameters on the dynamic behavior of the considered
system. For a given model, the system complexity is a function of
the complexity of the structure, as well as of the complexity of the
excitation. Focusing our attention to the excited cracked cantile-
vered beam introduced in Part I, we have performed a parametri-
cal investigation by varying the main parameters influencing the
structural complexity, i.e., the cracks’ number, depth and position,
as well as the force amplitude, frequency and position, for a total
of 83 different cases.

Several researchers have studied the problem of a beam with a
breathing crack from analytical, numerical and experimental
viewpoints �1–7�. In particular, relevant numerical investigations
have been presented in Ref. �1�, by using the Finite Element
Method and in Ref. �2�, applying directly numerical integration. In
spite of this, an extensive parametrical investigation on the topic
is entirely absent in the literature and is the object of the present
paper �Part II�.

The method, described in detail in Part I, has permitted to cap-
ture the influence of the different parameters on the complex be-
havior for the nonlinear structure, as well as the transition towards
deterministic chaos, i.e., towards a nonperiodic response of the
structure subjected to periodic excitation.

In particular, we have found that, if a weak nonlinearity is con-
sidered, only offset and super-harmonic components can be ob-
served in the structural response. On the other hand, if the non-
linearity becomes stronger, also sub-harmonic components can be
observed in the structural response, providing the so-called com-
plex behavior.

Furthermore, the influence of each parameter on the structural
behavior will be discussed on the basis of the presented extensive
parametrical investigation. A new methodology for vibration-
based inspections will also be presented.
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2 Parametrical Simulations
As an example, we focus our attention onto a clamped beam. It

is 270 mm long and has a transversal rectangular cross section of
base and high, respectively, equal to 13 and 5 mm. The material is
UHMW-ethylene, with a Young’s modulus of 8.61�108 N/m2

and a density of 935 kg/m3. We have assumed a modal damping
of 0.002. The beam has been discretized with 20 finite elements.
We have found that a Complexity Index �=4 and a number of
terms N=16 give a good approximation �i.e., for larger values of
� and N substantially identical solutions are obtained�. The first
natural frequency of the undamaged structure is fu=10.6 Hz.

The extensive parametrical investigation has been performed by
varying the main parameters quoted in Fig. 1. These parameters
affect the behavior of the system, as summarized in the following:

�A� By varying the depth of a crack localized at one-half of the
total length of the beam;

�B� by varying the depth of a crack localized at one-third of
the total length of the beam;

�C� by varying the crack position;
�D� by varying the excitation frequency;
�E� by varying the excitation amplitude;
�F� by varying the depth of one crack �in a beam containing

two cracks�;
�G� by varying the position of the excitation �in a beam con-

taining two cracks�.

Each of these families of parametrical simulations is separately
treated in a specific section. The outputs from each simulation are
the same as presented in the examples of Part I. As structural
response we present only the normalized amplitude, correspond-
ing to a given frequency component. It is defined as the ratio of
the amplitude of the considered frequency component to the am-
plitude of the linear one �the component of the response with the
same frequency of the excitation� related to the displacement of
the free-end, i.e.,

�Normalized Amplitude� j�� =
�A20j

2 + B20j
2

�A20�
2 + B20�

2
�1�

with reference to the variables introduced in Part I.

2.1 Parametrical Simulations by Varying the Depth of a
Crack Localized at One-Half of the Total Length of the Beam
(A). These numerical simulations consider one crack with a vari-
able depth of a1. They are indicated by the letter A. Referring to
Fig. 1, the coordinate of the crack is d1=135 mm �at one-half of

the total length of the beam�, the force amplitude is F=5N with a
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eters numerically investigated

„b… „AII…. „c… „AIII…. „d… „AIV….
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frequency f of 25 Hz �to compare with the first natural frequency
of the undamaged structure, fu=10.6 Hz�. The parameters of the
simulations are summarized in Table 1. The numerical responses
in terms of the normalized amplitude of Eq. �1� as a function of
the crack depth are presented in Fig. 2. Figure 2�a� considers the
frequency components j=0,1 ,2 ,3, as well as Figs. 2�b�–2�d�, re-
spectively, the components groups j=5–8; j=9–12− j=13–16. It
is very interesting to note that the first symptom of the presence of
a crack, i.e., of the nonlinearity, is the offset �j=0, 0-frequency� in
Fig. 2�a�, as well as the super-harmonic components, i.e., j
=8�2��, j=12�3��, and j=16�4��, which are also present for
small crack depths. As a consequence, we can affirm that the
nonlinearity implies a natural rupture of the symmetry of the prob-
lem �i.e., an offset�. A rather considerable presence of sub-
harmonic components arises after a threshold value of crack
depth, which is around one-half of the total height of the beam.
For this excitation frequency �around twice the first natural fre-
quency�, the component of period doubling �� /2� and its mul-
tiples �3� /2 , 5� /2 , 7� /2� are clearly prevailing.

2.2 Parametrical Simulations by Varying the Depth of a
Crack Localized at One-Third of the Total Length of the
Beam (B). These numerical simulations consider one crack with a
variable depth of a1. They are indicated by the letter B. Referring
to Fig. 1, the coordinate of the crack is d1=90 mm �at one-third of
the total length of the beam�, the force amplitude is F=2N with a
frequency f of 19 Hz. The parameters of the simulations are sum-
marized in Table 2. The numerical responses in terms of the nor-
malized amplitude of Eq. �1� as a function of the crack depth, are
presented in Fig. 3. The results are similar to those of the previous

am…—Numerical simulations by varying the crack depth „a… „AI….
Table 1 One crack „localized at one-half of the total length of
the beam…—Numerical simulations by varying the crack depth
„A…

One crack—a1 variable
d1=135 mm; F=5N; f =25 Hz

a1 �mm� Case

1.0 A1
2.0 A2
2.2 A3
2.4 A4
2.6 A5
2.8 A6
3.0 A7
3.2 A8
Fig. 1 The considered nonlinear system and the main param-
Fig. 2 One crack „localized at one-half of the total length of the be
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case. The main difference herein is that we have a higher nonlin-
earity due to the reduction of the distance between crack and
clamp. In addition, in this case we have also considered a crack
with a higher depth. If the nonlinearity increases �larger crack
depth or lower distance between crack and clamp�, other sub-
harmonic components, not necessarily a multiple of that of period

Table 2 One crack „localized at one-third of the total length of
the beam…—Numerical simulations by varying the crack depth
„B…

One crack—a1 variable
d1=90 mm; F=2N; f =19 Hz

a1 �mm� Case

1.0 B1
2.0 B2
2.2 B3
2.4 B4
2.6 B5
2.8 B6
3.0 B7
3.2 B8
3.4 B9
3.6 B10
3.8 B11
4.0 B12
4.2 B13
4.4 B14
4.6 B15
4.8 B16

Fig. 3 One crack „localized at one-third of the total length of t

„BI…. „b… „BII…. „c… „BIII…. „d… „BIV….
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doubling, arise in the dynamic response. In this case, as in the
previous one, the frequency of the excitation is around twice the
first natural one.

2.3 Parametrical Simulations by Varying the Crack Posi-
tion (C). These numerical simulations consider one crack with a
depth of a1=4.25 mm. They are indicated by the letter C. Refer-
ring to Fig. 1, the coordinate d1 of the crack is assumed variable;
the force amplitude is F=5N with a frequency f of 25 Hz. The pa-

Table 3 One crack—Numerical simulations by varying the
crack position „C…

One crack—d1 variable
a1=4.25 mm; F=5N; f =25 Hz

d1 �mm� Case

260 C1
240 C2
220 C3
200 C4
180 C5
160 C6
140 C7
120 C8
100 C9
80 C10
60 C11
40 C12

beam…—Numerical simulations by varying the crack depth „a…
he
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th
rameters of the simulations are summarized in Table 3. The nu-
merical responses in terms of the normalized amplitude of Eq. �1�
as a function of the crack position, are presented in Fig. 4. These
diagrams clearly show that some particular crack positions, corre-
sponding to a linear behavior, can be identified along the beam.
These positions correspond to inflexion points in the beam elastic
line, where the curvature is zero. In these positions the crack does
not breath, so that it does not introduce a nonlinear behavior. For
our cases, the inflexion point is between one-half and one-third of
the beam length, starting from the clamp. Another inflexion point
is clearly shown at the free-end of the beam: A crack placed in the
extreme finite element does not change the linear behavior of the
structure. This phenomenon can be used to detect the crack posi-
tion. A real structure can be, in fact, monitored by varying the
excitation �typically in terms of frequency�. A linear behavior,
corresponding to a particular value of the excitation frequency,
implies a crack in the inflection point of the elastic line corre-
sponding to that frequency. In the case considered in Fig. 4, the
nonlinearity vanishes around the inflexion point corresponding to
the second modal shape �consider that the first natural frequency
of the undamaged structure is around one-half of that of excita-
tion�. In addition, Fig. 4 clearly shows that the nonlinearity in-
creases if the distance between crack and clamp decreases, as
previously observed combining simulations A and B. As a matter
of fact, the sub-harmonic components can become predominant
with respect to the super-harmonic ones.

2.4 Parametrical Simulations by Varying the Excitation
Frequency (D). These numerical simulations consider one crack
with a depth of a1=4.25 mm. They are indicated by the letter D.
Referring to Fig. 1, the coordinate of the crack is d1=90 mm, the

Fig. 4 One crack—Numerical simulations by varying
force amplitude is F=2N with a variable frequency f . The param-
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eters of the simulations are summarized in Table 4. The numerical
responses in terms of the normalized amplitude of Eq. �1� as a
function of the excitation frequency are presented in Fig. 5. The
most interesting result is that a particular harmonic component

Table 4 One crack—Numerical simulations by varying the am-
plitude of the excitation „D…

One crack—f variable
a1=4.25 mm; d1=90 mm; F=2N

f �Hz� Case

2.0 D1
2.5 D2
3.3 D3
4.0 D4
5.0 D5
5.5 D6
6.5 D7
8.5 D8
11.0 D9
12.0 D10
13.0 D11
14.5 D12
15.0 D13
17.0 D14
18.0 D15
19.0 D16
19.5 D17
23.0 D18
25.0 D19
30.0 D20
34.0 D21
38.0 D22
49.8 D23

e crack position „a… „CI…. „b… „CII…. „c… „CIII…. „d… „CIV….
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becomes predominant in relation to its own resonance. This means
that the component of frequency mf �m= j /�� becomes predomi-
nant when the frequency of the excitation satisfies:

f �
f0

m
�2�

f0 being the first natural frequency of the damaged structure �in
the present case it is around 9.5 Hz�. Therefore, the 3

4� compo-
nent, for example, goes into resonance around f �4/3�9.5 Hz
�13 Hz, as well as the 1

2� component goes into resonance around
f �2�9.5 Hz�19 Hz, according to the numerical results of Fig.
5�a�. This phenomenon has been observed for all the frequency
components.

2.5 Parametrical Simulations by Varying the Excitation
Amplitude (E). These numerical simulations consider one crack
with a depth of a1=4.25 mm. They are indicated by the letter E.
Referring to Fig. 1, the coordinate of the crack is d1=90 mm, the
excitation frequency is f =12 Hz and the force amplitude F is
variable. The parameters of the simulations are summarized in
Table 5. The numerical responses in terms of the normalized am-
plitude of Eq. �1� as a function of the frequency of the excitation
are presented in Fig. 6. The results show that the stable solution is
the trivial one of linearity with respect to the force amplitude. The
existence of this linear solution appears rather obvious, as sug-
gested by the motion equation reported in the companion paper
�Part I�.

2.6 Parametrical Simulations Considering Two Cracks
and Varying the Depth of One of them (F). These numerical
simulations consider two cracks, one of depth a1=4.25 mm and

Fig. 5 One crack—Numerical simulations by varying the fr
the other of variable depth a2. The simulations are indicated by

Journal of Applied Mechanics
the letter F. Referring to Fig. 1, the coordinates of the cracks are
d1=90 mm and d2=180 mm, the force amplitude is F=2N with a
frequency f of 19 Hz. The parameters of the simulations are sum-
marized in Table 6. The numerical responses in terms of the nor-
malized amplitude of Eq. �1� as a function of the crack depth are
presented in Fig. 7. According to these diagrams, the nonlinearity
seems to be less sensitive with respect to the crack depth a2. This
simply means that the predominant crack is the first one, since it is
closer to the clamp. The trend changes only for very high depths
a2.

2.7 Parametrical Simulations Considering Two Cracks
and Varying the Position of the Excitation (G). These numerical
simulations consider two cracks, both of depth a1=a2=4.25 mm.
The simulations are indicated by the letter G. Referring to Fig. 1,
the coordinates of the cracks are d1=90 mm and d2=180 mm, the

Table 5 One crack—Numerical simulations by varying the am-
plitude of the excitation „E…

One crack—F variable
a1=4.25 mm; d1=90 mm; f =12 Hz

F �N� Case

2.0 E1
1.0 E2
0.5 E3

ency of the excitation „a… „DI…. „b… „DII…. „c… „DIII…. „d… „DIV….
equ
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force amplitude is F=2N, with a frequency f of 19 Hz and the
position of the excitation dF is variable. The parameters of the
simulations are summarized in Table 7. The numerical responses
in terms of the normalized amplitude of Eq. �1� as a function of
the position of the excitation are presented in Fig. 8. According to
these diagrams, the nonlinearity presents a clear transition be-
tween the two cracks, larger near the first than near the second
one. The largest nonlinearities arise for values of the force posi-
tion between the first crack and the clamp. A very interesting

Fig. 6 One crack—Numerical simulations by varying the am-
plitude of the excitation „E…
Fig. 7 Two cracks—Numerical simulations by varying the
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result is that the stronger nonlinearity appears for excitations near
the position of the predominant crack. It is important to note that
the trend does not change substantially when the force position is
closer to the clamp �consider that these are contributions normal-
ized with respect to the linear one, see Eq. �1�, so that they do not
vanish near the clamp�.

Table 6 Two cracks—Numerical simulations by varying the
depth of one crack „F…

Two cracks—a2 variable
a1=4.25 mm; d1=90 mm;

d2=180 mm; F=2N; f =19 Hz

a2 �mm� Case

0.00 F1
1.00 F2
2.00 F3
2.20 F4
2.40 F5
2.60 F6
2.80 F7
3.00 F8
3.20 F9
3.40 F10
3.60 F11
3.80 F12
4.00 F13
4.20 F14
4.25 F15
4.40 F16
depth of one crack „a… „FI…. „b… „FII…. „c… „FIII…. „d… „FIV….
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3 General Discussion
The theoretical and numerical approach presented in the com-

panion paper �Part I� appears very useful in the study of highly
nonlinear forced vibrations for damaged structures. It permits us
to take into account the interaction of several breathing cracks. In
the case of high nonlinearity, the super-harmonic frequency com-
ponents become insufficient to catch the real behavior of the struc-
ture. As a consequence �offset and� sub-harmonic components
must be taken into account. One example is given by the period
doubling phenomenon, recently experimentally observed and dis-
cussed in both Parts I and II. The extensive parametrical simula-
tions, presented in Part II, have been performed by varying all the
main parameters influencing the dynamic behavior of the struc-
ture: The number of cracks, their depth and position, as well as the

Table 7 Two cracks—Numerical simulations by varying the
position of the excitation „G…

Two cracks—dF variable
a1=a2=4.25 mm; d1=90 mm;
d2=180 mm; F=2N; f =19 Hz

dF �mm� Case

270.0 G1
189.0 G2
135.0 G3
94.5 G4
13.5 G5
Fig. 8 Two cracks—Numerical simulations by varying the pos

Journal of Applied Mechanics
amplitude, frequency, and position of the excitation.
The results can be summarized as follows:

�1� For a weak nonlinearity, we have to take into account in the
structural response not only the super-harmonic frequency
components but also an offset �zero-frequency�;

�2� for a stronger nonlinearity, we have to take into account not
only the super-harmonic frequency and offset components
but also the sub-harmonic ones �complexity and transition
to deterministic chaos�;

�3� if a crack implies, as a particular case, a linear behavior of
the structure, we can conclude that the crack position is
close to an inflection point of the elastic line corresponding
to the excitation frequency. This result could be useful to
improve the techniques of vibration-based inspection;

�4� the nonlinearity increases if the position of the excitation
becomes closer to the crack �or, obviously, if the crack
position becomes closer to the clamp, or if the crack depth
becomes larger�;

�5� the component of frequency mf becomes predominant in
correspondence of its own resonance, when the frequency
of the excitation satisfies f � f0 /m;

�6� the behavior becomes linear with respect to the amplitude
of the excitation.
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