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Spider silk is a remarkable example of bio-material with superior mechanical characteristics. Its

multilevel structural organization of dragline and viscid silk leads to unusual and tunable proper-

ties, extensively studied from a quasi-static point of view. In this study, inspired by the Nephila spi-

der orb web architecture, we propose a design for mechanical metamaterials based on its periodic

repetition. We demonstrate that spider-web metamaterial structure plays an important role in the

dynamic response and wave attenuation mechanisms. The capability of the resulting structure to

inhibit elastic wave propagation in sub-wavelength frequency ranges is assessed, and parametric

studies are performed to derive optimal configurations and constituent mechanical properties. The

results show promise for the design of innovative lightweight structures for tunable vibration damp-

ing and impact protection, or the protection of large scale infrastructure such as suspended bridges.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961307]

Many natural materials display outstanding properties

that can be attributed to their complex structural design,

developed in the course of millions of years of evolution.1–3

Particularly fascinating are spider silks, which exhibit unri-

valled strength and toughness when compared to most mate-

rials.4–7 Previous studies have revealed that mechanical

performance of spider webs is not only due to the remarkable

properties of the silk material, but also to an optimized archi-

tecture that is adapted to different functions.8,9

Structural behaviour of orb spider webs has been exten-

sively analyzed under quasi-static6,8,10 and dynamic11,12

loading conditions. However, the spider-web structure has

yet to be exploited for the design of phononic structures.

These are usually periodic composites capable of inhibiting

the propagation of elastic waves in specific frequency ranges

called band gaps. This unique ability opens a wide range of

application opportunities, such as seismic wave insulation,13

noise reduction,14 sub-wavelength imaging and focusing,15

phonon transport,16 strain-dependent thermal conductivity,17

acoustic cloaking,18 and thermal control.19 In phononic

structures, band gaps are induced by either Bragg scattering

from periodic inhomogeneities20 or by local resonances.21

The latter are commonly achieved by employing heavy con-

stituents.21–24 Recently, it has been found that hierarchically

organized continuous25 or lattice-type26,27 structures exhibit

band gaps due to the two mentioned mechanisms. From this

perspective, a spider web-inspired, lattice-based elastic

metamaterial seems to be another promising alternative to

simultaneously control wave propagation at multi-scale fre-

quencies. In this letter, we design a metamaterial inspired by

the Nephila orb web architecture and analyze the dynamics

of elastic waves propagating therein, with the aim of obtain-

ing improved structures compared to simple lattices.28

We consider a spider web-inspired metamaterial in the

form of an infinite in-plane lattice modeled by periodically

repeating representative unit cells in a square array. The pri-

mary structure of the unit cell is a square frame with support-

ing radial ligaments (Fig. 1(a)). The ligaments intersect the

frame at right-angle junctions acting as “hinge” joints (square

junctions in Fig. 1(a)). The secondary frame is defined by a

set of equidistant circular ligaments (or ring resonators)

attached to the radial ligaments by hinge joints, in the follow-

ing called “connectors” to distinguish them from the joints in

the first frame (Fig. 1(b)). The geometry of the metamaterial

is completely defined by 5 parameters: unit cell pitch a, size

of square joints b, thickness of radial and circular ligaments c,

number of ring resonators N, and radius of a ring resonator

RN. We initially consider a ¼ 1m, b ¼ 0:04 � a, c ¼ 0:01 � a,

N¼ 7, and RN ¼ 0:1 � a � ðN þ 1Þ=2. The material properties

FIG. 1. (a) Bearing frame and (b) spider web-inspired unit cells for lattice-

type metamaterials.
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of the primary and secondary frames correspond to the param-

eters of dragline (Ed¼ 12 GPa, �d ¼ 0:4; qd ¼ 1200 kg=m3)

and viscid (Ev¼ 1.2 GPa, �v ¼ 0:4; qv ¼ 1200 kg=m3) silks

of the Nephila orb spider web,9 respectively. Material proper-

ties of the connectors can assume dragline or viscid silk

values. The propagation of elastic waves is investigated

numerically by using the Finite Element commercial package

COMSOL Multiphysics. Wave dispersion in infinite lattices

is studied by applying the Bloch conditions23 at the unit cell

boundaries and performing the frequency modal analysis for

wavenumbers along the borders CXM of the first irreducible

Brillouin zone.29

First, we study small-amplitude elastic waves propagat-

ing in an infinite structure formed by the primary frame unit

cell (Fig. 1(a)), called “regular lattice” metamaterial. Fig. 2(a)

shows band diagrams for the regular lattice as a function of

reduced wave vector k� ¼ ½kxa=p; kya=p�. The color scale,

here and in other diagrams, shows polarization of waves

propagating along the x direction that varies from pure shear

(blue) to pure longitudinal (red). Up to 400 Hz, there is one

negligible band gap around 80 Hz. The band structure exhib-

its localized modes at various frequencies represented by

(almost) flat bands. Analysis of the vibration forms reveals

that the motion is localized within the radial ligaments, which

are mainly subjected to flexural deformation (Fig. 2(e)).

Next, the circular elements are introduced to analyze the

wave dispersion in a spider web-inspired metamaterial (Fig.

1(b)). Here, we explore three possibilities: (1) the circular

ligaments have the same material properties as the radial lig-

aments (dragline silk); (2) the circular ligaments are made of

viscid silk, while connectors of radial and circular ligaments

have the properties of dragline silk, and (3) both the circular

ligaments and the connectors are made of viscid silk. This

allows evaluating the influence of material parameters on the

performance in the spider-web structures. Fig. 2(b) shows

the band diagram for the metamaterial made of the dragline

silk with a complete band gap at frequencies from 346.5 to

367.4 Hz, which is shaded in light gray. As the band gap

bounds are formed by non-flat curves and the whole unit cell

is involved in the motion at the band gap bound (Fig. 2(f)),

this band gap is not due to local resonances. Also, the band

gap cannot be induced by Bragg scattering, as it is located at

least twice below the frequencies at which a half-wavelength

of either longitudinal (2314 Hz) or shear (945 Hz) waves in

the silk is equal to the unit cell size. Further analysis of the

band gap origin is beyond the scope of this letter, since we

are focusing on a spider web-inspired structure with different
mechanical properties for radial and circular ligaments.8,9

Another remarkable feature of the band structure in Fig. 2(b)

is the smaller number of localized modes compared to Fig.

2(a), which may be explained with the elimination of local

resonances due to the coupling between motions in radial

and circular ligaments.

By assigning viscid silk material properties to ring reso-

nators, two band gaps appear in Figs. 2(c) and 2(d), regard-

less of the material properties of the connectors joining

radial and circular ligaments. Due to the compliant behav-

iour of the resonators, the band gaps are located at lower fre-

quencies compared to those in Fig. 2(b). These are so-called

hybridization band gaps induced by local resonances, since

FIG. 2. (a) Band structure for the regular lattice. (b)–(d) Band structures and contour plots of dispersion surfaces at the upper and lower BG boundaries for spi-

der web-inspired lattices: (b) stiff ring resonators (dragline silk), (c) compliant ring resonators (viscid silk) and rigid connectors (dragline silk), and (d) compli-

ant ring resonators and connectors. Band gaps are shaded in gray and the color of pass bands represents the mode polarization ranging from pure shear (blue)

to pure longitudinal (red). (e)–(h) Mode shapes referring to points A, B, C, and D of the dispersion diagrams.
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the lower bounds are formed by flat curves representing

localized motions (Figs. 2(g) and 2(h)), and the Bloch wave

vector k� changes by p inside each band gap.31 When the

ring resonators and the connectors have the same mechanical

properties (viscid silk), the band gaps are shifted to lower

frequencies due to a more compliant behaviour of the con-

nectors (compare Figs. 2(c) and 2(d)).

To investigate the wave directionality, we evaluate dis-

persion surfaces for all directions within the first Brillouin

zone. The results are shown as contour plots for pass bands at

the band gap bounds (bottom and top figures on the right of

each band diagram in Fig. 2). The color scales represent the

values at which frequency cuts are performed. The contour

plots reveal preferred directions of propagation at h ¼ 0�

(h ¼ 90�) that indicates strong anisotropy in the wave disper-

sion near the band gaps, as in other phononic structures.30

Another peculiarity of the band diagrams in Figs. 2(c)

and 2(d) in comparison to Figs. 2(a) and 2(b) is a larger num-

ber of localized modes. In the former case, these modes are

associated with standing waves mostly dominated by high

inertia of the resonators (Figs. 2(g) and 2(h)). If the connec-

tors between radial and circular ligaments have the same

material properties as the ring resonators (the closest config-

uration to a real spider web), it appears that the standing

waves may be associated with the resonators only.

The natural frequencies xn for non-axisymmetric in-

plane flexural vibrations of these resonators can be

expressed32 in closed form as: xn ¼ k nðn2�1Þ
R2
ffiffiffiffiffiffiffiffi

n2þ1
p , with n> 1.

Here, R stands for the radius of a ring resonator, and k is a

dimensional constant that depends on the elastic modulus of

the ring resonator, the mass density, and its cross-section.

Vibrational modes for several values of n are shown in the

supplementary material. However, this analytical solution

does not describe the dynamics of spider-web lattice systems

satisfactorily, since their response is governed by the entire

structure and not the individual decoupled resonators (see

the supplementary material for details). More insight into the

wave dynamics in the proposed metamaterials is achieved by

analyzing the mode transformations for varying geometrical

and mechanical parameters (see the supplementary material).

Next, we vary the stiffness of ring resonators by choosing

intermediate values between those of dragline and viscid

silks. The overall band diagrams resemble those shown in

Figs. 2(c) and 2(d). Thus, we focus our attention only on the

band gaps. Fig. 3 shows band gap frequencies versus ratios

Err=Erl, where Err¼ 12 GPa and Erl are the stiffnesses of the

ring resonators and radial ligaments, respectively. In general,

as the stiffness of the ring resonators increases, inhibited fre-

quency ranges are translated towards higher frequencies,

except the lowest band gap around 150 Hz with frequencies

independent of the mechanical parameters of the resonators.

Now we investigate the transmission in finite-size spi-

der-web inspired structures. The analysed model comprises

25 unit cells placed in a square array with traction-free

boundary conditions. The structure is excited at the central

point by applying harmonic in-plane displacement at a fre-

quency of 186 Hz (within a band gap) at an angle of p=4

with respect to the horizontal axis. Fig. 4 presents frequency-

domain responses (scaled by a factor of 45 000) in terms of

in-plane displacements for two structures formed by the reg-

ular and spider-web lattice unit cells with viscid silk ring res-

onators. Maximum and minimum values of displacements

are shown in red and dark blue, respectively. Notice that all

of the regular-lattice structure vibrates (Fig. 4(a)), while the

spider web-inspired system is capable of strongly attenuating

vibrations after a few unit cells (Fig. 4(b)). A similar behav-

iour is observed for other excitation frequencies within the

band gaps. These results confirm the predictions derived

from the wave dispersion analysis. Fig. 4(b) suggests as an

application the generation of a defect mode in a cluster with

localized vibrations around its center for efficient wave

attenuation at desired frequencies.

In summary, we have numerically studied the propaga-

tion characteristics of elastic waves in regular and spider

web-inspired beam lattices, based on the Nephila orb web

architecture. Our results indicate that these lattices possess

locally resonant band gaps induced by either ring-shaped res-

onators or parts of the bearing frame. Dispersion analysis

reveals strong anisotropic dynamics of spider-web lattices and

the mixed character of localized modes. The band gaps can be

easily tuned in a wide range of frequencies by varying the

mechanical properties or the number of the resonators, or

even the properties of the connectors between resonators and

the frame. Despite the fact that the ring resonators are respon-

sible for the generation of band gaps, their eigenfrequencies
FIG. 3. Band gap frequencies for the lowest band gaps as functions of ratio

Err=Erl (Err¼ 12 GPa).

FIG. 4. Frequency domain in-plane displacements (scaled by 45 000) for a

point excitation of frequency 186 Hz applied at an angle p=4 with respect to

the horizontal axis in (a) a regular-lattice structure and (b) spider web-

inspired system with viscid-silk ring resonators. Red and blue colors indicate

maximum and minimum displacements, respectively.
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cannot be directly used to predict the band gap bounds, since

the overall structure plays an important role in their forma-

tion. Though lattice systems with locally resonant band gaps

have already been reported,26,27 this study shows that spider

web-inspired lattice metamaterials are particularly efficient in

inducing low-frequency band gaps despite being light-weight.

Also, they possess more parameters to tune the band gaps to

desired frequencies and are easier to manipulate/manufacture

compared to hierarchically organized lattice structures. Thus,

results from this study can inspire further designs of light-

weight and robust metamaterial structures with tunable prop-

erties. This work also suggests an advanced functionality for

spider webs and future applications for the corresponding

metamaterials and metastructures, e.g., for earthquake protec-

tion of suspended bridges.

See supplementary material for more details.
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A. Dispersion properties 

To investigate further details of the wave dispersion in proximity of BGs for the considered 

metamaterial configurations, we calculate group velocities 𝑣𝑔 = 𝑑𝜔 𝑑𝑘⁄  and contour plots 

of dispersion surfaces for all directions of propagation. Figure S1 shows a schematic 

representation of the first irreducible Brillouin zone and Figure S2 shows the group velocity 

profiles for three spider-web inspired metamaterial configurations, the band structures of 

which are given in Figs. 2b-d of the main text. In particular, Fig. S2a provides 𝑣𝑔 curves 

along the 1st irreducible Brillouin zone for a stiff frame and stiff ring resonators for 7th-10th 

pass bands. Figs. S2b and c show group velocities for the lower and upper bounds of the 1st 

BG for configurations with compliant ring resonators and (b) stiff or (c) compliant 

connectors joining the radial and circumferential ligaments. 

 

 

FIG. S1. 1st irreducible Brillouin zone. 
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(a) (b) (c) 

FIG. S2. Group velocity vg curves along the borders of the 1st irreducible Brillouin zone for 

spider-web inspired lattices for (a) stiff frame and stiff ring resonators (7th to 10th curves) 

and compliant ring resonators with (b) stiff (bounds of the 1st BG) and (c) compliant 

connectors joining the radial and circumferential ligaments (bounds of the 1st BG). 

 

Notice the presence of regions with negative group velocities in the Γ − M path and zero or 

almost zero group velocities (corresponding to localized modes) in proximity of the high 

symmetry points. 

Finally, Fig. S3 shows the contour plots of dispersion surfaces corresponding to the 

branches below and above the first BGs presented in Fig. 2 b-d, from which it is possible to 

infer the potential of directionality of the considered system. Namely, the isofrequency 

contour plots for some modes at specific frequencies appears as approximately circular, 

which suggests a quasi isotropic behaviour for that frequency range. In contrast dispersion 

surfaces for other modes, or for the same mode but at different frequencies appear mostly 

aligned along preferential directions (namely x and y), suggesting a very anisotropic 

behaviour in the system. 
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FIG. S3. Contour plots for dispersion surfaces corresponding to the branches below and 

above the first BGs presented in Fig. 2 b-d (main text).  
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B. Dependence on number of ring resonators 

We now investigate the evolution of the analyzed band structures by varying the number of ring 

resonators. Fig. S4 shows dispersion diagrams for the unit cells with 1, 3, 5 and 7 stiff ring 

resonators (dragline silk). In all cases, the unit cells with a reduced number of resonators are 

obtained by removing the most internal resonators from the original geometry shown (Fig. 1b). Stiff 

rings are chosen here, since the corresponding band structures have fewer pass bands, thus 

facilitating the analysis. In the considered frequency range, the number of localized modes 

decreases with the increase of the number of the ring resonators, since the structure becomes stiffer. 

This results in an increase in the number of band gaps, which are also shifted to lower frequencies, 

since the wave attenuation is enhanced due to increased number of resonators. Interestingly, the unit 

cells with 3 − 7 ring resonators possess the first (narrow) band gap at the same frequencies, slightly 

above 150 Hz. Examination of the corresponding vibration forms reveals that this band gap is 

induced by local resonances in the external square frame. Thus, the gap frequencies are independent 

of the number of the ring resonators, as well as of their mechanical properties (Fig. S4) 
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FIG. S4. Band structures for the spider web-inspired unit cells comprising 1, 3, 5 and 7 outer 

ring resonators. 

 

C. Natural frequencies of ring resonators  

As mentioned in the main text, vibrations corresponding to an important class of standing 

waves are associated with the ring resonators, whose natural frequencies n for non-axisymmetric 

in-plane flexural vibrations are known [1, 2] in closed form, see Eq.(1). In this section, we analyse 

whether these frequencies can be used to evaluate the frequencies of localized modes or band gap 

bounds in the spider-web inspired lattice. 

For this purpose, we consider a single ring resonator, e.g. a 2nd external resonator in the 

spider-web-inspired unit cell shown in Fig. 1b. The first 4 natural frequencies of this resonator 

occur at 10.7 Hz, 30.2 Hz, 57.8 Hz, and 93.5 Hz, according to Eq. (1). In order to compare these 

frequencies and the corresponding vibration forms with those found in the band structure of the 

spider-web inspired lattice, we assign the mechanical properties given in Table S1 to the spider-web 

inspired unit cells. We then consider various cases of modified values of the Young’s modulus as 

given in Table S2. 

The comparison of analytically-evaluated natural frequencies with those obtained 

numerically for the study cases 1-5 indicated in Table S2 is given in Figure S5. As can be seen, 

non-zero values of the mechanical parameters for soft radial silk (as compared to zero values 

implied in the analytical solution) result in a coupling between the vibrations of individual ring 

resonators with the bearing frame. This coupling results in an increase of eigenfrequencies of ring 

resonators and makes analytical solutions not applicable to the evaluation of the frequencies of 

localized modes in the spider-web inspired lattice. The vibration forms corresponding to the 

analysed study cases are given in Figures S6-S9. 
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Table S1. Material parameters for constituents of the spider-web inspired unit cell. Indicated 

values are assigned to highlighted (blue) parts of the unit cell. 

Viscid silk Stiff radial silk Soft radial silk 

   

𝐸𝑣 = 1.2 GPa 𝐸𝑟
𝑠𝑡 = 1200 GPa 𝐸𝑟

𝑠𝑜 = 1.2 MPa 

𝜈 = 0.4 𝜈 = 0.4 𝜈 = 0.4 

𝜌𝑣 = 1200 kg/m3 𝜌𝑟
𝑠𝑡 = 1200 kg/m3 𝜌𝑟

𝑠𝑜 = 1200 kg/m3 

 

Table S2. The case studies with various material parameters for the soft radial silk. 

Study case N. 𝐸𝑟
𝑠𝑜 [Pa] 𝜌𝑟

𝑠𝑜 [kg/m3] Note 

Case 0 0 0 Analytical solution 

Case 1 1.2×103 1.2 𝐸𝑟
𝑠𝑜 𝜌𝑟

𝑠𝑜 =⁄ 103 

Case 2 1.2×104 12 𝐸𝑟
𝑠𝑜 𝜌𝑟

𝑠𝑜 =⁄ 103 

Case 3 1.2×105 120 𝐸𝑟
𝑠𝑜 𝜌𝑟

𝑠𝑜 =⁄ 103 

Case 4 1.2×106 1200 𝐸𝑟
𝑠𝑜 𝜌𝑟

𝑠𝑜 =⁄ 103 

Case 5 1.2×107 1200 𝐸𝑟
𝑠𝑜 𝜌𝑟

𝑠𝑜 =⁄ 104 
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Figure S5. Analytically and numerically evaluated frequencies of the first 4 modes of the 2nd 

external resonator in the spider-web inspired unit cell (Fig. 1b). The numbering of the study cases 

corresponds to that given in Table S2. 
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 (a) Case 1, 11.5 Hz  (b) Case 2, 13.0 Hz 

  
 (c) Case 3, 19.1 Hz  (d) Case 4, 33.5 Hz 

 

 

 (e) Case 5, 72.0 Hz  

 

Figure S6. Vibration patterns of the 1st mode in the spider-web inspired unit cell (Fig. 1b). The 

numbering of the study cases corresponds to that given in Table S2. 
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(a) Case 1, 32.0 Hz (b) Case 2, 32.7 Hz 

  
(c) Case 3, 37.8 Hz (d) Case 4, 52.3 Hz 

 

 

(e) Case 5, 74.0 Hz  

 

Figure S7. Vibration patterns of the 2st mode in the spider-web inspired unit cell (Fig. 1b). The 

numbering of the study cases corresponds to that given in Table S2. 
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(a) Case 1, 61.2 Hz (b) Case 2, 61.2 Hz 

  
(c) Case 3, 61.2 Hz (d) Case 4, 61.4 Hz 

 

 

(e) Case 5, 67.3 Hz  

 

Figure S8. Vibration patterns of the 3rd mode in the spider-web inspired unit cell (Fig. 1b). The 

numbering of the study cases corresponds to that given in Table S2. 
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(a) Case 1, 98.9 Hz (b) Case 2, 99.1 Hz 

  
(c) Case 3, 101.2 Hz (d) Case 4, 117.1 Hz 

 

Figure S9. Vibration patterns of the 4th mode in the spider-web inspired unit cell (Fig. 1b). The 

numbering of the study cases corresponds to that given in Table S2. 

 

D. Analysis of the vibration patterns 

This section presents an analysis of the evolution of the dynamics for individual modes as 

the metamaterial geometry is changed from a regular lattice to the spider-web inspired lattice. 

The consideration of the spider-web lattice is performed for the two cases mentioned in the 

main text, namely when both the circumferential ligaments and their connectors have either stiff 

(dragline silk) or compliant (viscid silk) mechanical properties. 
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Figure S10. The Bloch modes of the (a-c) 1st and (d-f) 2nd propagation modes for the 3 case studies 

analysed in the main text: (a,d) regular lattice, spider-web lattices with (b,e) dragline silk or (c,f) 

viscid silk material properties for the ring resonators. Here, 𝐤 = (7𝜋 10𝑎⁄ , 0) is associated to (a) f 

= 61 Hz, (b) f = 107 Hz, (c) f = 63 Hz and 𝐤 = (𝜋 2𝑎⁄ , 0) is associated to (d) f = 77 Hz, (e) f = 

144 Hz, (f) f = 117 Hz, respectively. The magnitudes of the modal displacements are shown with 

maximum and minimum values indicated by red and blue, respectively. 

 

As can be seen in Fig. 2 of the main text, the frequencies of the 1st (localized) mode (the first 

curve from the bottom) are the same for the regular and spider-web inspired lattices, except for the 

case shown in Fig. 2b. This occurs due to the fact that for this mode, it is mainly radial ligaments 

that are involved into the motion (Figs. S10 a-c). The addition of compliant circumferential 
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ligaments (Fig. S10c) only slightly changes the mode frequency (from 61 Hz for the regular lattice 

to 63 Hz for the spider-web lattice), while the rotational nature of the mode is preserved. On the 

contrary, stiff circumferential ligaments (Fig. S10b) with larger inertia significantly influence the 

frequency value (107 Hz for the spider-web lattice vs. 61 Hz for the regular lattice), while the 

vibration form remains almost unchanged (Fig. S6b). 

The frequency of the 2nd mode in Fig. 2 of the main text (second curve from the bottom) is 

shifted to higher frequencies as circumferential ligaments are added, regardless of their mechanical 

properties. Examination of the corresponding vibration patterns in Fig. S10 d-f reveals that in the 

regular lattice, radial ligaments vibrate independently from each other. The introduction of 

circumferential ligaments results in interactions that lead to a stiffer overall structure and the 

dynamics of the second mode changes completely. If stiff mechanical properties are assumed, the 

primary framework vibrates, while the internal part is almost motionless (Fig.S10e). If resonators 

have compliant mechanical properties with respect to the connectors, some localized motions arise 

(Fig.S10f). However, in both cases the central part of the systems experiences less motion 

compared to the external part. 

Inspection of the other modes reveals that it is possible to achieve strong localization of 

displacements either in the external frame (Figs. S11a-b) or inside the resonators (Figs. S11c-d) 

regardless of the resonator mechanical properties. Also, as the frequency increases, more resonators 

are involved in the vibration, since the inner resonators also become excited (Figs. S11c-d). 

Overall, some of the localized modes exhibit mainly rotational displacements confined to the 

internal portion of the unit cell. Since these modes are weakly coupled to the propagating shear and 

pressure waves in the external frame, they do not open BGs. Instead, other modes characterized by 

interactions between resonators and radial ligaments generate complete band gaps highlighted in 

grey in Fig. 2. Although some anisotropy may be present in the modes, these band gaps are 

omnidirectional. 
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Figure S11. The Bloch modes with vibrations localized in the external frame for the spider-web 

inspired unit cells, where resonators have (a) the same mechanical properties as the connectors and 

(b) different mechanical properties from the connectors. The Bloch modes showing an increased 

number of resonators involved in the motion as the frequency increases from (c) f= 144 Hz to (d) f 

= 261 Hz. 
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