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a b s t r a c t

This paper studies the plastic collapse mechanisms of uniaxially-loaded cylindrical shell-plate periodic
honeycombs with identical mass (or relative density) but varying geometric parameters, by series of in-
plane and out-of-plane experiments and finite element numerical simulations. The coupled experi-
mental-numerical results show that mechanical properties of the honeycomb can be optimized in all
three loading cases, thanks to the complementary changes of the mechanical properties of cylindrical
shell and plate as the geometric parameters vary. The work presents a concept to optimize lattice
structures by combining different substructures, and can be used in designing new low-density hon-
eycomb structures with desired mechanical requirements but less base materials and weight.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycomb and foamy structures widely exist in natural ma-
terials (e.g., Luffa sponge [1]), which are shaped by their sur-
rounding environment. In view of optimization in the process of
natural evolution, it facilitates the study of the natural or man-
made foamy materials with multiple functions, such as energy-
absorption [2], heat-transfer [3,4] and electromagnetic absorption
[5]. To date, varieties of honeycomb structures are presented. From
the point of view of mechanics, the conventional hexagon, square,
triangle, Kagome honeycombs [6] or 3D topological lattices [7]
have been widely studied, and their collapse mechanisms clearly
described [8–10]. These studies have already been used as gui-
dance for the design of porous materials.

As the importance of hierarchical strategy in natural materials
is gradually realized, hierarchical honeycomb and foamy
.
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structures are also constructed and studied. In general, as the
porosity of the structure increases, reducing the relative density of
the structure, their mechanical properties decrease (e.g., critical
buckling load [11]). However, if a hierarchical structure is designed
with a constant amount of bulk materials, its mechanical proper-
ties, such as Young's modulus and strength [12], can be optimized
by replacing solid cell walls [13–15] or joints [16,17] of conven-
tional single-level honeycombs with porous substructures. In the
case of the solid cell walls replaced by porous substructures, the
bending rigidity of the cell walls is increased because of the in-
creased porous cell-wall thickness [12,18], and in the other case,
i.e., joints replaced by porous substructures, the failure modes of
the cell walls and porous joints are interchanged [19]. It is worth
mentioning that when the hierarchical level comes down into the
nanoscale, the surfaces effect has to be taken into account [20,21].

To look for new and more efficient honeycomb structures, very
recently, the authors presented a cylindrical shell-plate assembled
periodic (or so-called hollow-cylindrical-joint) honeycomb (Fig. 1)
[19], which actually derives from the family of center-symmetrical
honeycombs [22], and analytically studied its Young's modulus,
Poisson's ratio, fracture strength and toughness in the x direction.
Moreover, they reported that the mechanical properties of the
structure were optimized and improved compared to the con-
ventional hexagonal honeycombs, thanks to the variation of
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structural styles. But the work only dealt with the in-plane me-
chanical properties in the x direction via a theoretical approach
[19]. Then, questions rise: what about the in-plane mechanical
properties in the y direction and out-of-plane mechanical prop-
erties? Are they also optimized?

In order to thoroughly describe the mechanical behaviours of
the assembled periodic honeycomb, we here continued the study
of the honeycomb by coupling experiments and numerical simu-
lations. First, two sets of quasi-static crushing experiments (six in-
plane samples with eight unit cells loaded in the x, y directions,
Fig. 1a, and five out-of-plane samples with three unit cells in the z
Fig. 1. Images of (a) an in-plane loaded sample and (b) an out-of-plane loaded
sample.

Table 1
Geometric parameters and masses (m) of the samples. The numbers in the brackets de

In-plane loaded sam

r/l n. l [mm] r [mm] t [mm]

0.0 — — — —

0.2 1 20 4 1.26

0.3 2 20 6 1.08

0.4 3 20 8 0.95

0.5 — — — —
direction, Fig. 1b) were performed. Plastic collapse processes of
selected samples and stress–strain curves of all samples were re-
corded. Second, non-linear finite element method (FEM) numer-
ical simulations were employed to deeply reveal plastic and frac-
ture behaviours and stress states, which were not visually identi-
fiable with the experiments. Finally, the collapse mechanisms
were discussed.
2. Methods

2.1. Experiments

Using 6061-T4 aluminum alloy as the bulk constituent material,
eleven honeycomb samples with a controlled dimensional error
0.03 mm in thickness, were fabricated by Nanjing Siyou Photo-
electric Technology Limited, Nanjing, China.

In the design of the samples, the samples had theoretically
identical relative density ρ* ρ =/ 0.1c , in which ρ* = 0.27 g/cm3 and
ρ = 2.7c g/cm3 are the densities of the honeycomb and the bulk
aluminum alloy, respectively. The sizes in z direction were 20 mm
and 30 mm for the in-plane and out-of-plane samples, respectively,
and the distance l between centres of two adjacent cylindrical shells
was fixed to be 20 mm. The radius r of the cylindrical shell was first
selected, and the wall thickness t was determined by the following
equation ρ* ρ = − ⋅( ) + [ ⋅( ) + ]⋅( )t l r l t l/ 1.155 / 2.528 / 1.155 /c 2 [19], and
the masses of the models were calculated by multiplying the vo-
lumes of the samples to their density ρ* = 0.27, see Table 1.

Actually, their real masses mre are lower, see Table 1. Moreover,
according to the design, the masses of the in-plane samples should
theoretically be equal, and also for the out-of-plane ones, here the
mass difference is due to the samples’ processing.

The samples were tested under uniaxial compression with a
1000HDX Instron Universal Testing Machine (ITW, USA) with
loading capacity of 1000 kN. Before testing, in order to ensure the
samples to be loaded uniformly, two steel plates were respectively
placed at the top and bottom surfaces of the samples. The whole
loading process was displacement controlled from the bottom up.
For the in-plane samples, considering their larger size along the
loading direction, a short linear-elastic stage of stress–strain
curves and limit influence of loading rate on the plastic collapse
stage were expected; thus, the loading rates before and after
the initial yield of the samples were set to be 1 mm/min and
10 mm/min, respectively. For the out-of-plane samples, the load-
ing rate was kept constant at 1 mm/min.

Regarding the definitions of stress and strain of the compressed
honeycombs in the experiments, the stress was calculated as
note the masses of the samples compressed in the y direction.

ples Out-of-plane loaded samples

m [g] mre [g] n. l [mm] r [mm] t [mm] m [g] mre [g]

— — 1 20 0 1.78 41.7 39.6
59.9 55.8

(53.1)
2 20 4 1.26 41.7 38.9

59.9 55.0
(52.3)

3 20 6 1.08 41.7 39.8

59.9 56.7
(53.2)

4 20 8 0.95 41.7 36.5

— — 5 20 10 0.84 41.7 34.6



Fig. 2. Stress-strain curve of 6061-T4 aluminum alloy used for the fabrication of
honeycombs, obtained from tensile test on a dog bone specimen (picture of the
failed specimen depicted within the graph).
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s¼F/A, in which F was the applied load, and A was the projected
convex hull area of the honeycomb samples on the plane per-
pendicular to the loading direction; the strain was calculated as
ε¼Δh/h0, where Δh was the height variation, and h0 was the
initial height of the compressed samples.

For the numerical models, material properties and stress–strain
relationship of the aluminum alloy used in the experiment were
characterized by tensioning a dog-bone specimen with circular
cross-section of diameter d¼10 mm up to failure (see the inset in
Fig. 2). The mechanical properties extracted from the stress–strain
curve (Fig. 2) were: Young's modulus E¼68 GPa, the yield strength
sy¼287 MPa, the peak stress su¼318 MPa, and the failure strain
εf¼0.121. These values are consistent with those in literature [23].

2.2. Finite element models

The aim of finite element simulations is to analyze the stress
state of the honeycombs under compression loads, to visualize the
plastic deformation, and to further to develop a referential tool for
future mechanical analysis of other honeycombs.

The FEM model geometry was made up of honeycombs be-
tween two rigid steel plates. The honeycomb material was mod-
eled with a piecewise elastic-plastic curve: the linear elastic stage
was defined by the experimentally determined sy and E, while the
plastic stage followed the actual experimental points (Fig. 2) in
order to include the softening stage after the reach of the peak
stress prior to failure. It is worth mentioning that due to the size-
scale effect, the plastic strain εpl,FEM and ultimate strain εu,FEM in
the FEM models were both scaled from the nominal one εpl

measured from the dog-bone test by ε ε = d t/ /pl,FEM pl , since t«d. This
scaling was necessary, since by introducing the material law de-
rived from dog-bone traction in the FEM material model we ob-
tained brittle fracture at low strain, while with this scaling we
were able to obtain comparable results with the experimental
compression tests. Von-Mises criterion was employed for yielding.
Contact interactions were taken into account between the steel
plates and the honeycomb and self-contact within the honeycomb
parts in the crushing process: static and dynamic coefficients of
friction were respectively set to be 0.61/0.47 for the honeycomb-
steel contact and 1.35/1.05 for the self-contact. For the in-plane
and out-of-plane models, 4-node fully integrated shell elements
with 2�2 Gauss integration (4 integration points through thick-
ness, element side-thickness aspect-ratio 2:1) and 8-node selec-
tive reduced integrated brick elements (3 elements in the wall
thickness, aspect ratio 1:1:1) with volumetric locking alleviation
were employed, respectively. The loading process was displace-
ment controlled with the bottom one moved towards the top at
the same prescribed velocities as the experiments reported above.
The load F carried by the honeycomb was computed from the
resultant component along the loading axis of the contact forces at
the steel plate-honeycomb interface. Material fracture was treated
via an erosion algorithm: when all the integration points of an
element reach the ultimate strain εu,FEM (maximum principal
strain), the element is deleted from simulation, and then fracture
enucleate and propagate by progression of erosions.
3. Results

3.1. In-plane mechanical behaviour

The in-plane mechanical behaviour of the six honeycombs
compressed in the x and y directions is plotted in Fig. 3. It can be
seen that the stress–strain curves generally take on a serrated
feature, due to the fracture in cylindrical shells and plates, and the
linear-elastic stage (E1) of all samples is very short. The FEM re-
sults (dashed line) and experimental results (solid line) are in good
agreement, both in terms of curve shape and of honeycomb
bearing capacity. The samples 1 and 3 (r/l¼0.2, red line and
r/l¼0.4, blue lines) have only one plateau stage, whereas, the
sample 2 (r/l¼0.3, green line) has two linear-elastic or plateau
stages (Fig. 3a and b), and the second linear-elastic (E2) and pla-
teau (P2) stages are longer and much shorter than their first
counterparts (i.e., E1 and P1), respectively. The sample 2 reaches
densification earlier than the samples 1 and 3.

Young's moduli (the slope of linear-elastic stages, see the insets
in Fig. 3a and b) of the honeycombs are optimized in both direc-
tions when r/l¼0.3 for FEM and experimental results, but the
values from FEM result are much larger than those from experi-
ments, and this is consistent with the literature [24,25]. It is ana-
lyzed that the discrepancy is mainly due to the over-estimated
strain, which was calculated by employing the cross-head dis-
placement of the testing system instead of the real deformation of
the samples. However, because this work studies the plastic col-
lapse behaviour of the honeycomb, Young's modulus is not in the
scope.

Yield strengths of the three samples in the x direction are
1.11 MPa (r/l¼0.2), 1.20 MPa (r/l¼0.3), 1.02 MPa (r/l¼0.4) for ex-
periments vs. 1.19 MPa, 1.29 MPa, 1.10 MPa for FEM; in the y di-
rection, and they are 1.19 MPa (r/l¼0.2), 1.34 MPa (r/l¼0.3),
0.96 MPa (r/l¼0.4) for experiments vs. 1.28 MPa, 1.42 MPa,
1.10 MPa for FEM. Differently from the Young's modulus, FEM and
experimental values are comparable since the stress in experi-
ments calculated directly from the readout of the load cell, which
reflects the real load sustained by the samples. From these data,
we can see that the yield strengths are optimized when r/l¼0.3,
which is consistent with the previous work [19], and the finite
element results are slightly greater than the experimental coun-
terparts. Moreover, the yield strength in the x direction is less than
that in the y direction, and this is caused by the different struc-
tures of the two directions, with the compressed samples in the x
direction including the extra axial deformation or instability of the
vertical plates. Considering the effect of the mass variations among
samples, we here also compare the yield strength to mass ratio,
and again the optimal case for both directions corresponds to
r/l¼0.3 (Fig. 3c and d). The coherent optimizations (yield strength
and yield strength to mass ratio) are due to the little mass dif-
ference for each intra-group (i.e., two groups are x and y
directions).

In addition, the large deformations and failure mechanisms



Fig. 3. Stress-strain curves of the sample loaded in (a) x direction and (b) y directions showing experimental (solid lines) and FEM (dashed lines) results. Yield strenght to
mass ratio for (c) x direction and (d) y direction with comparison between experiments (filled markers) and FEM (unfilled markers connected by dashed lines). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Figs. 4 and 5) in both directions are observed. For the x direction,
the samples 1 and 2 (i.e., r/l¼0.2, 0.3) have an approximate anti-
symmetric configuration (Fig. 4a and c), thanks to the instability
of vertical plates, which have a relative large slenderness ratio,
while the sample 3 is nearly symmetric (Fig. 4e). When the
samples fail, the plastic hinges and fracture points locate at the
plate-shell connecting points on the plates (points A and B,
Fig. 4g) or on the cylindrical shell (points C, Fig. 4h), depending
on the r/l ratio. This behaviour has already been verified by the
theoretical analysis [19]. For the y direction, the three samples
share a symmetric configuration (Fig. 5a,c, and e), but their fail-
ures differ as well, since in the samples 1 and 2 (i.e., r/l¼0.2, 0.3)
plastic hinges and fractures occur in the two plates (points A in
Fig. 5g), while on the cylindrical shell in the the sample 3
(r/l¼0.4, points C in Fig. 5h). The same occurs in the samples
loaded in the x direction. The contours of von Mises stresses from
the finite element simulations confirm the results, see Figs. 4i and
5i.

3.2. Out-of-plane mechanical behaviour

Like the in-plane case, the FEM and experimental stress–strain
curves and the yield strength to mass ratio of the five out-of-plane
samples are plotted in Fig. 6. In Fig. 6a, the portions (marked by I, II
and III) between elastic limit and yield stress of the strain–stress
curves of the sample 2, 3, 4 is longer than those of the samples
1 and 5. This is because in the loading process, the three samples
underwent different but slight shear effect, which reduced the
samples' yield strength. Moreover, when r/l is small (samples 1–3),
there is only one couple of peak and valley; while r/l is large
(samples 4, 5), there are multi-couples of peak and valley (①�④),
and the plateau stage is much longer than those of the samples
with small r/l, but sample 3 (r/l¼0.3) still possesses the greatest
energy-absorption capacity (computed as the area under the
stress-strain curve). And more, it is readily seen that there are
jumps (dashed squares in Fig. 6a) in the strain–stress curves for
samples 2 and 4, and this is due to the cell-wall brittle fracture.
Besides, the FEM compression tests are shown in Fig. 6a1–a3.

Young's moduli reflected by the slopes of the linear-elastic
stages are approximately same (Fig. 6a), and this can be explained
through the classical predication by * = ρ* ρE E/ /c c [10], and here
ρ* ρ/ c is a constant. Young's moduli from FEM result are much larger
than those from experiments, and the reason can be referred to
the in-plane cases.

The yield strengths of the five samples are 35.95 MPa (r/l¼0.0),
35.46 MPa (r/l¼0.2), 38.78 MPa (r/l¼0.3), 30.60 MPa (r/l¼0.4),
27.81 MPa (r/l¼0.5) for experiments vs. 34.99 MPa, 34.51 MPa,
38.06 MPa, 29.09 MPa, 26.80 MPa for finite element simulations.
The yield strength of the out-of-plane samples is 20–30 times
those of the in-plane samples. The optimized yield strength is
obtained as well when r/l¼0.3, and the same for the yield
strength to mass ratio (Fig. 6b) due to the weak mass variation of
the intra-group (out-of-plane) samples. However, different from
the in-plane samples, the FEM results are lower than their ex-
perimental counterparts.

As an interesting example, we snapshotted four peak-valley states



Fig. 4. Snapshots of the experimental in-plane loaded samples in the x direction with r/l¼0.2 (a and b) r/l¼0.3 (c and d) r/l¼0.4 (e and f) at two different strain levels.
(i) Corresponding snapshots from finite element simulations and details of the cylindrical shell-plate joints for different r/l with contour of von Mises stress (red regions are
the most stressed). The solid coloured circles in (g and h) represent the plastic hinges or fracture locations corresponding to the empty circles in (b, d and f). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Q. Chen et al. / International Journal of Mechanical Sciences 111-112 (2016) 125–133 129
of the sample 5 assembled only by cylindrical shells without plates,
and the sequence of events is shown in Fig. 7. Initially, the entire
sample deforms elastically to the first peak point, i.e., yield stress. Due
to the existence of the bottom steel plate, the further expansion of the
sample's deformation is restrained, and the first axisymmetric out-
ward fold (n¼1) starts to form; as the load increases, the fold of each
cylindrical shell grows and it thrusts into its adjacent shells to form an
overlap (the arrows in ① of Fig. 7), while the rest of the sample still
deforms elastically. Simultaneously, the constituent material at the fold
begins to yield, and the entire sample shows a softening behaviour.
Then, the deformation of the portion close to the fold accumulates.
After the contact of the two sides in the fold, the drop of the com-
pressive load arrests. Meanwhile, a new diamond fold (n¼2) starts to
form, and the second peak stress gradually emerges, followed by the
second valley. In state ②, the overlaps (the arrows in ② of Fig. 7) can
be clearly seen. After the state ②, the third and fourth diamond folds
(states ③ and ④) are formed by the squeezed cylindrical shells (the
arrows in ③ and ④ of Fig. 7), and the stress does not apparently in-
crease until it reaches the densification of state ④, after which, the
stress increases sharply.
4. Discussions

To date, a number of lattice structures have been studied and
defined [7]. Here, the structure is discussed in a new sense, i.e., it is
regarded as a periodic combination of plate and cylindrical shells,
which are two basic elements in structural mechanics. As r/l rises,
the contribution of the plate decreases but the one of cylindrical
shell increases, and these complementary tendencies optimize the
mechanical behaviour of the structure. Not losing generality, we
consider this as an optimized spatial arrangement of n sub-
structures. The general mechanical behaviour F of the structure is
expressed as the sum of the n substructures

∑= ( )
( )=

F f M S P, ,
1i

n

1
i i i i

where fi represents the mechanical contribution of the i-th
substructure, Mi, Si and Pi are mechanics-parametric, size and
positional information of the i-th substructure, respectively. The
general mechanical behaviour F in Eq. (1) can be the force-dis-
placement curve, elastic modulus, strength, toughness, and other
mechanical properties. As we know, for a structure, the selection
of bulk materials (i.e., Mi) could be referred to Ashby's maps [10],
which provide materials indices for mechanical designs according
to stiffness, strength and other variables. Then, mechanical prop-
erties of the structure can be obtained by varying the size (Si) and
spatial arrangement (Pi) of the substructures. Therefore, given a
constituent material, for the optimization, we have



Fig. 5. Snapshots of the experimental in-plane loaded samples in the y direction with r/l¼0.2 (a and b) r/l¼0.3 (c and d) r/l¼0.4 (e and f) at two different strain levels.
(i) Corresponding snapshots from finite element simulations and details of the cylindrical shell-plate joints for different r/l with contour of von Mises stress. The solid
coloured circles in (g and h) represent the plastic hinge or fracture locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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∂
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∂
∂
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( )

F
P

0
2bi

The present structure, with the specific relative density (i.e.,
ρ* ρ/ c¼0.1), is a peculiar case of the above optimized solution with
the 6061-T4 Aluminum-alloy material (Mi), fixed positions of the
plate and cylindrical shell (Pi), and two substructures (n¼2). Thus,
the only factor to be optimized is the size variable r/l, and the
optimized value is about 1/3. Considering Eq. (1), we find the
simple expression

= + ( ≠ = )
( )

F
f

f

f
i j i j P CS1 ; , or

3i

j

i

where fi and fj are functions of the honeycomb's relative density

ρ* ρ =/ 0.1c and of the size variable r l/ , and they denote the me-
chanical behaviours of plates (P) or cylindrical shells (CS), re-
spectively. For a specific case, in the linear-elastic stage, we
consider F, fP and fCS as the bending elastic strain energies of the
whole structure, plates and cylindrical shells, respectively. Ac-
cording to the calculation of the strain energy by the authors'
previous work [19], the competitive relation of the two parts is
plotted in Fig. 8, from which we can clearly see that the con-
tributions of plates and shells in the linear-elastic deformation of
the honeycomb when r/l varies.

4.1. In-plane loaded samples

We have shown the mechanical behaviour of the six samples in
Section 3.1. The feature is that the samples 2 (both x and y di-
rections) have two different linear-elastic and plateau stages in
experiments. According to Eq. (3), for the two extreme cases, if
r/l-0, the cylindrical shells disappear, i.e., =f 0CS , and the struc-
ture shrinks into the conventional regular hexagonal honeycomb,
which has been widely studied in literature. Thus, we have =F fP;
otherwise, when r/l-0.5, the plates disappear, i.e., =F fCS. For the
structures in-between, smaller r/l ratio (e.g., sample 1) results in a
more rigid cylindrical shells, and the in-plane samples fail in the
weaker plates due to bending and buckling; on the contrary,
greater r/l (e.g., sample 3) results in a more compliant cylindrical



Fig. 6. Comparison between experimental (solid lines) and finite element simulations (dashed lines) results of out-of-plane loaded samples. (a) Strain–stress curves of the
five samples, and snapshots from the finite element simulations of the optimized structure at three states and the contour of plastic strain of the second state and (b) yield
strength to mass ratios of the five samples: filled and dashed-line connected unfilled spots represents the experimental and FEM results, respectively. Note: the sample 1 (r/
l¼0.0) denotes the conventional regular hexagonal honeycomb.

Fig. 7. Snapshots of four folds in the loaded sample 5: (a) experiment and (b) finite element simulation.
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shell, and the samples fail in the weaker cylindrical shell due to
their bending. These two cases result in single pair of linear elastic
and plastic stages as shown in Fig. 3a and b. When fP is compar-
able to fCS, the two parts fail one after the other, namely, if <f fP CS,
the plate fails before the cylindrical shell, which is the case of
sample 2. This causes the double pairs of linear elastic and plastic
stages, E1-P1 and E2-P2 in Fig. 3a and b: the first one is con-
tributed by the bending and yielding of the plate, and the second



Fig. 8. Competition of elastic strain energies between the plate and the cylindrical
shell as r/l varies.

Fig. 9. Collapse modes of the (a) sample 1, and (b) sample 5. Simulations show the
contour of plastic strain, and a good agreement in the collapse mechanism with
experimental results. (For interpretation of the references to colour in this figure,
the reader is referred to the web version of this article.)
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by the bending and collapse of the cylindrical shell. In view of this,
it can be concluded that it is the featured structure that provides
the sample 2 with the optimized failure mechanism and further
best energy-absorption ability even though the six samples have
approximate mass. In this regard, the one-after-another failure
mechanism of different components in the structure is similar to
the hierarchical behaviour of spider silk [26], which enables its
great extensibility, toughness and strength.

4.2. Out-of-plane loaded samples

In the loading process, the samples 1 and 5 were compressed
almost aligned with the centroid of the imprint area of the two
samples. The collapsed samples and their failure mechanisms are
shown in Fig. 9. For the sample 1, the collapse of the structure,
caused by the plate, is a classical problem, and the plastic
strength is simply predicted by

σ*
σ

= (λ φ) ρ*
ρ ( )

⎛
⎝⎜

⎞
⎠⎟C ,

4ys
c c

2

where, σ* and σc
ys are yield strengths of the structure and its con-

stituent material, and C is a constant, which depends on the lobe's
wavelength λ and the rotational angle ϕ of the plastic hinge. The
black circled part (upper one in Fig. 9a) is representative because its
boundary condition is close to that of the unit cell in multi-cell
structures (only three unit cells here). The failed plates exhibit an
anticlockwise trichiral arrangement, and only one lobe and fracture
mouth forms (highlighted by the arrow in Fig. 9a), which depends
on the structural geometry and mechanical behaviour of its con-
stituent materials.

For the sample 5, the collapse of the structure is caused by the
cylindrical shell. For single cylindrical tube, many works explain
its collapse mechanisms [27–29]. In particular, depending on
thickness, diameter and length, Andrews et al. [29] classified
collapse modes of cylindrical tubes into seven groups from con-
certina to tilting of the tube axis, basing on tested 189 annealed
Ht-30 Aluminium alloy tubes. However, the cylindrical shell in
the present structure is different from the single cylindrical tube,
because of the restrains of its adjacent cylindrical shells (red
circled points in Fig. 9b). In this case, the three-lobe collapse is
prone to occur. Besides, we find that the sample 1 has a larger
fold size and less fold number than those of the sample 5.

For the samples 2–4, their collapse is contributed by both parts,
i.e., plate and cylindrical shell (Fig. 10). Combining the extreme
case (r/l¼0 and r/l¼0.5) discussed above, we can conclude that as
r/l increases (Fig. 10), the substructure dominating the collapse of
honeycombs again changes from the plates to cylindrical shells, as
predicted by Eq. (3). The numbers of folds in plates and cylindrical
shells are mutually dependent, see the arrows in Fig. 10d, and the
fold number increases for increasing r/l, and correspondingly, their
wavelength decreases. Finally, due to the instability of the plates
and cylindrical shells, marked by ellipses in Fig. 10a–c, the shear
effect as stated before is introduced, and this corresponds to the
three stages (I, II, III) in Fig. 6a.
5. Conclusions

In this paper, we studied the mechanical behaviour of a set of
cylindrical shell-plate assembled honeycombs. Through experi-
ments and FEM numerical simulations carried on in-plane and
out-of-plane loaded samples, their plastic collapse mechanisms
were observed and analyzed. Young's modulus and yield strength
of the honeycombs were optimized when r/l¼0.3. In particular,
when r/l¼0.3, the in-plane loaded samples exhibited a functional
gradient property since the plates failed after the cylindrical shells,
while the out-of-plane direction was associated to the best en-
ergy-absorption capacity. Meanwhile, the developed numerical
model was verified to be able to describe the experiments and
could be used in the studies of future-developed honeycombs.
Most of all, it indicates that the combination of hollow cylindrical
shells and plates forms a new periodic assembly with better me-
chanical properties with respect to conventional honeycombs. This
strategy may be used to generate new lattices for enhanced
crashworthy structures.



Fig. 10. Experimental and simulated collapse modes of the out-of-plane loaded honeycombs with (a) r/l¼0.2, (b) r/l¼0.3, (c) r/l¼0.4 and (d) collapse mechanisms of the
cylindrical shell-plate joints observed in the simulations, with detail of wall folding.
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