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Critical length scales and strain localization
govern the mechanical performance of
multi-layer graphene assemblies†

Wenjie Xia,a Luis Ruiz,‡b Nicola M. Pugnoc,d,e and Sinan Keten*a,b

Multi-layer graphene assemblies (MLGs) or fibers with a staggered

architecture exhibit high toughness and failure strain that surpass

those of the constituent single sheets. However, how the architec-

tural parameters such as the sheet overlap length affect these

mechanical properties remains unknown due in part to the limit-

ations of mechanical continuum models. By exploring the mech-

anics of MLG assemblies under tensile deformation using our

established coarse-grained molecular modeling framework, we

have identified three different critical interlayer overlap lengths

controlling the strength, plastic stress, and toughness of MLGs,

respectively. The shortest critical length scale Lsc governs the

strength of the assembly as predicted by the shear-lag model. The

intermediate critical length Lpc is associated with a dynamic fric-

tional process that governs the strain localization propensity of the

assembly, and hence the failure strain. The largest critical length

scale LTc corresponds to the overlap length necessary to achieve 90%

of the maximum theoretical toughness of the material. Our analyses

provide the general guidelines for tuning the constitutive properties

and toughness of multilayer 2D nanomaterials using elasticity, inter-

layer adhesion energy and geometry as molecular design parameters.

Graphene, one of the strongest materials known,1–3 is particu-
larly suited for advanced structural and mechanical appli-
cations.4,5 In practice, its range of applications remains

limited due to the difficulty of harnessing the mechanical pro-
perties at larger length scales than those limited by the proces-
sing and synthesis of individual graphene sheets (in the order
of nanometers to a few micrometers). In addition, its low
extensibility and brittle failure behavior further restrict its
usage in electronics, energy storage devices, and other appli-
cations where toughness and ductility are critical.

Drawing inspiration from biological architectures such as
nacre, one possible way to simultaneously increase its extensi-
bility and harness the properties of graphene in a scalable
manner is to stack multiple sheets in a staggered fashion
forming a so-called multi-layer graphene assembly (MLG).6–12 In
materials with a multi-layer staggered architecture, the tensile
load is transferred through shear at the interfaces and the defor-
mation occurs by relative sliding between the sheets in different
layers.13 For small deformations, where the sheet and interface
behave linearly elastic to a good approximation, the continuum
shear-lag model can be used to adequately predict the mecha-
nical properties.14–17 However, as the deformation increases and
more complex deformational mechanisms, such as strain local-
ization, are activated, the shear-lag model breaks down. Under-
standing how architectural parameters, in particular the overlap
length between the sheets in different layers, impact the mech-
anical behavior of the assembly is of critical importance for the
rational design of optimal MLGs and other engineered 2D
materials with an analogous architecture. Here, we use coarse-
grained molecular dynamics (CG-MD) of MLGs under uniaxial
tensile strain to identify the critical overlap length scales that
control the strength, toughness and failure strain.

The CG molecular model of graphene used here (Fig. 1(a))
has been shown to accurately reproduce the elastic and frac-
ture properties of single crystal graphene, as well as its inter-
layer shear behavior.18 Details of the CG force-field can be
found in the original publication,18 and have also been
included in the ESI,† together with a detailed presentation of
the simulation parameters and protocols used in this work.
We have simulated multiple MLG systems with a varying
number of layers (nl = 2, 3, 5, and 10) and one sheet per layer
(ns = 1), which constitute a representative volume element
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(RVE) (Fig. 1(b)). The simulated MLGs in the RVE have overlap
lengths Lo ranging from ∼3 to 780 nm. The sheet’s width is set
to be 6.4 nm for all the cases. Additional simulations are
carried out and suggest that our results do not strongly
depend on the sheet’s width. Each graphene sheet in the
assembly is a single crystal without defects. We do not con-
sider the grain boundary effects as the typical grain size of gra-
phene (∼10 µm) is much larger than the sizes of our system.19

To verify that our findings are applicable to multiple sheets
per layer, we also performed simulations for the ns = 3 case.
The results have been included in the ESI† and do not alter
any of the conclusions presented. It is worth noting that the
bonds of the CG model are breakable and that no further
constraints are applied other than the imposed uniaxial strain,

i.e. we do not impose any a-priori failure or deformational
mechanisms on the system.

The typical stress–strain response of MLGs exhibits a short
linear elastic regime that ends with a sudden drop in the stress.
A plastic regime follows the stress drop that ends in a rapid
decay of the stress, which finally leads to failure (Fig. 1(c)).
At the microscopic level, the fundamental deformational
process of interlayer sliding is not continuum and consists of
discrete transitions between the commensurate stacking con-
figurations of graphene sheets in the neighboring layers (i.e.
stick-slip mechanism). The elastic regime of the stress–strain
response in this microscopic deformational picture corresponds
to the period before the system undergoes the first slip event,
which occurs within the range from ∼1% to 4% strain depending
on Lo for all the cases studied (inset of Fig. 1(c)). At these small
deformations, the tensile stress of the MLGs results from static
friction between van der Waals (vdW)-governed interfaces. Under
these conditions, the Young’s modulus and the maximum stress
σm, which we also refer to as the tensile strength here, can be pre-
dicted by the continuum shear-lag model:14,15

σm ¼ sinhðLo=lÞγcrs Egh
2ð1þ cos hðLo=lÞÞl ð1Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffi
Egh2

4G

r
(≈5.2 nm) is a parameter that represents the

length scale over which most of the stress is transferred in the
interface, Eg (∼950 GPa) is the Young’s modulus of graphene,
G(∼1 GPa) is the shear modulus of the interface, h( = 3.35 Å) is
the equilibrium interlayer distance between the two layers,
and γcrs (∼0.35) is the critical interlayer shear strain. The values
of these fundamental parameters are set by the properties of
the CG model, and thus they are not fitting parameters.18 The
prediction of the MLG strength by the shear-lag model as a
function of Lo is in very good agreement with the simulation
results (Fig. 1(d)). Here, we define the critical length scale gov-
erning the strength of MLGs as Lo at which 90% of the
maximum strength is achieved, and we obtain Lsc ∼ 17 nm, which
is consistent with previous theoretical calculations that predicted
Lsc ∼ 3l for an analogous system.17 Although the maximum
strength of MLGs (∼10 GPa) is an order of magnitude lower than
that of monocrystalline graphene (∼100 GPa),1 its strength still
surpasses that of most structural engineered materials.

As previously mentioned, the elastic regime ends with a
sudden drop in stress. We associate this drop to the transition
from a static (before the first slip event) to a dynamic frictional
situation20,21 (referred to here as the plastic regime because
the deformations are irreversible). This drop after the peak
stress could originate from the irregular stress distributions
within the sheet, which will not strictly follow the shear-lag
prediction. The plastic stress σp is defined as the average
stress in the plateau plastic regime, which is indicated by the
horizontal dashed lines in Fig. 1(c). Interestingly, the depen-
dence of the post-peak plastic stress σp on Lo reveals that
shear-lag scaling still holds (Fig. 1(d)). In fact, the trend can be
quantitatively captured by eqn (1) if l(∼16.3 nm) and γcr(∼0.67)

Fig. 1 (a) Mapping scheme from the atomistic lattice (gray) to the
coarse-grained structure (blue). (b) Schematic of staggered multi-layer
graphene (MLG) with an overlap length of Lo. (c) Typical stress–strain
response of MLG with Lo ∼ 155 nm under uniaxial tension. The inset
highlights the linear elastic response at small strain. (d) The tensile
strength σm and plastic stress σp of the MLG as a function of Lo. The
dashed curves are the “shear-lag” model fits to the data. Lsc and Lpc are
the critical overlap lengths for σm and σp, respectively, beyond which the
σm and σp start to saturate.
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are used as fitting parameters. This resulting weaker interface
(i.e. softer and more ductile) in the plastic regime compared to
the interface properties at small deformations is compatible with
the static-to-dynamic frictional transition proposition. Similar to
the critical length scale identified for the strength, we can define
a second critical length scale associated with the saturation of
the plastic stress to a near maximum value around Lpc ≈ 50 nm.

The physical meaning of Lpc becomes clear when looking at
the mechanical response of a single interface. Fig. 2(a) illus-
trates the bilayer model with a single interface used to charac-
terize the constitutive force–displacement ( f–u) response. To
simplify our analysis, we apply the bilinear curve to characterize
the f–u response (Fig. 2(b)). It can be observed that the nearly
constant force regime lasts until the displacement u reaches
∼(Lo − Lpc), after which the force decays approximately linearly up
to failure by a complete loss of overlap between the sheets. This
analysis suggests that Lpc is the critical overlap length after which
the shear force at the interface does not depend on the overlap
length. This observation can also be inferred from the shear-lag
theory in which the strength σs and plastic stress σp are nearly
independent of Lo as Lo is beyond Lsc and Lpc, respectively.

To be able to generalize these findings to other 2D
materials, we need to understand the dependence of Lpc on the
constituent material properties, in particular the Young’s
modulus and interlayer adhesion energy. According to the
shear-lag model,22 the critical length scale at which the tensile

strength starts to saturate follows the scaling, Lsc �
ffiffiffiffiffi
Eg
G

r
. In the

stick-slip microscopic deformational mechanism, the shear
rigidity depends linearly on the adhesion energy γ between the
two sheets (G ∼ γ). Therefore, from a theoretical standpoint,

we expect Lpc to follow a similar scaling, Lpc �
ffiffiffi
E
γ

r
. In fact, we

find that the best fits to the simulation results Lpc ∼ (E/Eg)
0.41

and Lpc ∼ 1/(γ/γg)
0.52 (Fig. 3(a) and (b)) are in close agreement

with the shear-lag exponent of 0.5. Although the particular value
of Lpc may also depend on other factors, such as the pulling velo-
city as in the case of atomic friction,21,23 we expect the scaling
on constituent material properties to hold at a given rate.

Visualization of the simulation trajectories reveals that the
deformation is uniformly distributed over all of the interfaces
up to a certain point (the intermediate state), after which the
strain localizes in a certain region along the length of the MLG
(Fig. 4(a) and Movie S1†). The system ends up failing by
deoverlapping in the region where the strain localizes. The
deformation process identified from our simulations is sche-
matically illustrated in Fig. 4(b). We characterize the inter-
mediate state, or equivalently, the onset of localization by the
displacement of each interface uint at that moment. After the
intermediate state, the strain localizes only on one side that
keeps deoverlapping until failure. Using simple geometric argu-

Fig. 2 (a) Schematic of a simplified bilayer model used to quantify the
constitutive behavior of graphene with single interface. (b) Force–displa-
cement ( f–u) curve obtained from the pulling test. The resultant sim-
plified constitutive law consists of a plateau force fp regime and a linear
decay regime as the remaining contact length is less than Lpc, which is
denoted by the bilinear solid lines.

Fig. 3 Dependence of the critical length Lc on (a) sheet stiffness E and
(b) interlayer adhesion energy γ determined from the pulling test of the
bilayer model.
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ments, one can show that if localization occurs irreversibly at
uint, the failure strain εf is directly related to uint via:

εf ¼ uint
2Lo

þ 1
2

ð2Þ

or more generally for ns sheets per layer,

εf ¼ ð2ns � 1Þuint
2nsLo

þ 1
2ns

ð3Þ

In order to predict the failure strain of the MLG, we need to
know when strain localization occurs, or equivalently, the
value of uint. Shearing of an interface proceeds through a
series of slips between the equilibrium energy states where the
lattices are in commensurate positions. Thus, we can think of
interlayer sliding as a series of thermally activated jumps over
energy barriers24,25 and use a kinetic model based on Bell’s
theory26–28 to describe the shear behavior of each interface.
The lifetime τ of a single jump under an applied force is given

by: τ ¼ exp
Eb � xb f

kBT

� �
=ω0, where ω0 (∼1 × 1013 s−1) is the

vibrational frequency of the interface in the energy well,26 kBT
is the thermal energy, and xb is the distance from equilibrium

to the transition state, which depends on the lattice spacing.
The probability Pover of overcoming an energy barrier and
advancing the system to the next equilibrium state (i.e. slip-
ping) within a time interval Δt can therefore be approximated

by: Pover ¼ 1� exp �Δt
τ

� �
. Using this theoretical scheme, we

can numerically simulate the deformation of two interfaces
and measure uint, which would correspond to the displace-
ment at which one of the interfaces gets trapped in a local
minimum while the other keeps sliding under the applied
force. A detailed description of this kinetic model is given in
the ESI.† The results of this model reveal that
strain localization always initiates when the displacement is
uint = Lo − Lpc for Lo > Lpc. This finding suggests that Lpc is a criti-
cal length which is also associated with strain localization,
and hence failure strain. Substituting uint = Lo − Lpc into
eqn (2), εf can be directly expressed as:

εf ¼ 1� Lpc
2Lo

ð4Þ

This equation accurately captures the εf obtained from the
kinetic model analysis (Fig. 4(c)). When Lo < Lpc, the kinetic

Fig. 4 (a) MD snapshots of the MLG deformation process. (b) Schematic of the sequence of different states during the deformation process.
(c) Kinetic model prediction and (d) the MD simulation results of failure strain εf as a function of overlap length Lo. The inset of (c) shows the schematic
of energy landscape used to predict strain localization in the simplest bilayer system. The solid curves in (c) and (d) show the failure strain prediction
by assuming that the localization occurs when the remaining contact length of each part reduces to Lpc.
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model predicts that localization initiates from the start of the
deformation, which leads to εf ∼ 0.5. It is worth noting that
the minimum and maximum theoretical failure strain in this
system (ns = 1) is 0.5 and 1, respectively. The predictions of the
kinetic model agree well with what is observed in the CG-MD
simulations for Lo > Lpc (Fig. 4(d)), suggesting that the origin of
the strain localization is kinetic trapping of one of the interfaces
in a local energy minimum. For Lo < Lpc, the CG-MD simulations
show slightly greater failure strains than the kinetic model predic-
tions, which we attribute to the fact that at a finite rate and short
Lo, some homogeneous deformation can still carry on before
strain localization occurs. It should be noted that changing the xb
of the CG model (∼0.2 nm) to the value of atomistic graphene
(∼0.1 nm) will not change the kinetic model predictions.

Once we are able to theoretically predict the plastic stress
and the failure strain of MLGs, we can attempt to predict the
toughness of the system, or equivalently, its energy dissipation
capacity, defined as the area under the stress–strain curve. If
we follow the definition of toughness and simplify the stress–
strain response as a constant plateau at σp followed by a linear
decay after strain localization, the toughness T can be directly
approximated by a simple expression:

T ¼
ðεf
0
σdε ¼ σp 1� Lpc

Lo

� �
þ σp
4ns

Lpc
Lo

ð5Þ

The quantitative agreement between this relationship and
the toughness from the simulations is remarkable considering
the simplicity of the model (Fig. 5(a)). Notably, eqn (5) implies
that the toughness of MLG saturates at large Lo. Defining the
critical length LTc as before following the 90% criteria, we get LTc
≈ 400 nm or ∼8Lpc for ns = 1. Further increase in Lo beyond this
critical length will not enhance the toughness significantly.
This critical overlap length LTc is an extremely relevant design
guideline for the design of tough MLG papers. Our simu-
lations show that the theoretical maximum toughness

(∼7 × 103 MJ m−3) or specific energy dissipation
ðE*

p � 3 MJ kg�1Þ that can be achieved by the MLG is roughly
an order of magnitude higher compared to other engineering
materials, such as steel and Kevlar armor.19,29,30 Our simu-
lations also suggest that the theoretical maximum toughness
values are much higher than those recently measured by super-
sonic ballistic experiments on MLGs ðE*

p � 1:5 MJ kg�1Þ.19
It is important to note that the energy of the intralayer

interactions (i.e. interactions between different sheets in the
same layer) is negligible compared to the surface energy
between the sheets in different layers. This is because within
each layer, the side-by-side interaction energy of the graphene
sheets is much smaller than the strength of the covalent
bonds within each sheet, and thus its contribution to features
such as modulus and strength is negligible. The tensile load
in the MLGs is transferred through shear between sheets in
different layers rather than through serial force transfer
between the sheets in the same layer. Accordingly, we have not
included these edge effects in the analysis presented above. Also,
although we have considered only monocrystalline graphene for
our sheets, the presence of grain boundaries will most likely not
change our results, as the energy to break those bonds will be
much larger than the shear barriers imposed by the weak van
der Waals interactions, maintaining the failure mode by deover-
lapping unchanged. These assumptions will need to be revisited
if the system under study includes cross-links that strengthen the
intralayer interactions or the interfaces.

Our findings provide several strategies for improving tough-
ness. First, given that LTc is directly related to Lpc, the failure
strain and toughness can be controlled by tuning the stiffness
E of the constituent sheets and the interfacial adhesion energy
γ between the sheets by functionalizing the surface. The pre-
diction of LTc as a function of E and γ is shown in Fig. 5(b).
There are various pathways through which these material pro-
perties could be tailored. For example, by oxidizing the carbon

Fig. 5 (a) Normalized toughness T/σp as a function of overlap length. The solid curve shows the prediction from eqn (5) for ns = 1. (b) The predicted
critical length LTc for the toughness as a function of sheet stiffness E and interlayer adhesion energy γ.
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atoms at different functionalization levels (the fraction of oxi-
dized carbon atoms), forming the so-called graphene oxide (GO)
paper, the enhanced interfacial adhesion energy and reduced
modulus compared to pristine graphene can be utilized to
design these length scale parameters and thus material tough-
ness.4,31 Second, the interlayer shear response of graphene,
such as shear modulus, interaction energy, and frictional
force, depends on the stacking orientation due to the hexago-
nal lattice feature,18,32,33 and thus it would be expected that Lpc
and LTc also vary for different stacking orders (e.g. Bernal vs.
turbostratic). The scaling relationship between Lpc and factors
such as stiffness and adhesion energy can be readily used to
predict LTc for different stacking orientations. Such predictions
may enable the design of tougher protection materials using
MLG, since recent projectile penetration experiments have
already shown multilayer graphene to be excellent for this
purpose due to its superior energy absorption capacity.19 Our
findings on mechanical behaviors of MLG with a staggered
architecture can be applied to design materials with dramati-
cally enhanced toughness and energy adsorption. Moreover,
our results of the size-dependent mechanical response and
failure mechanism of MLG can be adapted to other 2D
materials whose interfacial properties are governed by vdW
interactions as well, such as phosphorene, MoS2 and hBN.34–37

For instance, for the case of phosphorene which has a rougher
potential energy landscape and a lower sheet stiffness com-
pared to graphene, its LTc of a multilayer system will be smaller
than that of graphene based on our predictions as shown in
Fig. 5(b). Future work on theoretical description of plastic
stress associated with the dynamic friction process will be a
key to quantitatively predict the mechanical responses of multi-
layer assemblies of 2D nanomaterials in large deformation
regimes.

Conclusions

In summary, we have performed CG-MD simulations to
provide unprecedented quantitative understanding of the
dependence of the mechanical properties of MLG on the inter-
layer overlap length Lo, including the elusive large deformation
and failure regimes where continuum models often break
down. We have developed analytical expressions for a hierarchy
of critical overlap lengths that govern the strength (Lsc ∼
17 nm), failure strain and plastic stress (LPc ∼ 50 nm), and the
toughness (LTc ∼ 400 nm) of MLGs. Particularly interesting, we
found that the toughness of MLGs does not significantly
increase with the overlap length for a very large Lo beyond ∼LTc.
In fact, 90% of the maximum theoretical toughness can be
already achieved for the overlap lengths ∼LTc, which can be con-
sidered as an extremely important design parameter to design
tough multilayer graphene systems. More importantly, we have
elucidated the functional dependence of these critical length
scales with the mechanical properties of the constituent
materials, thus providing transferrable guidelines to assem-
blies with similar multi-layered staggered architectures based

on 2D materials with different interfacial or elastic properties,
such as phosphorene, MoS2 and hBN.
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Overview of coarse-grained (CG) graphene model 

The coarse-grained (CG) model follows a 4-to-1 mapping scheme, where 4 carbon atoms are 

represented by 1 CG bead. The hexagonal symmetry of the atomic lattice is conserved to capture 

the interlayer shear response, including superlubricity effects. The CG force-field was developed 

based on a strain energy conservation approach, and it includes bonded contributions from bonds 

𝑉!, angles 𝑉!, and dihedrals 𝑉!, and nonbonded contributions from the interlayer interactions 𝑉!". 

There is no nonbonded interaction between CG atoms within each sheet. The force-field 

parameters (Table S1) are calibrated using mechanical properties obtained from density 

functional theory and experiments, such as elastic tensile and shear modulus, and the failure 

properties. The developed CG model allows us to simulate large multi-layer grapheme (MLG) 

systems with a ~200 fold increase in computational speed in comparison with all-atomistic 

simulations. The detailed derivation of the force field parameters can be found in our earlier 

work [1].  

It should be noted that the interlayer shear modulus 𝐺 determined from the bilayer shear test in 

our previous work is reported to be ~2 GPa, which is determined from the maximum slop in the 

shear force-displacement curve [1]. However, the actual shear response is not perfectly linear 

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2016



due to the van der Waals interlayer interactions. In our current study, we use 𝐺 ~1 GPa by 

linearizing the force-displacement response, which can be considered as the averaged shear 

modulus. Additionally, it has been well accepted that the Young’s modulus of monolayer 

graphene sheet 𝐸! is derived based on the definition of monolayer graphene thickness of ℎ = 

3.35 Å, which is equivalent to the 2D modulus (D) defined as D = 𝐸!ℎ [2]. We choose the 

former modulus definition in this study. Also note that the exact form of conventional shear-lag 

equation used to predict the “mortar-brick” system is slightly different from Eq. (1) due to the 

thickness definition of monolayer graphene. To apply the shear-lag model to MLGs, the 2D 

modulus (D) as D = 𝐸!ℎ is usually employed to avoid the issue of thickness definition of each 

graphene sheet. 

  



Table S1. Summary of Functional Forms and Calibrated Parameters of the Coarse-grain 

Graphene Model Force Field. 

Interaction Functional Form Parameters 

Bond 
( ) ( )0 2

0 1
d d

bV d D e α− −⎡ ⎤= −⎣ ⎦  

for cutd d<  

0 2.8d Å=  

0 196.38 /D kcal mol=  

11.55 Åα −=  

3.49cutd Å=  

Angle ( ) ( )20aV kθθ θ θ= −  
0 120oθ =  

409.40 /k kcal molθ =  

Dihedral ( ) ( )1 cos 2dV kϕϕ ϕ= −⎡ ⎤⎣ ⎦  4.15 /k kcal molϕ =  

Non-bonded 

( )
12 6

4nb gV r
r r
σ σε

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

for cutr r<  

3.46 Åσ =  

0.82 /g kcal molε =  

12cutr Å=  

 

 

Characterization of single interface in a bilayer system 

To understand the interlayer shear response in detail, we study a single interface (illustrated in 

Fig. 2(a)). This system is often considered as a basic representative volume element (RVE) in the 

shear-lag model based on continuum analysis [3-5]. The interlayer shear behavior of graphene 



sheets is investigated by means of steered molecular dynamics (SMD) simulations [6] using the 

LAMMPS package [7]. 

In the SMD simulations, the left end of the bottom sheet is fixed, and the right end of the top 

one is pulled in the longitudinal direction by applying a force 𝑓 generated by a stiff harmonic 

spring:  

 ( ( ))SMDf k vt x t= −   (S1) 

where 𝑘!"# is the spring constant and 𝑣 is the pulling velocity. A relatively stiff spring constant 

of 1000 kcal/mol Å! and a pulling velocity of 0.0005 Å/fs that is the same with the displacement 

rate of multi-layer graphene are chosen for the SMD simulations. The spring constant adopted 

herein has been shown in previous studies to be a reasonable choice leading to independence of 

the measured mechanical properties from the spring constant [1,8]. The pulling velocity also lies 

in the conventional strain rate regime (~107 to 109 s-1) as commonly used in molecular dynamics 

studies [9-11]. The sheet length (or overlap length) is ~116 nm, which is well beyond the critical 

lengths identified from the strength and plastic stress of multi-layer graphene (𝐿!!  and 𝐿!
! shown 

in Fig. 1(d)). The system is first relaxed through the energy minimization and dynamics run for 

5000 time steps with a time step of 4 fs. After equilibration, the SMD simulation is performed at 

10 K under an NVT ensemble (thermodynamic ensemble with constant number of particles, 

volume, and temperature). The resultant force-displacement curve can be simply described by 

the bilinear curves that consist of a plateau force 𝑓! region and a linear decay region (as shown in 

Fig. 2(b)). The length of the linear stress decay region coincides with the critical length of 𝐿!
! 

from the plastic stress measurement.  

 



Description of the kinetic model used to characterize strain localization 

To understand the failure behavior and strain localization mechanism of MLG, we employ the 

kinetic model on the basis of thermally activated process as observed in the atomic friction 

phenomenon. The representative volume element (RVE) system that we numerically simulate is 

equivalent to a MLG with 2 layers and 1 flake per layer (𝑛! = 2 and 𝑛! = 1) with periodic 

boundary conditions in the longitudinal direction (x-direction). The simplification process that 

we follow to model the system for the kinetic model is illustrated in Fig. S1. The system is 

composed of two 1D energy landscapes, each representing one of the graphene-graphene 

interfaces. The energy landscape of each interface consists of a series of energy barriers, where 

the distance between two neighboring energy barriers is 𝑑!, which is taken as the hexagonal 

lattice spacing of ~ 0.4 nm, and the distance from the well to the barrier is 𝑥! = 𝑑!/2. The shape 

of the energy landscape is constructed based on the constitutive shear responses of single 

interface characterized by the SMD simulations (force-displacement curve shown in Fig. 2(b) in 

main text). The height of the energy barriers 𝐸! from 𝑥 = 0 to 𝑥 = 𝐿! − 𝐿!
! is constant and can 

be approximated as 𝐸! ≈ 𝑓! ∙ 𝑥! ≈ 800 kcal/mol. From the downturn point (𝑥 = 𝐿! − 𝐿!
!), the 

magnitude of the barriers decays linearly up to 𝑥 = 𝐿!.  



 

Figure S1. Illustration of the kinetic model in the representative volume element (RVE) bilayer 

system with two interfaces. The energy landscape of each interface is illustrated on the bottom, 

in which 𝐸! is the energy barrier and 𝑥! is half of the distance between the two neighboring 

barriers.  

The inputs for the model are the overlap length 𝐿! (i.e. length of each interface), the critical 

length 𝐿!
!, the distance between energy barriers 𝑑!, the thermal energy 𝑘!𝑇, the magnitude of the 

energy barriers 𝐸!, and the vibrational frequency of the interface in the energy well 𝜔!. The 

output of each simulation is the failure strain of the system 𝜀!. 

The numerical simulation proceeds as follows. At a given step, we apply a force 𝑓 to both 

interfaces and calculate the probability of each one overcoming the energy barrier. According to 



Bell’s theory [12], the life time 𝜏 of each jump between equilibrium states under an applied force 

can be calculated as: 

 0exp( ) /b b

B

E x f
k T

τ ω−=   (S2) 

The probability of the graphene sheet at each interface overcoming the energy barrier within a 

time interval ∆𝑡 can therefore be approximated by: 

 1 exp( )i
over

tP
τ
Δ= − −   (S3) 

 ( )01 exp exp( / )i j
over b b BP t E x f k Tω⎡ ⎤= − − Δ − −⎣ ⎦   (S4) 

The superscript 𝑖 = 1, 2 stands for each of the two interfaces. The superscript 𝑗 denotes the 

energy barrier number in the landscape that the interface is attempting to overcome. To decide if 

an interface jumps over the barrier to the next equilibrium state, we compare 𝑃!"#$ to a random 

number with a uniform probability distribution between 0 and 1, and if 𝑟𝑎𝑛𝑑 < 𝑃!"#$, then that 

interface advances to the next equilibrium energy state. If neither of the interfaces overcomes the 

barrier, then the force is increased by ∆𝑓 and whether the interfaces advance or not is checked 

again. If at least one of the interfaces advances to the next equilibrium state, then the position of 

that interface is updated and the previous steps are iterated. The simulation stops when one of the 

interfaces overcomes the last energy barrier at the fully separated state. For each set of input 

parameters, 1000 simulations are performed. The failure strain that we report (Fig. 4(c) in the 

main text) is calculated as the average of the results from those 1000 numerical simulations, and 

the standard deviations are within the data symbol size. The calculation protocol of the kinetic 

model used to characterize the failure of the MLG is summarized in the flowchart in Fig. S2.  



 

Figure S2.  Flowchart that summarizes the calculation protocol of the kinetic model used to 

characterize the failure of the MLG. 

In the model, we use 𝜔!  ~  1×10!" 1/s that is the typical natural frequency of oscillation of 

atoms in solids [12-14]. The time interval ∆𝑡  to calculate 𝑃!"#$  can be approximated as: 

∆𝑡~ !!
!
~1×10!!! s. All the parameters used in the kinetic model prediction as reported in the 

main manuscript are summarized in Table S2. To make sure that the kinetic model makes 



physical sense, we also perform sensitivity analysis of the failure strain as a function of 

parameters 𝐸! and 𝜔!∆𝑡 in the kinetic model. The result of the sensitivity analysis as shown in 

Fig. S3 indicates that the predicted failure stain from the kinetic model is nearly independent of 

these system parameters within the reasonable range. Note that changing 𝑑!~0.4 nm to ~0.2 nm 

based on the atomistic graphene lattice spacing will not change the kinetic model predictions. 

Table S2. Summary of the Parameters of the Kinetic Model used in the Main Manuscript. 

Variable/symbol Parameters 

𝑬𝒃 800 kcal/mol 

𝒅𝒃 0.4 nm 

𝝎𝟎 1×1013 s-1 

∆𝒕 1×10-11 s 

𝒌𝑩𝑻	   0.593 kcal/mol 

𝑳𝒄
𝒑 50 nm 

 



Figure S3. Sensitivity analysis for failure stain 𝜀! prediction as a function of the parameters (a) 

𝐸! and (b) 𝜔!∆𝑡 used in the kinetic model. The result indicates that predicted failure stain from 

the kinetic model is nearly independent of these system parameters within the reasonable range. 

 

Figure S4. (a) The tensile strength 𝜎! with different overlap ratio 𝑟 and (b) failure stain 𝜀! as a 

function of overlap length for the MLG with 3 sheets per layer (𝑛! = 3). 

The analysis of kinetic model indicates that the strain localization always initiates at the 

displacement around 𝑢!"! = 𝐿! − 𝐿!
!, when 𝐿! > 𝐿!

!, leading to the failure strain 𝜀! = 1− !!
!

!!!
.  We 

perform additional simulations and kinetic analysis for the case with three sheets per layer (𝑛! = 



3) to verify our results. The tensile strength 𝜎! for the MLG with 𝑛! = 3 and different overlap 

ratio 𝑟 shows indistinguishable difference from the case 𝑛! = 1 (Fig. S4(a)). The prediction of 𝜀! 

from the kinetic model agrees well with our CG-MD simulations as shown in Fig. S4(b).  

Knowing the failure strain, the toughness 𝑇 of the bilayer system with two interfaces (𝑛! = 1) 

can be directly approximated by integrating the stress-strain curve: 

 
ε σ σ
σ ε σ σ−= = + = − +∫0

2 2 1( ) (1 )
2 2 2 4

f
p pp p

p c p co c c
p p

o o o o

L LL L LT d
L L L L

  (S5) 

The above equation can be generalized for 𝑛! number of flakes per layer, leading to Eq. (S6) 

(corresponding to the Eq. (5) in the main manuscript): 

 
σ σ

σ σ−= + = − +2 2 1( ) (1 )
2 2 2 4

p pp p
p c p cs o s c c

p p
s o s o o s o

L Ln L n L LT
n L n L L n L

  (S6) 
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