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Lobachevsky used to call his non-Euclidean geometry ‘imagi-
nary geometry’ [1]. Beltrami showed that this geometry can 
be realized in our Euclidean 3-space, through surfaces of con-
stant negative Gaussian curvature K [2]. Thus, next to the one 
smooth surface of constant positive K, the sphere, we had to 
add infinitely many singular surfaces of constant negative K.  
The unavoidable singularities descend from the Hilbert the-
orem, stating that no analytic complete (smooth) surface of 
constant negative K can exist in the Euclidean 3-space [3].

Just as the discrete subgroups of the symmetries of the 
sphere, SO(3), are in close connection with the symmetries of 

crystals and molecules [4], the discrete subgroups of the sym-
metries of the Lobachevsky plane, SO SL2, 1 2,( ) ( )∼ R , are the 
non-Euclidean crystallographic (NEC) groups [5]. Nonetheless, 
the physical significance of the latter, in real molecular or 
lattice structures, is obscure7. Our aim here is to explore 
their actual realization, by facing the non-trivial effects of 
the Hilbert theorem, and by focusing on a (carbon-made, 
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Abstract
We realize Lobachevsky geometry in a simulation lab, by producing a carbon-based 
energetically stable molecular structure, arranged in the shape of a Beltrami pseudosphere. 
We find that this structure: (i) corresponds to a non-Euclidean crystallographic group, namely 
a loxodromic subgroup of SL 2,( )Z ; (ii) has an unavoidable singular boundary, that we fully 
take into account. Our approach, substantiated by extensive numerical simulations of Beltrami 
pseudospheres of different size, might be applied to other surfaces of constant negative Gaussian 
curvature, and points to a general procedure to generate them. Our results also pave the way to 
test certain scenarios of the physics of curved spacetimes owing to graphene’s unique properties.

Keywords: graphene, Beltrami pseudosphere, Thomson problem, constrained optimization in 
non-Euclidean spaces, classical force fields, density functional theory, discrete space-time
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7 Experimental triangulations of colloidal surfaces of negative curvature 
exist [6]. However, they are not focused on the Lobachevsky plane (constant 
K). Theoretical triangulations of the Lobachevsky plane also exist [7], but 
the embedding into R3 is not considered.
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graphene) Beltrami pseudosphere, that realizes portions of 
the Lobachevsky plane in our Euclidean 3-space, while keep-
ing some of the symmetries of the sphere (see supplemental 
material (SM) stacks.iop.org/JPhysCM/28/13LT01/mmedia).  
Besides the mathematical charm, and the focus on an important 
material, our study is beneficial for many research areas, rang-
ing from material science to biology [8], and from the discrete 
structures of curved spacetimes [9] to the generalized Thomson 
problem [10]. The choice of graphene is also motivated by the 
recently proposed occurrence of a Hawking effect on a carbon-
made Beltrami pseudosphere [11] (see [12] for a review).

Let us assume that only trivalent lattices are allowed. (In 
general, this is not strictly necessary but, besides being natural 
for graphene, this assumption simplifies the discussion). With 
this, to tile the sphere (K  =  r−2) we need either triangles, or 
squares or pentagons; to tile the flat plane (K  =  0) we need 
only the hexagon; to tile the Lobachevsky plane (K  =  − r−2), 
whose line element is

l
r

y
x y yd d d , 0,2

2

2
2 2

˜
( ˜ ˜ ) ˜= + >� (1)

we need one of the infinitely many other polygons: the hepta-
gon, the octagon, etc. This descends from the Euler–Poincaré 
formula and the Gauss–Bonnet theorem for manifolds Σ with-
out boundaries [13]

K n s2 6 ,
n

tot s

s

( )∑πχ φ= = −� (2)

where K Kdtot
2∫ µ=

Σ
 is the total Gaussian curvature of 

Σ, χ its Euler characteristic, /3φ π=  when Σ is embedded 
in 3R , ns is the number of s-sided polygons, necessary to tile 
Σ. Hence, each s-sided polygon, carries a curvature given by 
K s6s ( )φ= − . This proves our statements.

To obtain a Beltrami pseudosphere one needs to write the 
Lobachevsky coordinates in (1) as specific functions of the 
meridian (u) and parallel (v) coordinates (with a specific para-
metrization, see SM) x v r/˜ = , and y re /u r/˜ = − , leading to the 
line element l u R u vd d d2 2 2 2( )= + , with v 0, 2[ ]π∈ , and

R u r ue , , 0 .u r/( ) [ ]= ∈ −∞� (3)

Clearly, this surface of revolution keeps one rotation symme-
try of the sphere (v 0, 2[ ]π∈ ), while turning the second rota-
tion into a non-compact one (compare R(u) in (3) with the 
sphere’s R u r u rcos /( ) ( )= , u r r/2, /2[ ]π π∈ − + ).

According to Hilbert theorem, this surface has a singular 
boundary at u  =  0, that is the maximal circle of radius R  =  r. We 
call it the Hilbert horizon [12]. This results in a ‘decoupling’ of 
the Gauss–Bonnet theorem and the Euler–Poincaré formula, i.e. 

K n s6 2ntot 3 s( ) πχ= ∑ − ≠π , whereas K K l2 dtot g∫πχ = +
∂Σ

, 
with Kg the geodesic curvature of the boundary.

We now apply a regular triangular tiling to the surface, and 
then we shall move to the Voronoi dual. The triangulation is 
associated with a dense uniform packing, having a fixed lat-
tice spacing �, and we truncate the surface at a radius of few 
�s. Thus, the larger the radius, the finer the discrete approx
imation to the continuous surface. This proper triangulation 
is convenient to discuss the theoretical issues as well as to 

describe the making of the actual carbon pseudosphere shown 
in figure 1. By the previous arguments, we expect for the ideal 
surface, whose area is r2 2π , the number of heptagonal defects 
to be 6 (K 2 6 /3tot ( )π π= − = − ).

The issue now is to find where these defects are positioned 
on the surface, and whether the combination of the discrete 
symmetries of the sphere and of the Lobachevsky plane can 
guide us to find the symmetries among the defects. In other 
words, our goal is to construct the negative curvature counter
part of the icosahedral group, Y C C C, ,2 3 5( )= , in the case 
of the Beltrami, say it FY. FY would be one of the infinitely 
many negative curvature counterpart of Y. It would produce 
a ‘Lobachevsky Beltrami polyhedron’, whose vertices are the 
heptagonal defects (see figure 2 and SM). We apply to Y the 
same deformations that turn a sphere into a Beltrami, illus-
trated in details in the SM. The C5 symmetry in the v direction 
is preserved by construction, while the C5 symmetry in the 
u direction is ‘hyperbolized’ (see (3)), resulting in a discrete 
‘boost’. Therefore, we need to orient the icosahedron to have 
one vertex at the south pole of the sphere (u r /2Sphere π= − ), 
mapped to the very bottom tip of the Beltrami (uBeltrami = −∞).

Figure 1.  Ideal tiling of a truncated Beltrami pseudosphere, 
realized with a trivalent lattice.

Figure 2.  Action of FY on the vertices of the ‘Lobachevsky 
Beltrami polyhedron’. The vertex at infinity (n  =  0) is identified 
with the first vertex (n  =  5). Those vertices are the expected 
locations of the (excess of) heptagonal defects on the Beltrami 
pseudosphere. Left: side view; right: top view.
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The combination of these symmetries provides the follow-
ing structure of the group

F u v v n u r nexp i 2 /5, ln /6Y { { } ( )}π≡ + | = = | |� (4)

where n 5∈Z . The sign of n is related to the spiral’s chiral-
ity. Structures with opposite chirality have the same energy 
(spontaneous breaking of the parity transformation of Y), as 
seen in our simulations. As described in detail in the SM, the 
6 discrete values of u r R rln /( )=  correspond to the point at 
infinity, R/r  =  0, and to the 5 tangent cones with apertures 

narcsin /6n ( )α = , where n 05 { }∈ −Z , giving R/r  =  1/6, ..., 
5/6 (in the following figures of the pseudospheres’ top view, 
these radii correspond to colored circles). The point at infin-
ity needs to be removed in all practical realizations, thus 
u un n5 0| ≡ | = −∞=± = .

FY is a cyclic loxodromic subgroup of SL 2,( )Z  of order 5,  
hence it is the NEC group of the Beltrami pseudosphere 
we were looking for. Real membranes are strained by the 
force due to their extrinsic curvature, M K K1/2 1 2( )( )= + , 
that is F M2∝−∇

→ →
. For Beltrami the principal curvatures are 

K R u

r r R u
1 2 2

( )
( )

= −
−

 and K
r R u

rR u2
2 2( )

( )
= −

, which give a diverg-

ing stretching at the Hilbert horizon, and a diverging con-
traction at the tip, see figure 3. The first divergence is cured 
by pinning the atoms there with a positive (compressing) 
force. The second, less severe, divergence is of no concern as 
the surface is truncated. This is important to understand the 
expected formation of ‘scars’, that are chains of disclination 
defects either carrying an overall unit of charge of curvature 
(positive or negative) or none. Scars come about to relieve the 
elastic strain of membranes, see, e.g. [10]. Summarizing, in 
the limit of large numbers of atoms the structures approach 
the ideal case, and we expect the truncated carbon-made 
Beltrami pseudospheres to show an excess of 5 heptagonal 
defects, at the locations predicted by FY, on which extrin-
sic curvature effects act, creating scars along the geodesics, 
and pushed towards the tip. We shall now describe the robust 
numerical simulations that showed the correctness of these 
considerations.

To generate Beltrami pseudosphere equilibrium configu-
rations a number of steps (summarized in figure  S6 of the 
SM), were performed. Surfaces with different rs were engi-
neered, aiming at investigating both number and distribution 
of defects, and at finding the most energetically favourable 
morphologies. The first step consists in fixing R rmax = , as 
well as Rmin, the radius of the smallest circle (truncation), (see 
figure 1). Starting from uniformly random distributed x and y 
planar coordinates, we generate structures initially character-
ized by a strongly irregular point mesh on the pseudosphere. 
The number of points N used in the surface tiling of a spe-
cific pseudosphere is determined according to the following 
formula:

π π= − +

× +

N R R R a

a R a R

4 / 3 /2

1/arcsin / 2 1/arcsin / 2

max max min CC
2

CC max CC min

( ) (   )
     [ ( ( )) ( ( ))]
�

(5)

where aCC = � is the carbon-to-carbon distance. Notice that 
Rmin is such that the distance between opposite carbon atoms 
in the circumference is larger than aCC. To avoid numerical 
instabilities in the calculation of the repulsive part of the inter-
acting potential, the number of points N should not exceed 
that required to uniformly cover the entire surface. As such, 
a predictor-corrector approach, to determine the correct N, 
must be used. Points are constrained, on the one hand, by con-
struction, on the Beltrami surface, and on the other hand, by 
using steep parabolic potential rumps at both Rmax and Rmin 
(see figure 3). To ensure that the pseudospheres are smoothly 
terminated (i.e. with zero derivative) at the Hilbert horizon, a 
planar ring of several aCC in transverse direction is added in 
the simulations. Thus, potential rumps up steeply only after 
the flat graphene ring. In general, we find that the bigger is r 
the larger the flat ring must be. Points on the Beltrami surface 
interact through a pair-wise Lennard-Jones (LJ) potential, suit-
able to generate a triangular tiling of the structure (details on 
LJ are provided in the SM). To find the equilibrium structure 
of a solid, a variety of well-established approaches are avail-
able, such as quasi-Newton methods (e.g. Broyden–Fletcher–
Goldfarb–Shanno algorithm (L-BFGS)), conjugate-gradient 
(CG) and steepest descent. However, as previously stated, to 
mimic the ideal Beltrami structures one needs to decrease the 
curvature and this results in increasing the size, and thus the 
number of atoms. In this case, owing to memory and compu-
tational overload, the only viable option to find the structures 
with minimum potential energy is to rely on the use of the Fast 
Inertial Relaxation Engine (FIRE) approach [14] (details on 
FIRE algorithms and parameters [15] are provided in the SM).  
In left panel of figure  4 we produce an example of trian-
gulation pattern reachable by FIRE using 2840 points on a 
Beltrami surface with R 36max =  Å and z 64min = −  Å, where 
z  =  0 is the z-coordinate of the Hilbert horizon. A number of 
defects, distributed all over the structure, appear after the LJ 
triangulation with an excess at the final border of the planar 
ring. Indeed, the insurgence of defects is more likely whereby 
the triangular pattern is spoiled.

To generate truncated pseudospheres that provide models 
for sp2-bonded carbon atoms one needs to apply a topological 
dualization (Voronoi patterning) to the LJ optimized lattice.  

Figure 3.  Behavior of ( )∝−∂F M uu
2 . The proportionality constant 

and r are set to 1. At ( ) =∗R u r / 2, | | = | |K K1 2 , hence M  =  0  =  F.
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We initially compute the adjacency matrix of each parti-
cle, where a neighbour was defined as a particle closer than 

a3 CC×  . Distances were evaluated in 3D space and not on 
the surface. The mesh was then refined in order to output a tri-
angulation. The centres of each triangle were finally exported 
to a final structure containing pentagonal, hexagonal and hep-
tagonal rings only (see figure 1). Heptagonal and pentagonal 
defects appear to form charged and uncharged linear defects 
in the form of scars, which tend to distribute over the surface 
according to a specific helicoidal pattern (see right panel of 
figure 4). No vertex of valence higher than 3 has been observed 
when computing charge defect. In particular, our goal is to dis-
cretize the pseudosphere by introducing real carbon atoms. We 
note that after the Voronoi patterning of the lattice, the carbon 
structure is far from equilibrium configuration and, thus, we 
need to optimize the atomic positions on the surface. However, 
a LJ model of the interatomic interactions (see equation (S28) 
of the SM) cannot reflect the strongly directional sp2 bond of 
the dualized carbon pseudosphere, which is very much similar 
to a defective graphene lattice. To cure this LJ pathology, we 
included three-body angular terms in the interaction potential 
functional form, using a Stillinger–Weber-type (SW) poten-
tial [16], which has been successfully adopted in molecular 
dynamics simulations of graphitic structures [17] (see SM 
for details on SW parameters). Pseudospheres with a final 
number of 1146, 2146, and 5506 carbon atoms were gener-
ated and optimized, see figure 5. Some defect topologies were 
found locally resonating between different configurations (see  
figure S7 of the SM) carrying no net charge (uncharged dipole) 
as in the case of Stone-Wales defect in planar graphene. In 
this figure, we framed the charged scars (one heptagon in 
excess). The number of such scars increases with the size of 
the pseudosphere, converging to the expected five, distributed 
along a helicoidal path, see figure 5. This is a robust proof to 
our conjecture on the FY symmetry of Beltrami, see figure 2. 
These features originates from the interplay between local 
curvature and average inter-particle distance [6] in the curved 
space. Indeed, while it is known that mild curvature leads to 
the formation of scars, previous studies of the arrangement of 
particles on the sphere (in the order of 10 000) revealed the 
formation of icosahedral disclination lines and ground states 
characterized by high symmetry [10]. Colloidal crystals on 
negatively curved interfaces such as those of capillary bridges 

have been observed to form isolated heptagonal defects but no 
particular symmetry [6]. More recent numerical investigations 
that used a repulsive LJ potential and the basin-hopping 
method on a number of surfaces with either zero (catenoids) 
or constant mean curvature (unduloids), report configurations 
displaying instead some form of symmetry.

In figure  5 we sketch a large hexagon, whose sides are 
tangent to the pseudosphere’s Hilbert horizon (black circle). 
The appearance of this hexagonal circulation guarantees that 
a Beltrami pseudosphere has been generated. This feature has 
been found only in connection with the absence of charged 
scars crossing the Hilbert horizon. Finally, in the presence 
of crossing events the flat ring surrounding the pseudosphere 
would bend and deform the Beltrami pseudosphere into a 
polygonal prismatoid (e.g. for pentagonal circulation we 
would obtain a pentagonal base pyramid). In this respect, the 
inclusion of a graphene flat ring is twofold: it allows pseudo
sphere generation with zero-derivative singularities, and it 
removes the interaction of the pseudosphere with the bounda-
ries, thus eliminating the possibility for the latter to interfere 
with the internal formation of defects (the same effect could 
be reached by imposing periodic boundary conditions to the 
pseudosphere). Thus, provided the requirements mentioned 
above are rigorously satisfied, one can generate properly-
defined Beltrami pseudospheres.

We are also in the position to investigate the minimum 
energy configurations (MEC) of Beltrami carbon pseudo
spheres as a function of the number of interacting particles, 
with the explicit inclusion of the electronic degrees of freedom 
(generalized Thomson problem [10]). Thus, among a number 
of FIRE optimized pseudospheres with the same curvature 
and number of atoms we performed first-principle simulations 
based on the density-functional tight-binding (DFTB) method 
within the Born–Oppenheimer approximation [18, 19] (details 
on parameters, convergence issues and DFT against DFTB 
accuracy checks are provided in the SM). The first notable 
result is that, releasing the constraint that carbon atoms lay 
on the Beltrami surface, the pseudosphere containing 1146 
carbon atoms is stable at both DFT and DFTB levels of the-
ory. With respect to the constrained optimization, we find the 
appearance of bumps in correspondence of the uncharged 
penta-heptagonal scars, locally spoiling the constant curvature 
(see figure S11 of the SM).

Restoring the constraints, we finally performed the total 
energy ground state calculation of nine FIRE optimized Beltrami 
pseudospheres containing 1146 carbon atoms, see SM. In 
the bottom panel of figure 6 we report the energy landscape. 

Figure 4.  Left: lattice triangular tessellation obtained by using the 
FIRE approach along with the LJ interatomic potential; right: scar 
helicoidal distribution.

Figure 5.  Optimized pseudospheres with 1146 (left), 2146 
(middle), and 5506 (right) carbon atoms.

J. Phys.: Condens. Matter 28 (2016) 13LT01
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Minima are indeed critically affected by the presence of the 
external ring due to the different number and position of 
defects. Thus, we can find MEC only in statistical sense, pro-
viding a number of pseudospheres with a comparable energy 
minimum, excluding those energetically far. In this case, the 
energy difference per carbon atom between the pseudospheres 
labelled as 4, 5 and 7 is below 0.05 eV, which is of the order 
of magnitude of the energy difference between different car-
bon atom bonds. Thus, these three configurations represent 
the most likely MEC candidates for our statistics, and in the 
top panel we report these 3 Beltrami structures. We repeated 
the same calculations for larger samples, notably having 2146, 
5506 carbon atoms to shed some light on the behaviour of the 
energy minimum with increasing N. We report the relevant 
energy landscape in figure 7, while the optimized geometries 
can be found in the SM (see figures S9 and S10 of the SM).

In conclusion, we have realized for the first time, in a 
simulation lab, a Lobachevsky molecular structure, facing 
and solving the various issues of embedding Lobachevsky 
geometry in 3R . We have found: (i) a specific NEC group for 
Beltrami; (ii) how to face the Hilbert horizon; (iii) a novel 
energetically stable carbon geometry. This leads to conjec-
ture that the infinitely many surfaces of constant negative K 
could correspond to the infinitely many NEC groups, suitably 
adapted to 3R  (e.g. a natural candidate for a non-cyclic, infinite 
order generalization of FY is the Dini surface [20]). This work 
paves the way to the realization of systems corresponding to 

QFT in (quantum) gravitational backgrounds [12], hence, e.g. 
to test black hole quantum physics [11].
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Appendix A: Lobachevsky geometry in R3

The upper-half plane, {(x̃, ỹ)|ỹ > 0}, equipped with the metric

dl2 =
r2

ỹ2
(dx̃2 + dỹ2) , (S1)

represents Lobachevsky geometry, both locally and globally. The geodesics for (S1) are semi-circles, starting and
ending on the “absolute”, that is the x̃-axis. These include the limiting case of infinite radii semicircles, that are
straight half-lines parallel to ỹ. To realize this geometry in a real laboratory we need to embed (S1) in R3, that is, we
need to find a surface with constant K = −r−2. This means to specify x̃ and ỹ in terms of coordinates measurable
using the Euclidean distance (embedding), for instance the parallel and meridian coordinate, (u, v), respectively (see
later).

Each such surface is only locally isometric to the Lobachevsky plane, and only represents a “stripe” (a sector of
the area between two parallels, called “horocyclic sector”). Since there are infinitely many ways to cut-off a stripe
from the Lobachevsky plane, it is easy to convince oneself that there are infinitely many such surfaces. Furthermore,
each carries some sort of singularity: cusps, self-intersections, boundaries, etc. These are unavoidable, as proved in
the Hilbert theorem stated in the main text. Intuitively, we might say that these singularities/infinities stem from
forcing an intrinsically non-compact structure (the isometries of (S1) form the group SL(2,R), locally isomorphic to
SO(2, 1), the Lorentz group in 2+1 dimensions) into a space, R3, whose isometries are given by the compact group
SO(3). Indeed, the Hilbert theorem does not apply to embeddings into R(2,1).

We show here how this comes about in the case of the Beltrami pseudosphere of interest, that is one of the surfaces
of constant negative K that is also a surface of revolution, like the sphere. This will illustrate, among other things,
the nature of the singular boundary that we call “Hilbert horizon”, in honor of Hilbert.

A surface of revolution is a surface swapped by a profile curve, say in the plane (x, z), rotated of a full angle around
the z-axis. All such surfaces can be parameterized as

x(u, v) = R(u) cos v , y(u, v) = R(u) sin v , z(u) = ±
∫ u√

1−R′2(ū)dū , (S2)

where prime denotes derivative with respect to the argument, v ∈ [0, 2π] is the parallel coordinate (angle), and u is
the meridian coordinate. The range of u is fixed by the knowledge of R(u), i.e. of the type of surface, through the
request that

z(u) ∈ R . (S3)

When K is constant we have

R(u) = c cos(u/r + b) for K =
1

r2
> 0 , (S4)

and

R(u) = c1 sinh(u/r) + c2 cosh(u/r) for K = − 1

r2
< 0 , (S5)
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FIG. S1: The Beltrami pseudosphere, plotted for r = 1 = c and u ∈ [−3.4, 0], v ∈ [0, 2π].

where r, c, b, c1, c2 are real constants, that determine the type of surface, and/or set the zero and scale of the coordi-
nates.

For K = 1/r2, one first chooses the zero of u in such a way that b = 0, then distinguishes three cases: c = r
(sphere), c < r (spindle), c > r. With these,

z(u) =

∫ u√
1− (c2/r2) sin2(ū/r)dū . (S6)

This elliptic integral has singularities when c 6= r, but these cases are applicable to the sphere, c = r, through a simple
redefinition of the meridian coordinate v → (c/r)v. Therefore, these singularities are inessential and easily avoidable.
Once that is done, the integral gives z(u) = r sin(u/r), with u/r ∈ [−π/2,+π/2].

For K = −1/r2, all the surfaces described by (S5) can be applied to one of the following three cases: either
c1 = c2 ≡ c, giving

R(u) = c eu/r , (S7)

or c1 ≡ c, c2 = 0, giving

R(u) = c sinh(u/r) , (S8)

or c1 = 0, c2 ≡ c, giving

R(u) = c cosh(u/r) . (S9)

They are called the Beltrami, the elliptic, and the hyperbolic pseudospheres, respectively. Notice that for the Beltrami
and hyperbolic surfaces, c is only bound to be a real positive number. For the elliptic surface, instead, 0 < c ≡
r sinβ < r, where β is the angle between the axis of revolution, and the tangents to the meridians at R = 0 (see later).

The corresponding expressions for z(u) are obtained by substituting R(u) in the integral in (S2). Having done that,
the condition (S3) gives the range of u (hence of R) in the three cases

R(u) ∈ [0, r] (u ∈ [−∞, r ln(r/c)]) , (S10)

R(u) ∈ [0, r cosβ] (u ∈ [0, arcsinh cotβ]) , (S11)

R(u) ∈ [c,
√
r2 + c2] (u ∈ [−arccosh(

√
1 + r2/c2),+arccosh(

√
1 + r2/c2)]) , (S12)
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respectively.
The key difference with K > 0, and manifestation of the Hilbert theorem for the surfaces of revolution, is that, no

matter the redefinition of coordinates, the singularities of the elliptic integral for z(u) can never be avoided.
Summarizing, the Beltrami pseudosphere has coordinates (see (S2))

x(u, v) = c eu/r cos v , y(u, v) = c eu/r sin v , z(u) = r(
√

1− (c2/r2)e2u/r − arctanh
√

1− (c2/r2)e2u/r) , (S13)

and is identified by R(u) = c eu/r ∈ [0, r] as u ∈ [−∞, r ln(r/c)]. The surface is not defined for R > r as z(u) becomes
imaginary. The singular boundary (Hilbert horizon) is the circle R = r (at u = r ln(r/c)). In the main text, for
simplicity, we choose c = r, that gives u = 0 as the parallel coordinate of the Hilbert horizon.

Comparing (S7) with (S8), and (S10) with (S11), one sees that, for c/r → 0 (that is β → 0), the Beltrami
pseudosphere is a limiting case of the elliptic surface.

Appendix B: “Hyperbolizations” of the sphere and the FY group

Here we show how the deformation of the sphere that produces a Beltrami pseudosphere guides us in the construction
of the NEC group FY of the main text.

Consider the equation for the sphere in R3

x2 + y2 + z2 ≡ xiδijxj = +r2 , (S1)

where xi ≡ (x, y, z). On the left side we have the length squared of the position vector in R3, and the metric of the
latter is δij = diag(+1,+1,+1). The symmetry group of the equation is SO(3), as it is seen from the solution of (S1)

x = r cos v sin(u/r) , y = r sin v sin(u/r) , z = r cos(u/r) , (S2)

that shows two compact rotations, one for the parallels (v), one for the meridians (u). SO(3) is also the group of
isometries of the embedding space R3. Therefore, the surface identified by such coordinates (the sphere) realizes
the geometry of constant positive K, and discrete subgroups of SO(3) are related to its tiling, as well as to the
crystallographic groups, as recalled in the main text.

Consider now

x2 + y2 − z2 ≡ xiηijxj = −r2 , (S3)

where ηij = diag(+1,+1,−1). The symmetries of this equation form the non-compact group SO(2, 1) ∼ SL(2,R),
where besides standard compact rotations, there are hyperbolic rotations. As before, this can be seen from the solution
of (S3)

x = r cos v sinh(u/r) , y = r sin v sinh(u/r) , z = r cosh(u/r) , (S4)

where the rotation for the meridians (u) becomes hyperbolic. SL(2,R) is the isometry group of Lobachevsky geometry,
whose discrete subgroups are, by definition, the NEC groups.

If the embedding space for (S3) is R3, the symmetries of the equation and of the embedding space differ, being SO(3)
for the latter, and SL(2,R) for the former. In fact, in R3 the surface identified by the coordinates (S4) is a double-sheet
hyperboloid, showed in Fig. 2, that is a surface of non-constant positive Gaussian curvature, K = [r cosh(2u)]−2 > 0,
that nothing has to do with Lobachevsky geometry.

If the embedding space for (S3) is R(2,1), the symmetries of the equation and of the embedding space coincide, and
indeed we have a realization of Lobachevsky geometry. This can be seen by writing the line element

dl2 ≡ dx2 + dy2 − dz2 = du2 + (r sinβ)2 sinh2(u/r)dv2 , (S5)

where x,y, and z are given by (S4), but with the parameter c = r sinβ reintroduced (see previous Section). Indeed,
this is the line element of the elliptic surface of the previous Section. If the embedding space is only artificial, i.e.
the only physical space is the two-dimensional surface, then the line element in terms of u and v in (S5) is all that is
necessary. If the embedding space is physical and is R3, like for us, then the coordinates that one needs to use cannot
be (S4), but (see (S2) and (S8))

x = (r sinβ) cos v sinh(u/r) , y = (r sinβ) sin v sinh(u/r) , (S6)
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FIG. S2: A unit sphere in R3, next to two “hyperbolizations”. Only the second (the Beltrami pseudosphere) is a realization of
Lobachevsky geometry.

that are very similar to x and y in (S4), but the z coordinate is a complicated expression given in terms of elliptic
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integrals of the E and F type

z = 2r cot2 βcsch(
2u

r
)
(

EllipticE
[

arcsin(
1

2

√
3 + cos(2β)− 2 cosh(

2u

r
) sin2 β), sec2 β

]
− EllipticF

[
arcsin(

1

2

√
3 + cos(2β)− 2 cosh(

2u

r
) sin2 β), sec2 β

])√
cosh2(

u

r
) sin2 β

√
sinh2(

u

r
) tan2 β . (S7)

Indeed, when we write dl2 ≡ dx2 + dy2 + dz2 and use the coordinates (S6) and (S7), we obtain

dl2 ≡ dx2 + dy2 + dz2 = du2 + (r sinβ)2 sinh2(u/r)dv2 , (S8)

where we recognize, on the far-right side, the same line element obtained in (S5), hence, we have realized Lobachevsky
geometry in R3. This is not yet our Beltrami pseudosphere, that is reached in the limit c/r ∼ β → 0. This
correspondence is of much help to find FY , as we now show.

First we see that the area of the elliptic pseudosphere is

AE = 2π

∫ umax

umin

R(u) = 2πc

∫ umax

umin

sinh(u/r) = 2πr2(1− sinβ) , (S9)

reaching the area of the Beltrami, AB = 2πr2, for β → 0. From the Gauss-Bonnet formula of the main text, we know
that six heptagonal defects are necessary for the Beltrami, Ktot = −2π = 6 × (−π/3). Therefore, being AE ≤ AB ,
we can thing of progressively accommodating one unit of negative curvature (−π/3) at the time, from 1 to 6. This
way we shall form elliptic pseudospheres whose areas are such that Ktot = −π/3, then Ktot = −2π/3, and so on, till
Ktot = −5π/3, and then obtain the case of Ktot = −6π/3 = −2π as a limiting case corresponding to Beltrami. In
formulae, for one unit of negative curvature

AE1 ≡
1

6
AB or 2πr2(1− sinβ1) =

1

6
2πr2 , (S10)

that gives β1 = arcsin(5/6).
For two units

AE2 ≡
2

6
AB or 2πr2(1− sinβ2) =

2

6
2πr2 , (S11)

that gives β2 = arcsin(4/6), and so on. Then, the six angles between the axis of revolution and the tangents to the
meridians at R = 0, are

βk = arcsin[(6− k)/6] , (S12)

with k = 1, ..., 6, where k = 6 is there only in the limiting case of Beltrami. As will be clear from what follows, these
angles are the αn of the text

βk = arcsin[(6− k)/6] ≡ α6−k ≡ αn , (S13)

where n ≡ (6− k) ∈ (0, 1, 2, ..., 5).
In Fig. 3 we show these five elliptic pseudospheres, along with the corresponding surfaces of constant positive

curvature that carry the units of curvature, but of opposite sign. The line elements of the latter surfaces are

ds2n = du2 + r sinαn sin2(u/r)dv2 , (S14)

with the αn defined above (they are the (half) spindles introduced in the previous Section).
Let us now construct the FY of the text, and let us start from the elliptic surface with one defect. Evidently (see

Fig. 4) the defect has to be at the tip, and its work is to turn the cone of angle α5, tangent to the surface at the tip
(R = 0), into the negative curvature surface we want. In Fig. 4 we indicate the defects with circles. The role of the
tip, though, is special, as in the limiting case of our interest, this point will go to infinity.

Let us move to the case of two units of curvature. We can either use a single “charge −2” defect, for which
Ktot = −2/3π (for a graphene-made membrane, it corresponds to an octagon), or two defects of charge −1 (two
heptagons for graphene). We shall use the second option. In this case, the charge −1 defect at the tip is not enough
to turn the tangent cone of angle α4 into the wanted surface. The action of the second defect of charge −1 is necessary.
That has to turn the tangent cone of angle α5 into a negative curvature portion of the surface. This cone of angle α5
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is tangent to the surface at a different point. Therefore the surface is obtained by the combined action of these two
defects. This is illustrated in Fig. 4. These two defects correspond to the location of the vertices of the Lobachevsky
polyhedron, and enjoy only a C1 symmetry. This is so because one of them is at the tip, hence on the axis of symmetry.
Another way of looking at this construction is to think of the process of going from surface 1 (first plot in Fig. 4) to
surface 2 (second plot in Fig. 4), as a transformation that keeps the first defect/vertex at the tangent point with fixed
angle α5.

As illustrated in detail in Fig. 4, the process continues in this fashion for growing number of defects: for the surface
3, the deformation keeps the defects/vertices of surface 2 at the tangent points corresponding to their angles α4 and
α5, and a new defect at the tip, i.e. located at the tangent point with angle α3, appears, and so on. When the defects
become 3 or more the rotation symmetry of the surface of revolution will act on them. Since the defect at the tip lies
on the axis, the finite rotations are: C2 for the surface 3, C3 for the surface 4, C4 for the surface 5, and in the limit,
C5 for the Beltrami (surface 6). Notice that in Fig. 4 we do not apply the rotation symmetry to the defects/vertices.
This is done to show how the defects are distributed along the meridian (u) coordinates.

Finally, in Fig. 5, the limiting case of the Beltrami shows the value of R where the defects/vertices sit, corresponding
to the values of the discrete hyperbolic u-motions (“boost”) given in the text.

Appendix C: FIRE with Lennard-Jones potential

Beltrami pseudospheres were generated according to the pseudocode flow reported in Fig. S6. Particles, whose
number was chosen so to not exceed that required to cover the entire surface, were initially randomly distributed on
the surface and their potential energy was minimized.

Points on the Beltrami’s surface interact through a pair-wise Lennard-Jones (LJ) potential as follows:

φ(r) = 4ε

((
σ2

r2 + r2c

)6

−
(

σ2

r2 + r2c

)3
)

(S1)

such that φ(2.780 Å) = 0, φ(rm) = 170 eV and where rc = 1.418 Å is the potential cut-off radius at short distance.
Potential is set to zero at twice the C-C equilibrium distance of graphene, as after this LJ triangulation (see Fig.
S6), we need to find the Voronoi partitioning of the lattice with point-to-point distance close to aCC = 1.42 Å. In
principle, different type of interactions, other than LJ, could be chosen for the pair interaction. However, LJ does a
remarkably good job in describing the triangulation of the lattice (as for any fcc-packed material, e.g. rare-gas solids
at equilibrium).

The pseudospherical surface was truncated at a height corresponding to a radius equal to the lattice distance.
Particles were constrained to lie on a bounded surface. The combined use of a single-well potential ramping up
immediately after a flat graphene ring surrounding the Beltrami pseudosphere and the bottom truncation circle
eliminates the issue of the cluster interaction with the boundaries, thus eliminating the possibility for the latter to
interfere with the internal formation of defects.

Due to an efficient implementation of these methods within the GSL numerical library, we first attempted a
constrained minimisation using the conjugate gradient algorithm to find the ground-state triangular tiling of the
pseudosphere. However, increasing the number of points results in several iterations to reach convergence, with often
dramatic numerical instabilities and a rapidly unaffordable computational cost above a thousands points.

Thus, we decided to follow an alternative route and use the Fast Inertial Relaxation Engine (FIRE) approach for
finding the structures with minimum potential energy. FIRE is a powerful global minimisation algorithm based on
adaptive time step molecular dynamics, significantly more stable and faster than many sophisticated quasi-Newton
schemes. In particular, structural relaxation is obtained by using the following equation of motion:

v̇(t) = F(t)/m− γ(t)|v(t)|(v̂(t)− F̂(t)) (S2)

where m is the mass (set fictitiously to 1 a.m.u. in our FIRE simulations), v is the velocity and F = −∇φ is the force
proportional to the gradient of the potential. In our case, φ is given by the LJ potential in Eq. S1 and point-to-point
distance is assessed according to the Beltrami’s pseudosphere metric in Eq. 1. The adaptive time step spans the
range from 0.001 to 1 fs, depending on the proximity to the energy minimum. Following Ref. 16 for all systems under
investigation, the FIRE parameters have been set to the following: Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.1
and fα = 0.99. Convergence below 1 meV/Å was reached for all structures. For increasing number of atoms FIRE
resulted at least three times faster than CG, while for the largest numbers (we reached up to 5 million lattice points
by implementing FIRE on a GPU platform) was the only viable option due to memory and computational overload.



7

Appendix D: Voronoi patterning and many-body classical potential

Topological dualization of the generated structures provided models for sp2-bonded carbon graphene sheets in the
form of truncated pseudospherical surfaces. The dualization process is performed by computing a triangulation of the
surface. This was done by initially computing the adjacency matrix of each particle, where a neighbour was defined as
a particle closer than

√
3 times the lattice distance. Distances were evaluated in three-dimensional space and not on

the surface. The mesh was then refined in order to output a triangulation. The centres of each triangle were finally
exported to a final structure containing pentagonal, hexagonal and heptagonal rings only.

After the Voronoi patterning of the surface, the structure is not in its equilibrium position, and thus a re-optimization
is necessary by adding a three-body term to the model pair-wise LJ potential. In particular, this can be achieved by
expanding the many-body interaction energy φMB in a series of terms depending on atom pairs and atomic triplets
as follows:

φMB =
1

2

N∑
i

∑
j>i

φij(rij) +
1

6

N∑
i

N∑
j>i

N∑
k>j

φ3B(rijk) (S1)

for dealing with the covalent bonds connecting the carbon atoms. φij(rij) and φ3B(rijk) are the two-body and 3-body
angular terms, respectively, and one-body terms that depend on external fields were suppressed in our simulations. In
particular we adopted a Stillinger-Weber-type (SW) potential with parameters optimised for carbon-based materials
as follows: A = 5.373203, B = 0.50824571, a = 1.8943619, λ = 18.707929 and γ = 1.2. The constant term appearing
in the angular term is equal to 1/2 to favour ideal sp2 configurations. To evaluate the efficiency of this potential in
determining equilibrium configurations of carbon-based systems, we carried out the calculation of graphene cohesive
energy. This energy results equal to -7.459 eV, remarkably close to the value of -7.4 eV reported in literature from
simulations using parametric interatomic potentials tailored for graphene. The ground state of particles interacting
via interatomic potentials on curved spaces displays an interesting set of features that originate from the interplay
between local curvature and average inter-particle distance. No vertex in these structures had a valence higher than
3. Vertex valence is an fundamental property to take into account when computing charge defect. Many metastable
geometries were found during the minimization path. As an example, a defect of the type shown in Fig. S7 - although
containing two pentagons - carries no net charge, and it would be actually equivalent to an uncharged 5-7 dipole.
Surprisingly, other simulations also found the formation of pentagonal pairs.

Although we did not encounter vertices with a valence higher than 3, to avoid confusion, and in order to perform an
exact computation of the topological charge involved, it might be useful to generalize the concept of number of sides
of a polygon by including the valence of its vertices into it. We define the augmented number of sides of a polygon as:

ñi = 3

ni − 2

ni∑
j=1

1

vi

 (S2)

Final optimized geometries for Beltrami pseudospheres of different size investigated in this work are reported in
Figs. S8,S9,S10. The Thomson problem was solved for this set of constant negative curvature structures, as detailed
in the text of the manuscript.

Appendix E: Density Functional and Density Functional Tight-Binding

To perform minimum energy calculations including explicitly the electronic motion into our simulations we used
both the Density Functional and the Density Functional Tight-Binding approaches.

In particular, for the latter we adopted the self-consistent charge framework that leads to an improved description
of the Coulomb interaction between atomic partial charges. Atomic interactions between carbon atoms were treated
by the semirelativistic, self-consistent charge Slater-Koster parameter set “matsci-0-3”. To help convergence to the
minimum energy, we employed a room temperature Fermi smearing of the electronic density. The unit cells in DFTB
simulations were shaped as cubes with sides increasingly large for increasing number of atoms (70 Å for 1146 carbon
atoms, 90 Å for 2146, and 130 Å for 5506 carbon atoms, respectively). The advantage of using DFTB with respect to
other ab-initio methods, such as Density Functional Theory (DFT), is due to the computational cost of this approach
to electronic structure calculations, which is about two orders of magnitude cheaper than the corresponding full
DFT calculation. As a result of this substantial speed gain, DFTB may be used to investigate much larger systems
than those accessible by DFT at an affordable computational cost. Nevertheless, we checked the accuracy of DFTB
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against DFT in this case by performing structural optimisation with and without constraining the atoms to lay on the
Beltrami pseudosphere. In the former case, fixed-nuclei energy difference calculations between two different Beltrami
configurations, both consisting of 1146 carbon atoms, using DFT and DFTB were performed and found to be below
1 meV per carbon atom. DFTB can be then safely used in our simulations.

Eliminating the bi-dimensional constraint, DFT was used to test the mechanical stability of these carbon-based
structures. DFT calculations have been performed using the ab initio total-energy and molecular dynamics program
VASP, with the implementation of an efficient extrapolation for the electronic charge density. The ion-electron
interaction has been described using the projector augmented wave (PAW) technique, with single-particle orbitals
expanded in plane waves with a cutoff of 400 eV, which ensures convergence of the structural parameters of graphene,
like the aCC distance to better than 0.05% with respect to experimental data. We tested two different exchange-
correlation functionals, notably LDA and PBE, and found no appreciable difference. Thus, after these tests, we decided
to use the LDA functional. Thermal excitations of electrons were included via the finite-temperature formulation of
DFT, in which the variational quantity to be minimized is the free energy of the electrons, Fstatic = E − TS, where
the DFT energy E is the usual sum of kinetic, electron-nucleus, Hartree, and exchange-correlation terms, and S is
the electronic entropy, given by the independent electron formula S = −kBT

∑
i [fi ln fi + (1− fi) ln 1− fi], with kB

being the Boltzmann constant and fi the thermal Fermi-Dirac occupation number of orbital i. In all calculations we
used an electronic temperature of T = 300 K. Brillouin zone sampling was performed using the Γ-point only. The
electronic free energy of the unit cell, which was chosen as a cube of 55 Å side, was converged to within less than 1
meV. In Fig. S11 we report the constraint-free structure obtained upon DFT optimization. The intrinsic curvature
induced locally by heptagonal defects is by far larger than what expected at any given location on the pseudosphere.
For this reason, charged defects tend to spread over a wider area and often appear in the form of short segments,
where the original curvature carried by a single heptagon is split into two halves and distributed at each end of the
segment.
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FIG. S3: Elliptic pseudospheres of total curvatures Ktot = −π/3,−2π/3,−3π/3,−4π/3,−5π/3 (left to right, top to bottom,
respectively), next to the corresponding surfaces of opposite curvatures (half-spindles), showing the process of deformation of
one surface into the other (a positive curvature defect at the tip turning into a negative curvature defect at the tip). The
limiting cases of Ktot = ∓6π/3 = ∓2π, that are the Beltrami and the half sphere, respectively, are shown in the previous
Figure.
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FIG. S4: Arrangement of charge −1 (curvature K = −π/3) defects for discrete increasing of the negative curvature on the
elliptic pseudospheres (see also previous Figure). The first two figures illustrate explicitly how, at each step in the construction,
the angles are associated to the defects. The sections of pseudospheres and of cones need be rotated around the z-axis (the
perpendicular axis here) of 2π. Notice, however, that for the full surfaces this 2π (C1) rotation must not be applied to the
defects/vertices, that only need to be rotated of the angle corresponding to the Cp associated to the given surface, that is: C2

for surface 3 (first left, bottom panel); C3 for surface 4 (middle, bottom panel); C4 for surface 5(last right, bottom panel).
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1/6 2/6 3/6 4/6 5/6

FIG. S5: Arrangement of the defects/vertices on the Beltrami. The conventions for the plot are the same as those of the
previous figure. We also show the value of R corresponding to the location of the defects/vertices, R/r = 0, 1/6, ..., 5/6.
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FIG. S6: Pseudo-code of our implementation to generate Beltrami psudospheres of minimum energy
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FIG. S7: A pentagon pair as shown in (a) is essentially an uncharged dipole. It that does not introduce topological curvature.
An orthogonally oriented 5-7 pair resonating between two neighbour positions represents an alternative way to see this kind of
defects (b and c).

FIG. S8: Beltrami pseudospheres with 1146 atoms obtained by dualization of a 614 point lattice with Rmax=16 Å and zmin=-23
Å.
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FIG. S9: Beltrami pseudospheres with 2146 carbon atoms obtained by dualization of a 1128 point lattice with Rmax=26 Å and
zmin=-38 Å.

FIG. S10: Beltrami pseudospheres with 5506 carbon atoms obtained by dualization of a 2840 point lattice with Rmax=36 Å and
zmin=-64 Å.
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FIG. S11: Beltrami pseudospheres with 940 carbon atoms obtained by DFT optimization


