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a b s t r a c t 

Many natural systems display a peculiar honeycomb structure at the microscale and nu- 

merous existing studies assume empty cells. In reality, and certainly for biological tissues, 

the internal volumes are instead filled with fluids, fibers or other bulk materials. 

Inspired by these architectures, this paper presents a continuum model for composite 

cellular materials. A series of closely spaced independent linear-elastic springs approxi- 

mates the filling material. 

Firstly, finite element simulations performed on the microstructure and numerical ho- 

mogenization demonstrate a convergence towards non-micro polarity, in contrast to clas- 

sical empty materials. Secondly, theoretical homogenization, in its most general setting, 

confirms that the gradients of micro-rotations disappear in the continuum limit. 

In addition, the resulting constitutive model remains isotropic, as for the non-filled 

cellular structures, and reconciles with existing studies where the filling material is absent. 

Finally, the model is applied for estimating the mechanical properties of parenchyma 

tissues (carrots, apples and potatoes). The theory provides values for Young moduli rea- 

sonably close to the ones measured experimentally for turgid samples. 

© 2016 Elsevier Ltd. All rights reserved. 
1. Introduction 

The use of cellular structures allows good mechanical 

properties at low weight. Nature adopts this advantageous 

strategy on numerous occasions in biological systems 

such as wood, bone, tooth, mollusk shells, crustaceans 

and many siliceous skeleton species like radiolarians, sea 

sponges and diatoms ( Gordon et al., 2008; Neethirajan 

et al., 2009 ). Cellular structures have a diversity of func- 

tions but a fundamental one is mechanical, providing 
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protection and support for the body. Natural cellular ma- 

terials have been studied widely, the pioneering textbook 

by Gibson and Ashby (2001) and the exhaustive work by 

Gibson et al. (2010) . 

The factors influencing the mechanical properties of 

a cellular material are the apparent density, defined as 

the ratio between the density of the cellular solid and 

the density of the material, the internal architecture and 

the material properties of the microstructure. In its most 

sophisticated form, natural cellular materials are even 

able to adapt their architectures to changing mechan- 

ical environments ( Fratzl and Weinkamer, 2007; 2011 ). 

One example is the combination of dense and strong 

fibre-composite outer faces and an inner foam-like core 

in the leaves of monocotyledon plants, like irises and 

maize ( Gibson, 2012 ), which better resist bending and 

buckling. The lightweight core, in particular, is a simple 

plant tissue, known as parenchyma ( Gibson, 2012; Gibson 
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Fig. 1. (a) Parenchyma tissue from the moss Plagiomnium Affine, (b) Natural tubular structures: celery cross section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

et al., 2010; Bruce, 2003; Warner et al., 20 0 0; Georget

et al., 2003 ) made up of thin-walled polyhedral cells filled

by liquid and, notwithstanding its low relative density

and low mechanical properties, can significantly improve

the resistance of the leaf. Similar composite solutions are

found in the natural tubular structures, like plant stems or

animal quills. In these systems, the inner honeycomb or

foam-like core behaves like an elastic foundation support-

ing the dense outer cylindrical shell and makes it more

performant ( Gibson, 2005; Dawson and Gibson, 2007 ),

Fig. 1 . 

It is well known ( Gibson and Ashby, 2001 ) that the

main problem with cellular materials is to extract an

equivalent continuum model. In fact, the formulation of

a continuum model is hindered by two types of diffi-

culties: the spatial variability of size and morphology of

the microscopic architecture, on one side, and the crucial

passage from the microscopic discrete description to the

coarse continuous one, on the other. The typical approach

to the continuum modeling of cellular materials includes

the assumption of periodicity and the selection of a repre-

sentative volume element (RVE). Moreover, it necessitates

the application of micro-macro relationships in terms of

forces and displacements and energy equivalence concepts.

Furthermore, the material properties are typically assumed

to be as simple as possible, for example linear-elastic and

isotropic ( Altenbach and Oechsner, 2010 ). 

Various authors extensively studied cellular materials.

Among them, Gibson and Ashby (2001) , Gibson et al.

(2010) , Gibson (1989) , Gibson et al. (1982) obtained simple

power-law relations between the density of a wide range

of honeycombs and foams and their mechanical proper-

ties, studying regular cellular structures and assuming a

prevalent mode of deformation and failure. Other authors,

like Chen et al. (1998) , Davini and Ongaro (2011) , Kumar

and McDowell (2004) , Warren and Byskov (2002) , Wang

and Stronge (1999) , Dos Reis and Ganghoffer (2012) , Pugno

(2006) , Chen and Pugno (2012, 2011) , Gonella and Ruzzene

(2008) focused on the passage from discrete to continuum

and deduced the constitutive model for the in-plane de-

formation of various two-dimensional microstructures (tri-

angle, hexagonal, rectangular, square, re-entrant or mixed

lattices). ( Chen et al., 1998 ) and ( Kumar and McDowell,

2004 ), in particular, considered an infinite arrangement of

equal cells and derived a continuum model (a micropolar

continuum) introducing asymptotic Taylor expansion of

the displacement and rotation fields in the strain energy of

the system. Applying the principles of structural analysis

to the representative volume element, Warren and Byskov
(2002) and Wang and Stronge (1999) obtained the equiv-

alent (micropolar) constitutive equations associated with

the homogenized continuum model of the discrete lattice.

Dos Reis and Ganghoffer (2012) elaborated a variant of

the asymptotic homogenization technique introduced by

Caillerie et al. (2006) and calculated the effective behav-

ior of a 2D square and hexagonal lattices through the

analysis of discrete sums. In accordance with the papers

quoted above, the adopted technique leads to a micropolar

equivalent continuum. Adopting the viewpoint of homog-

enization theory, Davini and Ongaro (2011) constructed a

continuum model for the in-plane deformations of a hon-

eycomb material from general theorems of �-convergence.

Differently from ( Chen et al., 1998 ), ( Kumar and McDowell,

2004 ), ( Warren and Byskov, 2002 ), ( Wang and Stronge,

1999 ), it emerges that the limit model is a pseudo-polar

continuum, that is a material that can undergo applied

distributed couples without developing couple stresses.

Finally, Gonella and Ruzzene (2008) investigated the

equivalent in-plane properties of a square, hexagonal and

re-entrant lattices through homogenization techniques. In

particular, the adopted homogenization approach yields

the continuum set of partial differential equations associ-

ated with their equivalent continuum model. The assump-

tion of no concentrated couples acting to the structure

in conjunction with the appropriate elasticity equations

lead to the equivalent Young’s moduli and Poisson’s

ratios. 

In the literature, few investigations concern the char-

acterization of cellular materials having filled cells. Niklas

(1989) , for example, dealt with the mechanical behavior of

plant tissues and provided an analytical description of the

influence of the turgor pressure on the effective stiffness.

Georget et al. (2003) considered the stiffness of the carrot

tissue as a function of the turgor pressure and the mechan-

ical properties of the cell walls. By modeling the tissue

as a fluid-filled foam, the authors found good agreement

between their predictions and the experimental values.

Warner et al. (20 0 0) , which goes in this direction, inves-

tigated a range of deformation mechanisms of closed-cell

cellular solids, unfilled and filled with liquid, to charac-

terize elasticity and failure in foods. In particular, above a

critical strain, it emerged that the filling liquid forced the

walls to stretch rather than to bend as they do when a

dry cellular solid is deformed. In the context of sandwich

panels, Burlayenko and Sadowski (2010) presented a finite

element-based technique to evaluate the structural perfor-

mance of sandwich plates with a hexagonal honeycomb

core made of aluminium alloy and filled with PVC foam.
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Fig. 2. (a) The hexagonal microstructure, (b) The unit cell, (c) The triplet of elastic beams, (d) The beam on Winkler elastic foundation: degrees of freedom 

in the local reference system. 
Specifically, the investigation suggests that the effective 

elastic properties of a honeycomb sandwich panel are 

improved by the presence of the filling PVC foam. The in- 

plane crush response and energy absorption of a circular 

cell honeycomb filled with PDMS elastomer is studied in 

( D’Mello and Waas, 2013 ). It emerged an increase in the 

load carrying capacity and an improvement in the energy 

absorption capability due to the presence of the filling 

material. More recently, Guiducci et al. (2014) investigated 

the mechanics of a diamond-shaped honeycomb internally 

pressurized by a fluid phase. The authors proposed a theo- 

retical model based on the Born model, as well as a finite 

element-based analysis to study the consequences of the 

pressure within the cells. Two different effects emerged: a 

marked change in the lattice’s geometry and an improve- 

ment in the load-bearing capacity of the material. 

This paper, inspired by the aforementioned high effi- 

ciency of the composite structures in nature, deals with 

the mechanical behavior of a 2D composite cellular mate- 

rial subjected to in-plane loads. In particular, the analysis 

focuses on a honeycomb-like microstructure having the 

cells filled by a generic elastic material, represented by 

a sequence of beams on Winkler elastic foundation. The 

paper proceeds as follows. Firstly, Section 2 describes the 

equivalence between the hybrid system continuum -springs 

and the biphasic continuum -continuum . Numerical simu- 

lations on a single composite cell show the implications 

of the modeling approach based on the Winkler model. 

Then, Section 3 focuses on the passage from the discrete 

description to the continuum one and the effective con- 

stitutive equations and elastic moduli are derived. Some 

considerations about the influence of the microstructure 

parameters on the overall elastic constants are reported in 

Section 4 , as well as a comparison between our model and 

those available in literature. The results of the comparison 
between numerical and theoretical homogenization are 

also provided. Finally, Section 5 illustrates the application 

of the theoretical model to the biological parenchyma 

tissue of carrot, apple and potato. 

To the authors’ best knowledge, this is the first time to 

report such results. In fact, the beam on Winkler founda- 

tion model has never been applied to represent the mi- 

crostructure of a 2D composite cellular material. 

2. Equivalence between the biphasic continuum and 

the hybrid system continuum - springs 

A sequence of elastic beams of length � , forming a peri- 

odic array of hexagonal cells ( Fig. 2 a), simulates a cellular 

composite material having a hexagonal microstructure. The 

Euler-Bernoulli beam on Winkler foundation model sim- 

ulates each beam. Specifically, a series of closely spaced 

independent linear elastic springs of stiffness k w 

, the 

Winkler foundation constant per unit width, approximate 

the elastic material filling the cells ( Fig. 2 c and d). 

It should be noted that modeling the material within 

the cells by a Winkler foundation is a simplification aimed 

at obtaining a more mathematically tractable problem. 

However, this could affect the prediction ability of the pro- 

posed model. 

Numerical simulations on a computational model of a 

single composite cell provide the right value of the k w 

con- 

stant . Also, the Finite Element (FE) simulations illustrate 

the implications of the modeling approach based on the 

Winkler model, Figs. 5 and 6 , as well as the deformation 

mechanisms of the system continuum-springs, Fig. 7 . As 

Fig. 3 shows, two different configurations are considered. 

In the first one, Fig. 3 a, the filling material is represented 

by the Winkler foundation while in the second, Fig. 3 b, 
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Fig. 3. Equivalence between the elastic moduli of the filling material and 

corresponding spring. (a) Filling material as a Winkler foundation, (b) Fill- 

ing material as a classical continuum. 
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by a classical continuum having Young’s modulus E f and

Poisson’s ratio of ν f . 

First of all, let us focus on a suitable relation between

E f , ν f and the Winkler foundation constant k w 

. As Fig. 3

shows, the elastic energy of the cell, W c , is obtained by

summing the contribution of the walls, W w 

, and of the fill-

ing material, W f : 

 c = W w 

+ W f . (1)

Assuming that the elastic energy of the cell walls is the

same of the elastic beams, Fig. 3 a, and in the case of filling

material as a classical continuum, Fig. 3 b, the equivalence

 w, beams ≡ W w, continuum 

(2)

takes the form 

 f,Winkler ≡ W f, continuum 

. (3)

Note that in (2) and (3) W w , beams , W f , Winkler and

W w , continuum 

, W f , continuum 

stand for the elastic energies of

the cell walls and of the filling material in the cases of

Winkler foundation model and of continuum model, re-

spectively. In particular, W f , Winkler derives from the elastic

energies of the three sets of springs in the directions n 1 ,

n 2 , n 3 ( Fig. 3 a): 

 f,Winkler = 

( 

3 ∑ 

i =1 

1 

2 

� U 

T 
i · K w 

� U i 

) 

b, (4)

with � U i the elongation of the springs in the n i direction,

b the width, 

K w 

= 

[
K w 

0 

0 K w 

]
(5)

the stiffness matrix of the elastic foundation, K w 

= k w 

� the

Winkler constant and � the length of the walls. It should

be noted that in Fig. 3 a, for ease of reading, the series of

springs are represented by three single springs having stiff-

ness K w 

in the directions n 1 , n 2 , n 3 . 

Moreover, 

 f, continuum 

= 

1 

2 

∫ 
V 

σT 
f ε f d V = 

1 

2 

∫ 
V 

εT 
f C f ε f d V, (6)

been V = A b and A = 

3 
√ 

3 � 2 

2 
, respectively, the volume and

the area of the cell, εf , σ f , C f , in turn, the strain tensor,
stress tensor and elastic modulus tensor of the material

within the cell, satisfying the relation 

σ f = C f ε f , (7)

or [ 

σ11 

σ22 

σ12 

] 

= 

E f 

(1 + ν f )(1 − 2 ν f ) 

×
[ 

(1 − ν f ) ν f 0 

ν f (1 − ν f ) 0 

0 0 (1 − 2 ν f ) 

] 

. (8)

From classical continuum mechanics, the deformation

of the filling material in the generic n i direction is ( Fig. 3 )

n 

T 
i ε f n i = 

� d i 
d 

, i = 1 , 2 , 3 (9)

where � d i is the elongation in the n i direction and d =√ 

3 � . The assumption 

�U i = � d i , i = 1 , 2 , 3 (10)

leads to 

n 

T 
i ε f n i = 

�U i 

d 
→ �U i = (n 

T 
i ε f n i ) d, i = 1 , 2 , 3 . (11)

Substituting (11) into (3) gives 

3 ∑ 

i =1 

1 

2 

d(n 

T 
i ε f n i ) 

T n 

T 
i K w 

n i (n 

T 
i ε f n i ) d = 

1 

2 

(
εT 

f C f ε f 

)
A. (12)

Considering the deformation states 

ε f = 

[ 

1 

0 

0 

] 

, ε f = 

[ 

0 

1 

0 

] 

, ε f = 

[ 

0 

0 

1 

] 

(13)

and substituting, in turn, (13) into (12) provides 

3 

√ 

3 K w 

8 

= 

E f (ν f − 1) 

2(2 ν f − 1)(ν f + 1) 
, 

√ 

3 K w 

2 

= 

E f 

(ν f + 1) 
. (14)

Accordingly, 

ν f = 0 . 25 , E f = 

5 

√ 

3 K w 

8 

(15)

and, in the case of isotropic filling material, the shear mod-

ulus takes the form 

G f = 

E f 

2(ν f + 1) 
= 

√ 

3 K w 

4 

. (16)

As clearly seen, this theory leads to a fixed Poisson’s ratio,

known result from the Spring Network Theory ( Alzebdeh

and Ostoja-Starzewski, 1999 ), ( Ostoja-Starzewski, 2002 ). 

Regarding the cell considered in the numerical simula-

tions, K w 

= 10 −1 GPa. The walls, assumed to be isotropic

linear elastic, have Young’s modulus E s = 79 GPa, Poisson’s

ratio νs = 0 . 35 , thickness h = 1 mm, length � = 10 mm and

unitary width. As more fully described in Section 4 , each

node has three degrees of freedom: two in-plane displace-

ments and the rotational component. The three loading
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Fig. 4. Finite element implementation of the composite cell, the load con- 

ditions. (a) Uniaxial compression in the e 1 direction, (b) Uniaxial com- 

pression in the e 2 direction, (c) Shear forces. 

 

 

 

states analyzed, Fig. 4 , are simulated by applying uniax- 

ial forces of the same intensity at the boundary nodes. 

Specifically, forces of intensity, 10 −3 N in the directions e 1 , 

Fig. 4 a, and e 2 , Fig. 4 b, and shear forces of 10 −5 N, Fig. 4 c

are adopted. As Fig. 4 shows, constrained nodes are intro- 

duced to avoid rigid body motions that could lead to an er- 

roneous comparison between the deformed configurations 

of the two considered models. 

The results of the analysis, summarized in Figs. 5 and 

6 , illustrate that the predictions of the Winkler foundation 

model are in accordance with those obtained in the case 

of filling material as a classical continuum. 

Specifically, in terms of the horizontal and vertical dis- 

placements of the nodes, U X and U Y respectively, the dif- 

ference between the two estimates, �U X and �U Y , is gen- 

erally 1 − 3 % ( Fig. 6 ). 

Furthermore, in the case of uniaxial compression in 

the e 1 direction it emerges an higher difference between 

the horizontal displacements of node 1 predicted by the 

two models, Fig. 6 a. This is due to the limitations of the 

Winkler foundation model, where the elastic springs only 

connect two opposite beams, 1-2 and 4-5, 6-1 and 3-4 

( Fig. 3 a). The beams 1-2 and 3-4, 6–1 and 4-5 that, in re- 

ality, are coupled by the presence of the filling material, 

in the Winkler model are not connected. However, in view 

of Figs. 5 a and 6 a, the consequences of this simplification 

slightly affect the prediction ability of the proposed model. 

Similarly, in the case of vertical compression, Fig. 4 b, 

the high values of �U X and �U Y at nodes 1, 4 are related 

to the limitations induced by the Winkler model. 

Regarding Fig. 6 c, the same considerations apply. That 

is to say, the missing influence of the filling material on 

the beams 1-6 and 4-5 provides an high value of �U X at 

the nodes 5 and 6. 

As a conclusion, it can be said that the analysis reveals 

the validity of the modeling approach based on the Win- 

kler model, notwithstanding the simplifications introduced. 

3. Theoretical model and homogenization of the 

continuum - springs system 

3.1. Geometry and energy of the discrete problem 

3.1.1. Geometric description 

The hexagonal microstructure of the composite mate- 

rial considered here can be described as the union of two 

simple Bravais lattices, 

L 1 (� ) = 

{
x ∈ R 

2 : x = n 

1 l 1 + n 

2 l 2 , with (n 

1 , n 

2 ) ∈ Z 

2 
}
, 

L 2 (� ) = s + L 1 (� ) , (17) 

simply shifted with respect to each other by the shift vector 

s . In Cartesian coordinates, 

s = ( 
√ 

3 �/ 2 , �/ 2) , l 1 = ( 
√ 

3 �, 0) , l 2 = ( 
√ 

3 �/ 2 , 3 �/ 2)

(18) 

describe the shift vector and the lattice vectors , l 1 and l 2 
( Fig. 2 a). 

The lattice vectors and the shift vector define the unit 

cell of the periodic array ( Fig. 2 b), which is composed by 

the central node (0) and the three external nodes (1), (2), 
(3), linked by the elastic beams (0)-(1), (0)-(2) and (0)-(3), 

represented by the vectors b 1 = l 1 − s , b 2 = l 2 − s , b 3 =
−s . The area of the unit cell is A 0 = | l 1 × l 2 | = 

3 
√ 

3 
2 � 2 . 

The analysis of the representative cell of the mi- 

crostructure provides the strain energy density of the dis- 

crete structure. Its continuum approximation is then the 

consequence of a particular assumption. 

3.1.2. The hybrid system: Euler–Bernoulli beam on Winkler 

foundation 

Let us consider the beam element in the 2D space. Ne- 

glecting, for simplicity, the second order effects and the 

shear deformability, it is subjected to bending and axial 

deformation. The hypothesis of two-dimensional structure 

also prevents the possibility of torsion and bending in the 

normal plane. The fields of axial and transverse displace- 

ment of its axis and the rotation of its section describe 

the kinematics of a generic element. In a global reference 

system , defined by the unit orthonormal vectors e 1 and 

e 2 with origin in O and by the Cartesian coordinate sys- 

tem X = (X, Y ) T , the configuration of the eth structural el-

ement is known by specifying the coordinates of its end 

nodes I and J. According to the kinematics of the incident 

beams, each node has three degrees of freedom, two trans- 

lations and one rotation ( Fig. 2 d). Finally, forces arbitrar- 

ily oriented and couples act at the extreme nodes of each 

beam. 

To analyze the generic structural element is more con- 

venient to use a local reference system , specific to the 

considered beam and closely dependent to its geometry. 

Such reference consists of two orthonormal unit vectors 

( ηe 
1 
, ηe 

2 
) , Figs. 2 c and d, and a coordinate system ( x , y ).

Note that, in the sequel, the extreme nodes of the beam 

in the local notation are denoted by the indices i and j , 

Fig. 2 d. 
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Fig. 5. Filling material as a Winkler foundation vs. filling material as a classical continuum, superposition of the deformed configurations in the case of 

(a) Uniaxial compression in the e 1 direction with forces of 10 −3 N, (b) Uniaxial compression in the e 2 direction with forces of 10 −3 N, (c) Shear forces of 

10 −5 N, and with K w = 10 −1 Pa, E s = 79 GPa, νs = 0.35, h = 1 mm, l = 10 mm. 



32 F. Ongaro et al. / Mechanics of Materials 97 (2016) 26–47 

1 2 3 4 5 6 1

%

0

1

2

3

4 ∆ UX

∆ UY

1 2 3 4 5 6 1

%

0

1

2

3

4

node number

node number
1 2 3 4 5 6 1

0

1

2

3 ∆ UX

∆ UY

node number
1 2 3 4 5 6 1

%

0

1

2

3

node number
1 2 3 4 5 6 1

%

0

0.5

1

1.5

2

2.5
∆ UX

∆ UY

node number
1 2 3 4 5 6 1

%

0

0.5

1

1.5

2

2.5

a

b

c

Fig. 6. Filling material as a Winkler foundation vs. filling material as a classical continuum, comparison between the nodal displacements in the case of 

(a) Uniaxial compression in the e 1 direction with forces of 10 −3 N, (b) Uniaxial compression in the e 2 direction with forces of 10 −3 N, (c) Shear forces of 

10 −5 N, and with K w = 10 −1 Pa, E s = 79 GPa, νs = 0.35, h = 1 mm, l = 10 mm. 

0 

 

3 6 D � /� 
2 

 2 D � /� 

0 

 −6 D � /� 
2 

 4 D � /� 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(19) 

0 

 −13 K w 

�/ 420 

0 −K w 

� 2 / 140 

0 

 −11 K w 

�/ 210 

10 K w 

� 2 / 105 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (20) 

 

The introduction of the local reference system allows us 

to define more easily the stiffness matrices k 

e 
b 

and k 

e 
w f 

that 

are, respectively, the stiffness matrix of the classical elastic 

beam and of the Winkler foundation ( Janco, 2010 ), denoted 

by lowercase letters since they are expressed in the local 

reference. Their components are 

k 

e 
b = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C � /� 0 0 −C � /� 0 

0 12 D � /� 
3 6 D � /� 

2 0 −12 D � /�

0 6 D � /� 
2 4 D � /� 0 −6 D � /� 

2

−C � /� 0 0 C � /� 0 

0 −12 D � /� 
3 −6 D � /� 

2 0 12 D � /� 
3

0 6 D � /� 
2 2 D � /� 0 −6 D � /� 

2

and 

k 

e 
w f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 13 K w 

/ 35 11 K w 

�/ 210 0 9 K w 

/ 70

0 11 K w 

�/ 210 K w 

� 2 / 105 0 13 K w 

�/ 42

0 0 0 0 0 

0 9 K w 

/ 70 13 K w 

�/ 420 0 13 K w 

/ 35

0 −13 K w 

�/ 420 −K w 

� 2 / 140 0 −11 K w 

�/ 2
with K w 

= k w 

�, k w 

the Winkler foundation constant per 

unit width, C � = 

E s h 

1 −ν2 
s 

and D � = 

E s h 
3 

12(1 −ν2 
s ) 

, respectively, the 

tensile and bending stiffness (per unit width) of the beams, 

E s , νs , h and � , in turn, the Young’s modulus, Poisson’s ra-

tio, thickness and length of the cell walls. 



F. Ongaro et al. / Mechanics of Materials 97 (2016) 26–47 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The hybrid system continuum-springs: filling material as a Win- 

kler foundation. Longitudinal stress (GPa) along the beams with K w = 

10 −1 GPa in the case of (a) Uniaxial compression in the e 1 direction and 

applied forces of 10 −3 N, (b) Uniaxial compression in the e 2 direction and 

applied forces of 10 −3 N, (c) Shear forces of 10 −5 N. 

 

 

The elastic energy of each beam, obtained by superposi-

tion principle due to the assumption of linear elastic beam,

is 

w 

e = 

1 

2 

(u 

e ) T · k 

e 
b u 

e + 

1 

2 

(
1 

2 

( � u 

e,a 
) T · k 

e 
w f � u 

e,a 
)

+ 

1 

2 

(
1 

2 

( � u 

e,b 
) T · k 

e 
w f � u 

e,b 
)
, (21)

where u 

e = [ u i , u j ] 
T = [ u i , v i , ϕ i , u j , v j , ϕ j ] 

T is the general-

ized vector of nodal displacement expressed in the local ref-

erence and 

� u 

e,a = 

[
� u 

a 
i , � u 

a 
j 

]T 

= 

[
� u 

a 
i , � v a i , �ϕ 

a 
i , � u 

a 
j , � v a j , �ϕ 

a 
j 

]T 
, (22)

� u 

e,b = 

[ 
� u 

b 
i , � u 

b 
j 

] T 
= 

[
� u 

b 
i , � v b i , �ϕ 

b 
i , � u 

b 
j , � v b j , �ϕ 

b 
j 

]T 
(23)

is the elongation of the springs a, the first, and of

the springs b, the second ( Figs. 8 and 9 ). In particular,

the springs a and the springs b connect each beam with

the opposite one in the −ηe 
2 

and + ηe 
2 

direction, respec-

tively. See Appendix A for further details. Note that the fac-

tor 1/2 in the second and third term of (21) , is due to the

fact that each spring is shared by two opposite beams and

contribute only half of its strain energy to the unit cell. 

In the local reference, the forces and couples acting at

the end of each beam are 

f e = k 

e 
b u 

e + k 

e 
w f � u 

e,a + k 

e 
w f � u 

e,b 
, (24)

with f e = [ f i , f j ] 
T = [ f xi , f yi , m i , f x j , f y j , m j ] 

T the vector of

nodal forces and couples and u 

e , � u 

e, a , � u 

e, b , k 

e 
b 

and k 

e 
w f 

the same as before. Also in this case, forces and couples

are obtained by superposition principle and are the sum of

three terms. The first one, k 

e 
b 

u 

e , corresponding to the clas-

sical elastic beam, the second and the third, k 

e 
w f 

� u 

e,a 
and

k 

e 
w f 

� u 

e,b 
, related to the Winkler foundation. 

3.1.3. Energetics of the discrete system 

The elastic energy of the unit cell, W , derives from that

of the three beams it consists of and it depends on the

displacements and rotations of the external nodes. 

First of all, it is not difficult to see that the first node

of each beam coincides with the central node (0). There-

fore, denoted by u 0 the displacements of the node (0) and

by � u 

a 
0 , � u 

b 
0 the elongation of the springs in (0), fol-

lows u i = u 0 , � u 

a 
i = � u 

a 
0 and � u 

b 
i = � u 

b 
0 . Moreover, (24)

takes the form 

f e = 

[
f 0 
f j 

]
= 

[
k b, 01 u j + k b, 00 u 0 

k b, 11 u j + k b, 10 u 0 

]

+ 

[
k w f, 01 � u 

a 
j + k w f, 00 � u 

a 
0 

k w f, 11 � u 

a 
j + k w f, 10 � u 

a 
0 

]

+ 

[
k w f, 01 � u 

b 
j + k w f, 00 � u 

b 
0 

k w f, 11 � u 

b 
j + k w f, 10 � u 

b 
0 

]
, (25)
where f 0 and f j are, respectively, the forces and moments

of the central and external nodes j = 1 , 2 , 3 . A mere parti-

tion of k 

e 
b 

and k 

e 
w f 

leads to the matrices 

k b, 11 = 

[ 

C � /� 0 0 

0 12 D � /� 
3 −6 D � /� 

2 

0 −6 D � /� 
2 4 D � /� 

] 

, 

k w f, 11 = 

[ 

0 0 0 

0 13 K w 

/ 35 −11 K w 

�/ 210 

0 −11 K w 

�/ 210 K w 

� 2 / 105 

] 

, 

k b, 10 = 

[ −C � /� 0 0 

0 −12 D � /� 
3 −6 D � /� 

2 

0 6 D � /� 
2 2 D � /� 

] 

, 

k w f, 10 = 

[ 

0 0 0 

0 9 K w 

/ 70 13 K w 

�/ 420 

0 −13 K w 

�/ 420 −K w 

� 2 / 140 

] 

, 

k b, 01 = 

[ −C � /� 0 0 

0 −12 D � /� 
3 6 D � /� 

2 

0 −6 D � /� 
2 2 D � /� 

] 

, 
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Fig. 8. The triplet of elastic beams with focus on springs. (a) Beam (0)-(1), (b) Beam (0)-(2), (c) Beam (0)-(3). 

Fig. 9. The two sets of springs connecting the triplet of elastic beams. (a) Springs a, (b) Springs b. 

W

 

 

 

k w f, 01 = 

[ 

0 0 0 

0 9 K w 

/ 70 −13 K w 

�/ 420 

0 13 K w 

�/ 420 −K w 

� 2 / 140 

] 

, 

k b, 00 = 

[ 

C � /ell 0 0 

0 2 D � /� 
3 6 D � /� 

2 

0 6 D � /� 
2 4 D � /� 

] 

, 

k w f, 00 = 

[ 

0 0 0 

0 13 K w 

/ 35 11 K w 

�/ 210 

0 11 K w 

�/ 210 K w 

� 2 / 105 

] 

. (26) 

Then, expressing (24) in the global reference (see 

Appendix B ), adding up forces at the central node (0) and 

condensing the corresponding degrees of freedom to take 

account of the forces balance in (0), as in ( Davini and On- 

garo, 2011 ), leads to 

 = W (u 1 , u 2 , u 3 , � u 

a 
1 , � u 

a 
2 , � u 

a 
3 , � u 

b 
1 , � u 

b 
2 , � u 

b 
3 ) . 

(27) 
3.2. The continuum model 

3.2.1. Energy 

The assumption that in the limit � → 0 there exist the 

continuous displacement and microrotation fields , ˆ u (·) and 

ˆ ϕ (·) , and that the discrete variables ( u j , ϕ j ) previously in-

troduced to represent the degrees of freedom (displace- 

ments and rotations) of the external nodes of the unit cell 

can be expressed by 

u j = ˆ u 0 + ∇ ̂  u b j , ϕ j = ˆ ϕ 0 + ∇ ˆ ϕ b j , j = 1 , 2 , 3 , (28)

provides the continuum description of the discrete struc- 

ture. The terms b j in (28) are the vectors formerly defined 

while ˆ u 0 and ˆ ϕ 0 are the values of ˆ u (·) and ˆ ϕ (·) at the cen- 

tral point of the cell in the continuum description. Substi- 

tuting (28) into (7) gives the strain energy of the unit cell 

as a function of the fields ˆ u and ˆ ϕ . Note that the contin- 

uous displacement ˆ u (·) is referred to the global reference 

and ˆ u (·) stands for ˆ U (·) . Also in (28) , u j , ˆ u 0 and ∇ ̂  u stands

for U j , ˆ U 0 and ∇ ̂

 U . The use of lowercase letters simplifies 
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the notation and, in what follows, ˆ u and ˆ ϕ stand for ˆ u 0

and ˆ ϕ 0 . 

Dividing the expression that turns out from the calcula-

tion by the area of the unit cell, A 0 , gives the strain energy

density in the continuum approximation w . The following

relation summarize the adopted procedure: 

W (U , ϕ) 

A 0 

∼= 

W ( ̂  u , ˆ ϕ ) 

A 0 

= w. (29)

In particular, the resulting energy density 

w = w 

(
ε αβ, (ω − ˆ ϕ ) , ˆ ϕ ,α

)
(30)

is a function of the infinitesimal strains ε αβ = 

1 
2 ( ̂  u α,β +

ˆ u β,α ) and the infinitesimal rotation ω = 

1 
2 ( ̂  u 1 , 2 − ˆ u 2 , 1 ) that

represent, respectively, the symmetric and skew-symmetric

part of ∇ ̂  u as in the classical continuum mechanics. ˆ ϕ ,α

are the microrotation gradients. Its explicit expression is 

w = 

(
ε 2 11 + ε 2 22 

)
(C 2 � � 

4 + 36 D � C � � 
2 ) + 2 ε 11 ε 22 (C 

2 
� � 

4 − 12 D � C

4 

√ 

3 � 3 (12 D � + C � �

+ 

24 D � C � � 
3 ( ε 22 − ε 11 ) ̂  ϕ , 1 + 8 D � � 

2 (3 D � + C � � 
2 ) 

(
ˆ ϕ 

2 
, 1 + 

4 

√ 

3 � 3 (12 D � + C � �

+ 

K w 

(
813 

(
ε 2 11 + ε 2 22 

)
+ 1224 ε 2 12 + 402 ε 11 ε 22 

)
2496 

√ 

3 

+ 

K w 

� 
(

After rewriting (31) in terms of c ≡ C � /� = 

E s (h/� ) 

1 −ν2 
s 

and d ≡
D � /� 

3 = 

E s (h/� ) 3 

12(1 −ν2 
s ) 

, it emerges that in the energy obtained

from the calculation the coefficients scale with different

order in � , as in ( Davini and Ongaro, 2011 ): 

w = 

(
ε 2 11 + ε 2 22 

)
(c 2 + 36 cd) + 2 ε 11 ε 22 (c 2 − 12 cd) + 96 cd

4 

√ 

3 (12 d + c) 

+ 

24 cd ( ε 22 − ε 11 ) � ̂  ϕ , 1 + 8 d(3 d + c) � 2 
(

ˆ ϕ 

2 
, 1 + ˆ ϕ 

2 
, 2 

)
+ 

4 

√ 

3 (12 d + c) 

+ 

K w 

(
813 

(
ε 2 11 + ε 2 22 

)
+ 1224 ε 2 12 + 402 ε 11 ε 22 

)
2496 

√ 

3 

+ 

K w 

(
−

Specifically, the coefficients in (32) are independent of

� , with the exception of the microrotation gradients that

scale with first order in � . Consequently, in the limit � →
0 the contribution of the microrotation gradients is miss-

ing and the equivalent continuum is non-polar, differently

from ( Chen et al., 1998 ). Accordingly, the strain energy

density in the continuum approximation takes the form: 

w = 

(
ε 2 11 + ε 2 22 

)
(C 2 � � 

4 + 36 D � C � � 
2 ) + 2 ε 11 ε 22 (C 

2 
� � 

4 − 12 D � C

4 

√ 

3 � 3 (12 D � + C � � 2 ) 

+ 

3 D � 

(
ω − ˆ ϕ 

)2 

√ 

3 � 3 
+ 

K w 

(
271 

(
ε 2 11 + ε 2 22 

)
+ 408 ε 2 12 + 134

832 

√ 

3 

3.2.2. Constitutive equations 

The constitutive equations 

σ = 

1 

A 0 

∂W 

∂∇ ̂  u 

, (34)

with σ the Cauchy-type stress tensor, ensue from (33) . 
 96 D � C � � 
2 ε 2 12 + 48 D � C � � 

3 ε 12 ̂  ϕ , 2 

 12 D � (12 D � + C � � 
2 ) 

(
ω − ˆ ϕ 

)2 

 12 ̂  ϕ , 2 + � ( ̂  ϕ 

2 
, 1 + ˆ ϕ 

2 
, 2 ) + 6 ̂  ϕ , 1 (ε 11 − ε 22 ) 

)
96 

√ 

3 

. (31)

48 cd ε 12 � ̂  ϕ , 2 

2 d + c) 
(
ω − ˆ ϕ 

)2 

 

� ̂  ϕ , 2 + � 2 ( ̂  ϕ 

2 
, 1 + ˆ ϕ 

2 
, 2 ) + 6 � ̂  ϕ , 1 (ε 11 − ε 22 ) 

)
96 

√ 

3 

. (32) 

 96 D � C � � 
2 ε 12 

 

)
. (33) 

In particular, it emerges that σ is a non-symmetric ten-

sor and its components are 

σγ δ = 

∂w 

∂ ̂  u γ ,δ
= 

∂w 

∂ε αβ

∂ε αβ

∂ ̂  u γ ,δ
+ 

∂w 

∂ω 

∂ω 

∂ ̂  u γ ,δ
, α, β, γ , δ = 1 , 2 , (35)

where w is the strain energy density defined in (33) . By

observing that 

∂w 

∂ε αβ

∂ε αβ

∂ ̂  u γ ,δ

= 

1 

2 

(
∂w 

∂ε γ δ
+ 

∂w 

∂ε δγ

)
= 

∂w 

∂ε γ δ
≡ σ sym 

γ δ
, 

∂w 

∂ω 

∂ω 

∂ ̂  u γ ,δ

= 

1 

2 

∂w 

∂ω 

(
δ1 γ δ2 δ − δ2 γ δ1 δ

)
= 

1 

2 

∂w 

∂ω 

e γ δ ≡ σ skw 

γ δ , (36)

with e γ δ the alternating symbol ( e 11 = e 22 = 0 , e 12 =
−e 21 = 1 ) and δij the Kronecker delta ( δi j = 1 if i = j, δi j =
0 if i 	 = j ), follows 

σγδ = σ sym 

γ δ
+ σ skw 

γ δ , γ , δ = 1 , 2 , (37)

that is 

σ1 δ = σ sym 
1 δ

+ 1 
2 

(
∂w 

∂ω 

)
e 1 δ , σ2 δ = σ sym 

2 δ
+ 1 

2 

(
∂w 

∂ω 

)
e 2 δ , δ = 1 , 2 . (38)

Also, 

∂w 

∂ω 

= 

∂w 

∂(ω − ˆ ϕ ) 

∂(ω − ˆ ϕ ) 

∂ω 

= 

∂w 

∂(ω − ˆ ϕ ) 
. (39)

Accordingly, 

σ11 = σ sym 

11 
= 

(C 2 � � 
2 + 36 D � C � ) ε 11 + (C 2 � � 

2 − 12 D � C � ) ε 22 

2 

√ 

3 � (12 D � + C � � 2 ) 

+ 

K w 

(271 ε 11 + 67 ε 22 ) 

416 

√ 

3 

, 

σ22 = σ sym 

22 
= 

(C 2 � � 
2 + 36 D � C � ) ε 22 + (C 2 � � 

2 − 12 D � C � ) ε 11 

2 

√ 

3 � (12 D � + C � � 2 ) 
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+ 

K w 

(271 ε 22 + 67 ε 11 ) 

416 

√ 

3 

, 

σ sym 

12 
= σ sym 

21 
= 

48 D � C � ε 12 

2 

√ 

3 � (12 D � + C � � 2 ) 
+ 

51 K w 

ε 12 

52 

√ 

3 

, 

σ skw 

12 = −σ skw 

21 = 

√ 

3 D � 

(
ω − ˆ ϕ 

)
� 3 

, 

σ12 = σ sym 

12 
+ σ skw 

12 , σ21 = σ sym 

21 
+ σ skw 

21 , (40) 

been σ sym 

γ δ
and σ skw 

γ δ
, in turn, the symmetric and skew- 

symmetric parts of σ . 

3.2.3. Elastic constants 

The constitutive equations derived so far enables us to 

get the effective elastic constants in the continuum ap- 

proximation by adopting the following approach. 

First of all, let us consider a stress state where σ 11 	 = 0, 

σ22 = σ12 = σ21 = 0 . In view of (40) and from Hooke’s law 

σ sym 

11 
= E ∗

1 
ε 11 , the Young’s modulus in the e 1 direction is: 

E ∗1 = 

(13 K w (1 − ν2 
s ) + 16 λE s )(51(1 + λ2 ) K w (1 − ν2 

s ) + 208 λ3 E s ) 

4 
√ 

3 (1 − ν2 
s )(271(1 + λ2 ) K w (1 − ν2 

s ) + 208(λ + 3 λ3 ) E s ) 
, 

(41) 

with E s , νs and λ = (h/� ) respectively, the Young’s modu- 

lus and the Poisson’s ratio of the cell walls material, and 

the ratio between the thickness and the length of the cell 

arms. 

The related Poisson’s ratio ν∗
12 

= −ε 22 /ε 11 takes the 

form: 

ν∗
12 = 

67(1 + λ2 ) K w 

(1 − ν2 
s ) − 208 λ(λ2 − 1) E s 

271(1 + λ2 ) K w 

(1 − ν2 
s ) + 208 λ(1 + 3 λ2 ) E s 

. (42) 

A stress state defined as σ 22 	 = 0, σ11 = σ12 = σ21 = 0 

leads, with analogous calculations, to the Young’s modu- 

lus in the e 2 direction and to the related Poisson’s ratio 

ν∗
21 

= −ε 11 /ε 22 . In particular, it emerges that E ∗
1 

= E ∗
2 

≡ E ∗

and ν∗
12 = ν∗

21 ≡ ν∗, where E ∗ and ν∗ stands for the Young’s 

modulus, the first, and the Poisson’s ratio, the second, of 

the approximated continuum. 

Moreover, the stress state σ sym 

12 
	 = 0 , σ11 = σ22 = 0 

yields the tangential elastic modulus G 

∗ = σ sym 

12 
/ 2 ε 12 : 

G 

∗ = 

51(1 + λ2 ) K w 

(1 − ν2 
s ) + 208 λ3 E s 

208 

√ 

3 (1 + λ2 )(1 − ν2 
s ) 

. (43) 

Finally, the above moduli E ∗, ν∗, G 

∗ satisfy the classical re- 

lation G 

∗ = 

E ∗

2 ( 1 + ν∗) 
, typical of the isotropic materials. 

4. Discussion 

4.1. Comparison between the analytical and numerical 

homogenization 

The compact expression of the constitutive equations 

derived so far is [ 

σ sym 

11 

σ sym 

22 

σ sym 

] 

= 

[ 

C 11 C 12 C 13 

C 21 C 22 C 23 

C 31 C 32 C 33 

] [ 

ε 11 

ε 22 

ε 12 

] 

(44) 
12 
or, in terms of strain, [ 

ε 11 

ε 22 

ε 12 

] 

= 

[ 

C ∗11 C ∗12 C ∗13 

C ∗21 C ∗22 C ∗23 

C ∗31 C ∗32 C ∗33 

] [ 

σ sym 

11 

σ sym 

22 

σ sym 

12 

] 

(45) 

with 

C ∗11 = C ∗22 = 

C 22 C 33 

C 2 
22 

C 33 − C 2 
12 

C 33 

= 

2 
√ 

3 (1 − ν2 
s )(271(1 + λ2 ) K w (1 − ν2 

s ) + 104(λ + 3 λ3 ) E s ) 

(13 K w (1 − ν2 
s ) + 8 λE s )(51(1 + λ2 ) K w (1 − ν2 

s ) + 104 λ3 E s ) 
, 

C ∗12 = C ∗21 = − C 12 C 33 

C 2 
22 

C 33 − C 2 
12 

C 33 

= − 4 
√ 

3 (1 − ν2 
s )(271(1 + λ2 ) K w (1 − ν2 

s ) − 208(λ3 − λ) E s ) 

(13 K w (1 − ν2 
s ) + 16 λE s )(51(1 + λ2 ) K w (1 − ν2 

s ) + 208 λ3 E s ) 
, 

C ∗33 = 

C 2 22 − C 2 12 

C 2 
22 

C 33 − C 2 
12 

C 33 

= 

52 
√ 

3 (1 − ν2 
s )(1 + λ2 ) 

51 K w (1 − ν2 
s )(1 + λ2 ) + 104 E s λ3 

, 

C ∗13 = C ∗23 = C ∗31 = C ∗32 = 0 . (46) 

The constants C ij , derived in Section 3 , are listed as 

C 11 = C 22 = 

C 2 � � 
2 + 36 D � C � 

2 

√ 

3 � (12 D � + C � � 2 ) 
+ 

271 K w 

416 

√ 

3 

, 

C 12 = C 21 = − C 2 � � 
2 − 12 D � C � 

2 

√ 

3 � (12 D � + C � � 2 ) 
+ 

67 K w 

416 

√ 

3 

, 

C 33 = 

48 D � C � 

2 

√ 

3 � (12 D � + C � � 2 ) 
+ 

51 K w 

52 

√ 

3 

, 

C 13 = C 23 = C 31 = C 32 = 0 . (47) 

Finite element simulations on a computational model of 

the microstructure assess the analytical approach. In par- 

ticular, the Euler-Bernoulli beam on Winkler foundation 

elements represent the composite hexagonal microstruc- 

ture. The cell wall material, isotropic linear elastic for as- 

sumption, has Young’s modulus E s and Poisson’s ratio νs , 

respectively, of 79 GPa and 0.35, thickness h = 0 . 1 � and

K w 

= 0 . 0 0 01 E s . 

The displacements and the derived quantities at every 

point within the beam are obtained by interpolation, using 

the same shape functions: 

u (ξ ) = N (ξ ) u 

e , (48) 

been ξ a parametric coordinate along the length of 

the beam (−1 ≤ ξ ≤ 1) , u (ξ ) = [ u (ξ ) v (ξ )] and u 

e =
[ u e 

i 
v e 

i 
ϕ 

e 
i 

u e 
j 
v e 

j 
ϕ 

e 
j 
] , respectively, the displacements at any

value of ξ and the local displacements of the extreme 

nodes of the beam, 

N (ξ ) = 

[
N 1 0 0 N 2 0 0 

0 N 3 N 4 0 N 5 N 6 

]
(49) 

the shape functions matrix. In particular, 

N 1 = 

1 − ξ

2 

, N 2 = 

1 + ξ

2 

, 

N 3 = 

1 − ξ (3 − ξ 2 ) / 2 

, 

2 
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C  

 

 

 

 

 

 

 

 

 

 

 

N 4 = 

� (1 − ξ 2 )(1 − ξ ) 

8 

, N 5 = 

1 + ξ (3 − ξ 2 ) / 2 

2 

, 

N 6 = − � (1 − ξ 2 )(1 + ξ ) 

8 

. (50)

This study involves a 75 × 50 mm rectangular domain

discretized in an increasing number of hexagonal cells of

gradually smaller length � . The load conditions considered

are the uniaxial compression and uniaxial traction in the

directions e 1 and e 2 , and pure shear. Also, forces acting at

the unconstrained boundary nodes of the domain simulate

the basic loading states. The corresponding effective stiff-

ness components are calculated as the ratio between the

average volume strain, 

ε i j = 

1 

V 

∫ 
V 

ε i j dV, i, j = 1 , 2 , (51)

and the applied stress. Specifically, when the forces act

horizontally, (45) leads to 

ε (1) = 

⎡ 

⎣ 

ε (1) 
11 

ε (1) 
22 

ε (1) 
12 

⎤ 

⎦ = 

[ 

C ∗11 C ∗12 C ∗13 

C ∗21 C ∗22 C ∗23 

C ∗31 C ∗32 C ∗33 

] [ 

σ11 

0 

0 

] 

= 

[ 

C ∗11 σ11 

C ∗21 σ11 

C ∗31 σ11 

] 

, 

(52)

been σ 11 the applied stress and ε (1) the corresponding

strain vector. Consequently, 

 

∗
11 = 

ε (1) 
11 

σ11 

, C ∗21 = 

ε (1) 
22 

σ11 

, C ∗31 = 

ε (1) 
12 

σ11 

, (53)

where 

ε (1) 
i j 

= 

1 

V 

∫ 
V 

ε (1) 
i j 

dV, i, j = 1 , 2 , (54)

and V is the volume of the domain. Because of the present

analysis involves a domain with unitary width, composed

by a sequence of discrete beams having the same length �

and the same thickness h , (54) turns out to be 

ε (1) 
i j 

= 

∑ n b 
m =1 

(∫ 
ε (1) 

i j 
(s ) ds 

)
m ∑ n b 

m =1 

(∫ 
ds 

)
m 

= 

∑ n b 
m =1 

(∫ 
ε (1) 

i j 
(s ) ds 

)
m 

n b � 
, 

i, j = 1 , 2 , (55)

with s a parametric coordinate along the length of the

beam (0 ≤ s ≤ � ), � the area of the domain and n b the

number of the beams. 

Remembering that 

ε i j (s ) = 

1 

2 

(
∂u i (s ) 

∂x j 
+ 

∂u j (s ) 

∂x i 

)
(56)

and that 

∂u i (s ) 

∂x j 
= 

∂u i (s ) 

∂s 

∂s 

∂x j 
, 

∂u j (s ) 

∂x i 
= 

∂u j (s ) 

∂s 

∂s 

∂x i 
, i, j = 1 , 2 , 

(57)

gives 

ε (1) 
i j 

= 

∑ n b 
m =1 

1 
2 

(
( u i (� ) − u i (0) ) ∂s 

∂x j 
+ 

(
u j (� ) − u j (0) 

)
∂s 
∂x i 

)
m 

n b � 
. 

(58)
In Cartesian coordinates, s = ( cos θ, sin θ ) , been θ the

angle of inclination of the beam with respect to the x -axis.

Accordingly, 

∂s 

∂x j 
= cos θ δ1 j + sin θ δ2 j , 

∂s 

∂x i 
= cos θ δ1 i + sin θ δ2 i , 

i, j = 1 , 2 , (59)

with δij the Kroneker delta. The classical continuum me-

chanics provides the Young’s modulus, E ∗
1 
, and the related

Poisson’s ratio ν∗
12 

: 

E ∗1 = 

σ11 

ε (1) 
11 

, ν∗
12 = −ε (1) 

22 

ε (1) 
11 

. (60)

With analogous calculations, forces acting vertically

provide 

ε (2) = 

⎡ 

⎣ 

ε (2) 
11 

ε (2) 
22 

ε (2) 
12 

⎤ 

⎦ = 

[ 

C ∗11 C ∗12 C ∗13 

C ∗21 C ∗22 C ∗23 

C ∗31 C ∗32 C ∗33 

] [ 

0 

σ22 

0 

] 

= 

[ 

C ∗12 σ22 

C ∗22 σ22 

C ∗32 σ22 

] 

(61)

and 

 

∗
12 = 

ε (2) 
11 

σ22 

, C ∗22 = 

ε (2) 
22 

σ22 

, C ∗32 = 

ε (2) 
12 

σ22 

. (62)

As before, σ 22 is the applied stress, ε (2) the corresponding

strain vector and ε (2) 
i j 

the average volume strain defined in

(58) . Regarding the elastic moduli, 

E ∗2 = 

σ22 

ε (2) 
22 

, ν∗
21 = −ε (2) 

11 

ε (2) 
22 

. (63)

Finally, in the case of in-plane shear 

ε (3) = 

⎡ 

⎣ 

ε (3) 
11 

ε (3) 
22 

ε (3) 
12 

⎤ 

⎦ = 

[ 

C ∗11 C ∗12 C ∗13 

C ∗21 C ∗22 C ∗23 

C ∗31 C ∗32 C ∗33 

] [ 

0 

0 

σ12 

] 

= 

[ 

C ∗13 σ12 

C ∗23 σ12 

C ∗33 σ12 

] 

, 

(64)

that leads to 

 

∗
13 = 

ε (3) 
11 

σ12 

, C ∗23 = 

ε (3) 
22 

σ12 

, C ∗33 = 

ε (3) 
12 

σ12 

. (65)

Again, σ 12 is the applied stress, ε (3) the corresponding

strain vector and ε (3) 
i j 

the average volume strain defined in

(58) . The relation 

G 

∗ = 

σ12 

2 ε (3) 
12 

(66)

gives the tangential elastic modulus. 

The results of our analysis are presented in Tables 1 and

2 , that provide a comparison between the analytical and

numerical values of the C ∗
i j 

constants, Tables 1 , and of the

elastic moduli, Tables 2 . As it can be seen, the results from

the continuum formulation compare reasonably well with

the numerical solutions. 

Nevertheless, the difference between the analytical re-

sults and the numerical solutions slightly increases when

the number of cells increases. This is not surprising, since
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Table 1 

Comparison between the analytical and numerical approach, C ∗
i j 

constants. 

No. cells � (mm) C ∗11 C ∗22 C ∗12 C ∗21 C ∗33 C ∗13 = C ∗23 = C ∗31 = C ∗32 

10 × 7 5 2.4 2.8 −2.2 −2.1 10 .1 0 

50 × 35 1 2.3 2.3 −2.3 −2.3 9 .7 0 

100 × 70 0.5 2.4 2.4 −2.3 −2.3 5 .9 0 

200 × 140 0.25 2.3 2.4 −2.3 −2.3 4 .3 0 

250 × 175 0.2 2.3 2.3 −2.2 −2.2 3 .9 0 

400 × 280 0.125 2.2 2.2 −2.1 −2.1 3 .9 0 

500 × 350 0.1 2.2 2.2 −2.1 −2.1 3 .9 0 

Analytical results 2.5 2.5 −2.4 −2.4 4 .8 0 

Table 2 

Comparison between the analytical and numerical approach, elastic moduli. 

No. cells � (mm) E ∗1 (GPa) E ∗2 (GPa) ν∗
12 ν∗

21 G ∗ (GPa) 

10 × 7 5 0.42 0.44 0.91 0.92 0.03 

50 × 35 1 0.43 0.43 1.00 0.99 0.05 

100 × 70 0.5 0.42 0.42 0.96 0.95 0.08 

200 × 140 0.25 0.43 0.42 0.96 0.95 0.11 

250 × 175 0.2 0.43 0.44 0.95 0.96 0.13 

400 × 280 0.125 0.44 0.45 0.95 0.96 0.13 

500 × 350 0.1 0.44 0.44 0.95 0.95 0.13 

Analytical results 0.40 0.40 0.96 0.96 0.10 
the assumptions of the theoretical model inevitably intro- 

duce approximations that are as significant as the number 

of cells increases. That is, the condensation of the degrees 

of freedom of the central node, the introduction of the lin- 

ear interpolants of nodal displacements and rotations in 

the discrete energy of the system to obtain the contin- 

uum model, the filling material represented by a Winkler 

foundation. In particular, condensing the degrees of free- 

dom of the central node subordinates the freedom of the 

nodes of lattice L 2 to that of lattice L 1 and, in contrast 

to the numerical model, gives the two lattices a different 

role ( Davini and Ongaro, 2011 ). Regarding the approxima- 

tion introduced by the linear interpolants, one could im- 

prove the analytical predictions by the use of asymptotic 

expansions as ( Chen et al., 1998 ), ( Gonella and Ruzzene, 

2008 ), ( Dos Reis and Ganghoffer, 2012 ). Also, this could 

lead to a micropolar continuum as in ( Chen et al., 1998 ) 

and ( Dos Reis and Ganghoffer, 2012 ). Finally, as stated, 

representing the filling material by a Winkler foundation 

is a simplification aimed at obtaining a mathematically 

tractable problem. This obviously implies approximations 

that could be improved by modeling the filling material by 

a more complex model, as the Winkler–Pasternak founda- 

tion, ( Limkatanyu et al., 2014 ), ( Civalek, 2007 ), ( Kerr, 1964 ). 

4.2. Comparison with other works 

Recent works focus on the mechanical characteriza- 

tion of cellular materials with an unfilled honeycomb mi- 

crostructure. A comparison between the proposed results 

and the available analytical solutions for unfilled honey- 

combs verify the adopted modeling strategy. Obviously, it 

is necessary to neglect the presence of the filling ma- 

terial, represented by a Winkler foundation, and assume 

k w 

= 0 . So, the composite cellular material of the present 

approach reduces to a traditional cellular material with a 

honeycomb-like microstructure and the elastic moduli in 
(41), (42), (43) are now listed as 

E ∗ = 

4 

√ 

3 λ3 E s 

3 (1 − ν2 
s )(1 + 3 λ2 ) 

, (67) 

ν∗ = 

1 − λ2 

1 + 3 λ2 
, (68) 

G 

∗ = 

√ 

3 λ3 E s 

3 (1 − ν2 
s )(1 + λ2 ) 

. (69) 

Fig. 10 and Tables 3 , based on a honeycomb made of an 

aluminum alloy with E s = 79 GPa and νs = 0.35, illustrate 

the results of the analysis. It emerges that the above ex- 

pressions coincide with those in ( Davini and Ongaro, 2011 ), 

where the authors deduced the constitutive model for the 

in-plane deformations of a honeycomb through an energy 

approach in conjunction with the homogenization theory. 

In particular, they represented the microstructure as a se- 

quence of elastic beams and expressed the energy in the 

continuum form by introducing the linear interpolants of 

nodal displacements and rotations in the discrete energy of 

the system. From general theorems of �-convergence, the 

authors obtained the homogenized model that, in contrast 

to ( Chen et al., 1998 ), does not develop couple stresses. 

Similarly to the present paper, ( Davini and Ongaro, 2011 ) 

considered the equilibrium condition at the central node 

and condensed the corresponding degrees of freedom. 

Furthermore, as Fig. 10 shows, (67) and (69) are in ac- 

cordance with ( Gibson and Ashby, 2001 ), where the equiv- 

alent elastic moduli are obtained by applying the principles 

of structural analysis to the representative volume element 

and by assuming a prevalent mode of deformation and fail- 

ure. 

Regarding ( Gonella and Ruzzene, 2008 ), the authors de- 

rived the equivalent properties of the lattice by focusing on 

the partial differential equations associated with the corre- 

sponding homogenized model. Differently from the present 



F. Ongaro et al. / Mechanics of Materials 97 (2016) 26–47 39 

a

b

c

Fig. 10. Comparison between the elastic constants obtained in the present paper and those of the other authors: (a) Young’s modulus, (b) Shear modulus, 

(c) Poisson’s ratio. 

Table 3 

Expressions for the Young’s modulus, shear modulus and Poisson’s ratio derived from 

the models that we have compared. 

Chen et al. (1998) 

E ∗CH 

E s 
= 

2 λ(1 + λ2 ) √ 

3 (1 − ν2 
s )(3 + λ2 ) 

G ∗CH 

E s 
= 

√ 

3 λ(1 + λ2 ) 

12 (1 − ν2 
s ) 

ν∗
CH = 

1 + λ2 

3 + λ2 

Davini and Ongaro (2011) 

E ∗DO 

E s 
= 

4 
√ 

3 λ3 

3 (1 − ν2 
s )(1 + 3 λ2 ) 

G ∗DO 

E s 
= 

√ 

3 λ3 

3 (1 − ν2 
s )(1 + λ2 ) 

ν∗
DO = 

1 − λ2 

1 + 3 λ2 

Dos Reis and Ganghoffer (2012) 

E ∗DG 

E s 
= 

λ + 3 
√ 

λ3 

6 (1 − ν2 
s )(1 + λ2 ) 

G ∗DG 

E s 
= 

4 
√ 

3 λ3 

(1 − ν2 
s )(12 + λ2 ) 

ν∗
DG = 

12 − λ2 

3(4 + λ2 ) 

Gibson and Ashby (2001) 

E ∗
GA 

E s 
= 

4 λ3 

√ 

3 

G ∗
GA 

E s 
= 

λ3 

√ 

3 
ν∗

GA = 1 

Gonella and Ruzzene (2008) 

E ∗GR 

E s 
= 

4 
√ 

3 λ3 

3(1 + 3 λ2 ) 

G ∗GR 

E s 
= 

√ 

3 λ3 

3 (1 + λ2 ) 
ν∗

GR = 

1 − λ2 

1 + 3 λ2 
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approach, their homogenization technique involves Taylor 

series expansions truncated to the second order of the dis- 

placements and rotations of the boundary nodes. Then, the 

assumption of no concentrated couples acting to the struc- 

ture leads to a non polar continuum, slightly less stiff than 

that of the present paper. 

An alternative technique for the analysis of periodic 

lattices is proposed in ( Dos Reis and Ganghoffer, 2012 ). 

The authors derived the homogenized stress-strain rela- 

tions under compression and shear for a 2D hexagonal 

lattice composed of extensional and flexural elements. In 

particular, the homogenization problem is performed in 

the framework of micropolar elasticity, where the inter- 

actions between two neighboring points involve both the 

Cauchy stress, as in classical mechanics, and the couple 

stress tensor ( Eremeyev et al., 2013 ). Also, contrary to clas- 

sical elasticity, the Cauchy tensor is not symmetrical. As 

Fig. 10 shows, the homogenized elastic moduli proposed in 

( Dos Reis and Ganghoffer, 2012 ) E ∗
DG 

, G 

∗
DG 

, νDG agree with 

ours, E ∗, G 

∗, ν∗, in the limit of slender beams. For instance, 

after writing (67) in terms of the Young’s modulus in 

( Dos Reis and Ganghoffer, 2012 ), E ∗
DG 

, it emerges that the 

two estimates differ by a quantity related to the ratio λ be- 

tween the thickness and the length of the cell walls, that 

reduces as λ → 0: 

E ∗ = 

E ∗DG 8 λ2 ( 1 + λ) 
2 (

1 + 3 λ2 
)2 

. (70) 

In the case of ( Gibson and Ashby, 2001 ) Young’s modu- 

lus an analogous consideration applies: 

E ∗ = 

E ∗GA (
1 + 3 λ2 

)
(1 − ν2 

s ) 
. (71) 

An analysis of the micropolar behavior of the honey- 

comb microstructure is also provided in ( Chen et al., 1998 ). 

The authors represented the lattice as a sequence of elastic 

beams and derived the continuum model by means of an 

asymptotic Taylor’s expansion of the nodal displacements 

and rotations in the strain energy of the discrete structure. 

Differently from ( Davini and Ongaro, 2011 ), ( Gonella and 

Ruzzene, 2008 ), ( Dos Reis and Ganghoffer, 2012 ), the ap- 

proach in ( Chen et al., 1998 ) ignores the connectivity of the 

beams and, in particular, the equilibrium conditions and 

the condensation of the degrees of freedom of the central 

node. They also calculated the elastic energy of the discrete 

structure by a superposition of the strain energies of the 

individual beams. This technique predicts a much stiffer 

behavior than the results of the other authors ( Fig. 10 ). 

As a conclusion, the present approach leads to elastic 

moduli that are generally in accordance with those avail- 

able in the literature, with the exception of ( Chen et al., 

1998 ). As pointed out, in ( Chen et al., 1998 ) the equilib- 

rium conditions and the degrees of freedom of the central 

node are not considered. This states the major difference 

with respect to the present approach, in conjunction with 

the use of an asymptotic expansions of the displacements 

and rotation fields. 

In addition, Table 4 summarizes the outcome of the 

comparison between the effective elastic constants of the 
present study and those of the other authors, in the case 

of filled honeycomb. 

As it can be seen, our results are in good accordance 

with the predictions in ( Murray et al., 2009 ), derived from 

a 2D finite element analysis of an aluminum honeycomb 

filled with a polymeric material. Similarly to the present 

approach, ( Murray et al., 2009 ) modeled the cell walls as a 

Euler-Bernoulli beam elements while the infill as a plane- 

stress shell element. 

Regarding ( Burlayenko and Sadowski, 2010 ), the authors 

considered an aluminum honeycomb filled with a PVC 

foam and obtained the equivalent elastic moduli using a 

3D finite element analysis and the strain energy homoge- 

nization technique of periodic media. Also, shell elements 

and brick elements represent, respectively, the cell walls 

and the filling material, both of them assumed isotropic. As 

Table 4 shows, the approach in ( Burlayenko and Sadowski, 

2010 ) leads to a slightly more stiff equivalent continuum 

than that of the present paper. 

It should be noted that (15) provides the relation 

between the values of K w 

and the Young’s modulus 

of the filling material in ( Murray et al., 2009 ), E f, M 

, 

and in ( Burlayenko and Sadowski, 2010 ), E f, B , listed in 

Table 4 . Also, for sake of clarity, in Table 4 E ∗1 ,M 

, E ∗2 ,M 

and E ∗
1 ,B 

, E ∗
2 ,B 

, G 

∗
B 

stand for the elastic constants derived in 

( Murray et al., 2009 ) and in ( Burlayenko and Sadowski, 

2010 ), respectively. 

4.3. The influence of microstructure parameters in the overall 

properties 

As it can be noted from the expressions (41) –(43) , the 

elastic moduli in the continuum approximation are obvi- 

ously related to the microstructure parameters. Such as the 

Young’s modulus E s and the Poisson’s ratio νs of the cell 

walls material, the product K w 

= k w 

� of the constant k w 

of the Winkler foundation model and the length of the 

cell arms, the ratio λ = h/� between the thickness and the 

length of the beams. 

Figs. 11 and 12 , based on an aluminum alloy with 

E s = 79 GPa and νs = 0.35 as before, show, in turn, the 

influence of K w 

and of λ in the macroscopic Young’s mod- 

ulus E ∗, shear modulus G 

∗ and Poisson’s ratio ν∗. 

When λ is fixed, Fig. 11 a and b suggest that both the ra- 

tio E ∗/ E s and G 

∗/ E s increase with increasing K w 

. That is to

say, both the Young’s modulus and shear modulus increase 

with increasing K w 

and this is consistent with the result 

that one expects by increasing the stiffness of the material 

filling the cells (the parameter K w 

). Specifically, the big- 

ger λ, that corresponds to a beam that becomes more and 

more thick, the larger will be the increase of the moduli 

E ∗ and G 

∗. Also, an high value of λ (λ = 0 . 2) leads to an

higher initial value of both E ∗ and G 

∗ than that which oc- 

curs for a small value of λ (λ = 0 . 02) . Regarding the Pois-

son’s ratio ν∗, Fig. 11 c shows that for fixed λ, an increase 

in K w 

yields a decrease in the Poisson’s ratio. In particular, 

the smaller λ, the larger will be the decrease and, as it can 

be seen, the smaller λ, the smaller will be the value of K w 

in correspondence of which ν∗ reaches its minimum value: 

K w 

≈ 0.025 E s , K w 

≈ 0.35 E s , K w 

≈ 0.47 E s , respectively for

λ = 0 . 02 , 0 . 05 , 0 . 1 . The initial decrease in ν∗, followed by
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Table 4 

Comparison between the elastic constants of the present paper and those of the other authors 

in the case of filled microstructure. 

( Murray et al., 2009 ) Present 

E s = 70 GPa, E s = 70 GPa, 

νs = 0.35, νs = 0.35, 

λ = 0 . 1 λ = 0 . 1 

E f, M E ∗1 ,M = E ∗2 ,M K w E ∗1 = E ∗2 
(GPa) (GPa) (GPa) (GPa) 

0.001 0.3 ÷0.4 0.001 0.35 

0.01 0.3 ÷0.4 0.009 0.37 

0.1 0.5 0.094 0.45 

1 1.2 ÷1.3 0.94 1.3 

( Burlayenko and Sadowski, 2010 ) Present 

E s = 72.2 GPa, E s = 72.2 GPa, 

νs = 0.34, νs = 0.34, 

λ = 0 . 0125 λ = 0 . 0125 

E f, B E ∗1 ,B = E ∗2 ,B G ∗B K w E ∗1 = E ∗2 G ∗

(GPa) (MPa) (MPa) (GPa) (MPa) (MPa) 

0.056 0.627 0.238 0.053 0.610 0.235 

0.105 0.788 0.282 0.099 0.760 0.267 

0.230 1.061 0.386 0.216 0.885 0.338 

a

b

c

Fig. 11. The influence of K w in the elastic constants: (a) Young’s modulus, (b) Shear modulus, (c) Poisson’s ratio. 
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a

b

c

Fig. 12. The influence of λ in the elastic constants: (a) Young’s modulus, (b) Shear modulus, (c) Poisson’s ratio. 

 

 

an almost horizontal line once K w 

reaches a specific value, 

is larger for high values of λ. In fact, the initial slope of the 

curves corresponding to λ = 0 . 1 and λ = 0 . 2 is bigger than 

that corresponding to λ = 0 . 02 and λ = 0 . 05 . 

In terms of the influence of λ in the overall properties 

E ∗, G 

∗, ν∗, Fig. 12 a and b suggest that when K w 

is fixed, the

ratio E ∗/ E s and G 

∗/ E s generally increase with increasing λ. 

Namely, when the beam become thicker there will be an 

increase in E ∗ and G 

∗. Nevertheless, to high values of K w 

(0.25 E s , 0.5 E s for the Young’s modulus, 0.08 E s , 0.04 E s for 

the shear modulus) corresponds to an higher initial value 

of both E ∗ and G 

∗ than that which occurs for small values 

of K w 

(0 E s , 0.05 E s for the Young’s modulus, 0 E s , 0.008 E s 
for the shear modulus). Regarding the Poisson’s ratio, from 

Fig. 12 c globally emerges that when K w 

is fixed, an in- 

crease in λ leads to an increase in ν∗. In particular, for high 

values of K w 

(0.5 E s , 0.25 E s ) the increase is less significant 

than that occurring for small values of it (0.05 E s ). That is 
to say that the bigger K w 

, the smaller will be the influence 

of λ. Only when the filling material is missing, K w 

= 0 , an

increase in λ leads to a decrease in ν∗

5. Some practical applications 

The high efficiency of the composite structures in na- 

ture, like plants stems and parenchyma tissues inspired 

this paper. In particular, the parenchyma is a plant tissue 

composed by thin-walled polyhedral cells filled by a quasi- 

incompressible fluid that exerts the hydrostatic pressure P i 
(known as turgor pressure) on the cell walls and is respon- 

sible for the strength and rigidity of the cell ( Van Liedek- 

erke et al., 2010 ). It is acknowledged that the mechani- 

cal properties of the whole tissue are related to those of 

the individual components, as the constitutive equations of 

the cell walls, the turgor pressure and the cell-to-cell in- 

teractions ( Zhu and Melrose, 2003 ). However, the physical 
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Table 5 

Young’s modulus for apple parenchyma tissue. 

E ∗ (MPa) 

Present 

h/l = 0 . 02 ÷ 0 . 2 (by assumption) 1 ÷1.6 

� k w = 0 . 3 ÷ 4 . 1 MPa, P i = 0 . 8 MPa ( Georget et al., 2003 ) 

E s = 52.8MPa ( Wu and Pitts, 1999 ), νs = 0.24 ( Wu and Pitts, 1999 ) 

� = 1 . 5 μm ( Sanchis Gritsch and Murphy, 2005 ) 

Gibson et al. (2010) 0.31 ÷3.46 

Table 6 

Young’s modulus for potato parenchyma tissue. 

E ∗ (MPa) 

Present 

h/� = 0 . 0087 , � = 1 . 5 μm ( Sanchis Gritsch and Murphy, 2005 ) 4 ÷4.2 

� k w = 9 . 6 ÷ 9 . 62 MPa, P i = 0 . 8 MPa ( Georget et al., 2003 ) 

E s = 500 ÷ 600 MPa, νs = 0.5 ( Niklas, 1992 ) 

Gibson (2012) 5 ÷6 

h/� = 0 . 0087 , E s = 500 ÷ 600 MPa 

Experimental value ( Gibson, 2012 ) 3.5 ÷5.5 

Table 7 

Young’s modulus for carrot parenchyma tissue, with E s = 100 MPa, νs = 0.33. 

E ∗ (MPa) 

Present 

h/� = 0 . 02 ÷ 0 . 2 , � k w = 0 . 3 ÷ 4 . 1 MPa 1.7 ÷2 

� = 1 . 5 μ m ( Sanchis Gritsch and Murphy, 2005 ) 

P i = 0 . 8 MPa ( Georget et al., 2003 ) 

Gibson, Ashby model ( Georget et al., 2003 ) 2.4 ÷32.8 

h/� = 0 . 02 ÷ 0 . 35 

Warner, Edwards model ( Georget et al., 2003 ) Lower limit: 10 −5 ÷ 1 . 6 

h/� = 0 . 02 ÷ 0 . 35 Upper limit: 0.03 ÷14.2 

Experimental value ( Georget et al., 2003 ) 7 ± 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

properties of the living cells are, in general, very difficult

to measure ( Wu and Pitts, 1999 ) and, as a consequence,

the analysis of the parenchyma tissue is extremely com-

plex without great simplifications and assumptions. 

Applying the results of our model to the parenchyma

tissue of carrot, potato and apple is a tool to validate the

present modeling approach. Specifically, the expression in

(41) gives the Young’s modulus of the whole tissue, start-

ing from the experimental measurements of the cell prop-

erties, Young’s modulus, Poisson’s ratio, dimensions of the

walls, turgor pressure values, and some considerations (see

Appendix C ) to obtain an approximation of k w 

, the Winkler

foundation constant. An approximate value of the length

of the carrot, potato and apple parenchyma cell walls de-

rives from ( Sanchis Gritsch and Murphy, 2005 ), where the

authors describe the structure of the parenchyma cell at

different stages of development. In the present paper, the

mature cell is considered. Regarding the value of the turgor

pressure, ( Georget et al., 2003 ) obtain its values by focus-

ing on the carrot parenchyma tissue. In our investigation,

for simplicity, the assumption of the same turgor pressure

value for all the considered parenchyma tissues holds true.

Tables 5–7 show that our results generally agree with

the experimental published data and with the predictions

of other authors, derived from 3D models of fluid-filled,

closed-cell foams. It should be noted that a rigorous ex-

amination of the parenchyma tissue is beyond our aim.
However, Tables 5 –7 indicate that the proposed theoretical

model, based on a 2D configuration, could be a useful tool

to gain some quantitative information on the mechanical

properties of some vegetative tissues. 

6. Conclusions 

This paper, inspired by the high efficiency of composite

structures in nature, focuses on the analysis of the me-

chanical behavior of a 2D composite cellular material, hav-

ing a honeycomb texture and the cells filled by a generic

elastic material. 

Within the framework of linear elasticity and by

modeling the microstructure as a sequence of beams on

Winkler elastic foundation, the constitutive equations and

elastic moduli in the macroscopic continuum description

are derived. Specifically, an energetic approach leads to

the continuum representation. The assumption that, in

the limit, the variables defined to represent displacements

and rotations of the nodes can be expressed in terms of

two continuous fields solved the passage from discrete to

continuum. Finally, the introduction of the aforementioned

continuous fields in the strain energy function of the unit

cell and simple mathematical manipulations yield the

stress-strain relations and elastic constants. Obviously, the

overall properties are related to the microstructure param-

eters. The analysis developed to investigate such influence,
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a b

c

Fig. A1. The triplet of elastic beams with focus on springs. (a) Beam (0)-(1), (b) Beam (0)-(2), (c) Beam (0)-(3). 

 
reveals that the macroscopic mechanical behavior of the 

medium is improved by increasing the stiffness of the 

material that fills the cells. Also, from the finite element 

simulations performed to assess the analytical model, it 

emerges that the results from the continuum formulation 

compare reasonably well with the numerical solutions. 

In addition, this paper presents the application of the 

analytical results to the vegetative parenchyma tissue of 

carrot, apple and potato to derive the Young’s modulus of 

the whole tissue. The values obtained generally agree with 

the published data and this modeling strategy could pro- 

vide some qualitative information on the mechanical prop- 

erties of biological tissues. 

To the authors’ best knowledge, the beam on Win- 

kler foundation has never been applied to model the mi- 

crostructure of a cellular material to obtain an analytical 

expression of the equivalent elastic moduli of a filled cel- 

lular solid. 
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Appendix A 

The elastic energy of each beam in the discrete system 

is 

w 

e = 

1 

2 

(u 

e ) T · k 

e 
b u 

e + 

1 

2 

(
1 

2 

( � u 

e,a 
) T · k 

e 
w f � u 

e,a 
)

+ 

1 

2 

(
1 

2 

( � u 

e,b 
) T · k 

e 
w f � u 

e,b 
)
, (1) 
and, as it can be seen, is the sum of three terms. The first

one, 

1 

2 

(u 

e ) T · k 

e 
b u 

e , (2) 

corresponding to the classical elastic beam, while the sec- 

ond and the third, 

1 

2 

(
1 

2 
( � u 

e,a 
) T · k 

e 
w f � u 

e,a 
)
, 

1 

2 

(
1 

2 
( � u 

e,b 
) T · k 

e 
w f � u 

e,b 
)
, (3) 

related to the Winkler foundation and, in particular, to the 

elongation of the springs a, the first, and of the springs b, 

the second ( Fig. A2 ). 

Similarly, the forces and couples acting at the end of 

each beam are 

f e = k 

e 
b u 

e + k 

e 
w f � u 

e,a + k 

e 
w f � u 

e,b 
. (4) 

In particular, 

� u 

1 ,a = 

[
� u 

a 
0 � u 

a 
1 

]T 
, � u 

2 ,a = 

[
� u 

a 
0 � u 

a 
2 

]T 
, 

� u 

3 ,a = 

[
� u 

a 
0 � u 

a 
3 

]T 
(5) 

and 

� u 

1 ,b = 

[
� u 

b 
0 � u 

b 
1 

]T 
, � u 

2 ,b = 

[
� u 

b 
0 � u 

b 
2 

]T 
, 

� u 

3 ,b = 

[
� u 

b 
0 � u 

b 
3 

]T 
. (6) 

The elastic energy of the unit cell, W , derives from that of 

the three beams it consists of. As stated, adding up forces 

at the central node (0) and condensing the corresponding 

degrees of freedom to take account of the forces balance 

in (0), leads to 

W = W (u 1 , u 2 , u 3 , � u 

a 
1 , � u 

a 
2 , � u 

a 
3 , � u 

b 
1 , � u 

b 
2 , � u 

b 
3 ) . (7) 

The assumption that in the limit � → 0 the discrete vari- 

ables ( u j , ϕ j ) can be written as 

u j = ˆ u 0 + ∇ ̂  u b j 

ϕ j = ˆ ϕ 0 + ∇ ̂  ϕ b j , j = 1 , 2 , 3 , (8) 

http://dx.doi.org/10.13039/501100000781
http://dx.doi.org/10.13039/501100000780
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Fig. A2. The two sets of springs connecting the triplet of elastic beams. (a) Springs a, (b) Springs b. 

Fig. A3. The b fi vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

provides the continuum description of the discrete struc-

ture. The terms ˆ u 0 and ˆ ϕ 0 are the values of ˆ u (·) and ˆ ϕ (·)
at the central point of the cell in the continuum descrip-

tion. Note that in what follows, to simplify the notation, ˆ u

and ˆ ϕ stand for ˆ u 0 and ˆ ϕ 0 . Substituting (8) into (7) gives

the strain energy of the unit cell as a function of the fields

ˆ u and ˆ ϕ . 

Specifically, the aforementioned quantities are ( Figs. A1

and A3 ): 

- Beam (0)-(1) 

Discrete system 

� u 

a 
1 = 

[
u 1 − u 1 i 

ϕ 1 − ϕ 1 i 

]
, � u 

b 
1 = 

[
u 1 − u 1 ii 

ϕ 1 − ϕ 1 ii 

]
. (9)

In the continuum description, 

u 1 = ˆ u + ∇ ̂  u b 1 , ϕ 1 = ˆ ϕ + ∇ ˆ ϕ b 1 , 

u 1 i = ˆ u + ∇ ̂  u b f 1 , ϕ 1 i = ˆ ϕ + ∇ ˆ ϕ b f 1 , 

u 1 ii = ˆ u + ∇ ̂  u b f 2 , ϕ 1 ii = ˆ ϕ + ∇ ˆ ϕ b f 2 , 

(10)

that, substituted in (9) , lead to 

� u 

a 
1 = 

[∇ ̂  u b 1 − ∇ ̂  u b f 1 

∇ ̂  ϕ b 1 − ∇ ̂  ϕ b f 1 

]
, � u 

b 
1 = 

[∇ ̂  u b 1 − ∇ ̂  u b f 2 

∇ ̂  ϕ b 1 − ∇ ̂  ϕ b f 2 

]
. (11)

- Beam (0)-(2) 

Discrete system 

� u 

a 
2 = 

[
u 2 − u 2 i 

ϕ 2 − ϕ 2 i 

]
, � u 

b 
2 = 

[
u 2 − u 2 ii 

ϕ 2 − ϕ 2 ii 

]
. (12)

Continuum description 

u 2 = ˆ u + ∇ ̂  u b 2 , ϕ 2 = ˆ ϕ + ∇ ˆ ϕ b 2 , 

u 2 i = ˆ u + ∇ ̂  u b f 2 , ϕ 2 i = ˆ ϕ + ∇ ˆ ϕ b f 2 , 

u 2 ii = ˆ u + ∇ ̂  u b f 3 , ϕ 2 ii = ˆ ϕ + ∇ ˆ ϕ b f 3 , 

(13)

and 

� u 

a 
2 = 

[∇ ̂  u b 2 − ∇ ̂  u b f 2 

∇ ̂  ϕ b 2 − ∇ ̂  ϕ b f 2 

]
, � u 

b 
2 = 

[∇ ̂  u b 2 − ∇ ̂  u b f 3 

∇ ̂  ϕ b 2 − ∇ ̂  ϕ b f 3 

]
. (14)
- Beam (0)-(3) 

Discrete system 

� u 

a 
3 = 

[
u 3 − u 3 i 

ϕ 3 − ϕ 3 i 

]
, � u 

b 
3 = 

[
u 3 − u 3 ii 

ϕ 3 − ϕ 3 ii 

]
. (15)

Continuum description 

u 3 = ˆ u + ∇ ̂  u b 3 , ϕ 3 = ˆ ϕ + ∇ ˆ ϕ b 3 , 

u 3 i = ˆ u + ∇ ̂  u b f 3 , ϕ 3 i = ˆ ϕ + ∇ ˆ ϕ b f 3 , 

u 3 ii = ˆ u + ∇ ̂  u b f 1 , ϕ 3 ii = ˆ ϕ + ∇ ˆ ϕ b f 1 , 

(16)

and 

� u 

a 
3 = 

[∇ ̂  u b 3 − ∇ ̂  u b f 3 

∇ ̂  ϕ b 3 − ∇ ̂  ϕ b f 3 

]
, � u 

b 
3 = 

[∇ ̂  u b 3 − ∇ ̂  u b f 1 

∇ ̂  ϕ b 3 − ∇ ̂  ϕ b f 1 

]
. (17)

Finally, the vectors b fi ( Fig. A3 ) are 

b f 1 = −l 2 + ( l 1 − s ) , 
b f 2 = l 1 + ( l 2 − s ) , 
b f 3 = ( l 2 − l 1 ) − s . 

(18)

Appendix B 

Let U 

e = 

(
U I , U J 

)T = 

(
U I , V I , ϕ I , U J , V J , ϕ J 

)T 
be the vector

of nodal displacement expressed in the global reference and 

� U 

e,a = 

(
� U 

a 
I , � U 

a 
J 

)T 

= 

(
�U 

a 
I ,�V 

a 
I , �ϕ 

a 
I ,�U 

a 
J ,�V 

a 
J ,�ϕ 

a 
J 

)T 
, (19)

� U 

e,b = 

(
� U 

b 
I , � U 

b 
J 

)T 

= 

(
�U 

b 
I ,�V 

b 
I , �ϕ 

b 
I ,�U 

b 
J ,�V 

b 
J ,�ϕ 

b 
J 

)T 
, (20)

the elongation of the springs a, the first, and of the springs

b, the second. One can prove that the relations 

u 

e = Q 

e U 

e , � u 

e,a = Q 

e � U 

e,a 
, � u 

e,b = Q 

e � U 

e,b 
(21)

hold true, with Q 

e the rotation matrix that rotates the axis

e 1 , e 2 in ηe 
1 
, ηe 

2 
, given by 

Q 

e = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ηe 
1 · e 1 ηe 

1 · e 2 0 0 0 0 

ηe 
2 · e 1 ηe 

2 · e 2 0 0 0 0 

0 0 1 0 0 0 

0 0 0 ηe 
1 · e 1 ηe 

1 · e 2 0 

0 0 0 ηe 
2 · e 1 ηe 

2 · e 2 0 

0 0 0 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (22)

u 

e = 

[
u i , u j 

]T = 

[
u i , v i , ϕ i , u j , v j , ϕ j 

]T 
the generalized vec-

tor of nodal displacement expressed in the local reference , 
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Fig. A4. (a) Degrees of freedom in the global reference system, (b) Forces and couples in the global reference. . 

Fig. A5. The internal and external pressures in a parenchyma cell. 

W

 

 

 

� u 

e,a = 

[
� u 

a 
i , � u 

a 
j 

]T 

= 

[
� u 

a 
i , � v a i , �ϕ 

a 
i , � u 

a 
j , � v a j , �ϕ 

a 
j 

]T 
, (23) 

� u 

e,b = 

[ 
� u 

b 
i , � u 

b 
j 

] T 
= 

[
� u 

b 
i , � v b i , �ϕ 

b 
i , � u 

b 
j , � v b j , �ϕ 

b 
j 

]T 
(24) 

the elongation of the springs a, the first, and of the springs 

b, the second. Similarly, the stiffness matrices expressed in 

the global reference K 

e 
b 

and K 

e 
w f 

, can be easily derived by 

the stiffness matrices expressed in the local reference , k 

e 
b 

and 

k 

e 
w f 

: 

K 

e 
b = (Q 

e ) T k 

e 
b Q 

e , K 

e 
w f = (Q 

e ) T k 

e 
w f Q 

e . (25) 

Furthermore, the elastic energy in (1) takes the form 

 

e = 

1 

2 

(U 

e ) T · K 

e 
b U 

e + 

1 

2 

(
1 

2 

( � U 

e,a 
) T · K 

e 
w f � U 

e,a 
)

+ 

1 

2 

(
1 

2 

( � U 

e,b 
) T · K 

e 
w f � U 

e,b 
)
, (26) 

if referred to the global reference. 

As regards the forces and couples acting at the ends of 

each beam ( Fig. A4 b), in the global reference are 

F e = K 

e 
b U 

e + K 

e 
w f � U 

e,a + K 

e 
w f � U 

e,b 
, (27) 

been F e = [ F I , F J ] 
T = [ F XI , F Y I , M I , F XJ , F Y J , M J ] 

T the vector of

nodal forces and couples expressed in the global reference , 

U 

e , � U 

e, a , � U 

e, b , K 

e 
b 

and K 

e 
w f 

the quantities previously 

defined. 

Appendix C 

A sequence of beams on Winkler elastic foundation 

simulates the microstructure of the composite material an- 

alyzed in the present paper. 

Focusing on a generic parenchyma cell provides a suit- 

able approximation of K w 

, the Winkler’s foundation con- 

stant. Specifically, a parenchyma cell can be modeled 
( Niklas, 1989 ) like a cylinder of length L with inner radius 

r i and outer radius r o . Every cell is filled by a fluid that ex-

erts the hydrostatic pressure P i , turgor pressure, on the cell 

walls ( Fig. A5 ). 

Restricting the analysis to the 2D space, a circular thin- 

walled flexible ring stiffened by the internal pressure P i 
can represent the parenchyma cell. Furthermore, when the 

external pressure P o exceeds the internal pressure P i , the 

flexible ring fails through elastic instability. At the onset 

of buckling, P o = P i , the flexible ring behaves as a fictitious 

stiff ring whose critical buckling load is 

P cr = 

(
3 E w 

I 

r 3 
i 

)
1 

� 
= P i , (28) 

been E w 

and I = π(r 4 o − r 4 
i 
) / 4 , respectively, the Young’s

modulus of the cell walls of the stiff ring and the moment 

of inertia of the cross section. 

From (28) , the fictitious Young’s modulus is 

E w 

(P i ) = 

P i r 
3 
i 
� 

3 I 
. (29) 

A 2D parenchyma cell can also be represented as a 

composite material. That is, as a stiffened thin-walled cell 

filled by an elastic material having Young’s modulus E f . 

From the rule of mixtures, 

E eq = E f f + E s (1 − f ) , (30) 

been E eq and E s , respectively, the Young’s modulus of the 

composite structure and of the cell walls, f the porosity 

given by 

f = 

V f 

V f + V s 
. (31) 

Also, V s and V f stand, in turn, for the volume of the walls 

and of the material within the cell. In the case of cell thick- 

ness tending to zero V s � V f . Accordingly, f ≈1 and 

E eq = E f . (32) 

Furthermore, the equivalence between the biphasic contin- 

uum and the hybrid system continuum-spring of Section 2 , 

provide 

E f = 

5 

√ 

3 

8 

K w 

, (33) 

with K w 

the stiffness of the filling material if modeled by a 

Winkler foundation. Substituting (33) into (32) and impos- 

ing the equivalence between the Young’s modulus derived 

from the two modeling strategies, E eq and E w 

, provides 

K w 

= 

8 P i r 
3 
i 
� 

15 

√ 

3 I 
. (34) 

Note that the relation in (29) is obtained in the case of 

cylindrical cell. Consequently, to correctly apply (29) to our 
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Fig. A6. The annulus approximating the hexagonal cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model, it is necessary to approximate the hexagonal cell of

the present paper with an annulus. Specifically, the annu-

lus ( Fig. A6 ) has inner and outer radii given, respectively,

by r i = 

√ 

3 �/ 2 and r o = 

√ 

3 �/ 2 + h, where � is the length

and h the thickness of the beams in the original model. 
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