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Many natural systems display a peculiar honeycomb structure at the microscale and nu-
merous existing studies assume empty cells. In reality, and certainly for biological tissues,
the internal volumes are instead filled with fluids, fibers or other bulk materials.

Inspired by these architectures, this paper presents a continuum model for composite
cellular materials. A series of closely spaced independent linear-elastic springs approxi-
mates the filling material.

Firstly, finite element simulations performed on the microstructure and numerical ho-
mogenization demonstrate a convergence towards non-micro polarity, in contrast to clas-
sical empty materials. Secondly, theoretical homogenization, in its most general setting,
confirms that the gradients of micro-rotations disappear in the continuum limit.

In addition, the resulting constitutive model remains isotropic, as for the non-filled
cellular structures, and reconciles with existing studies where the filling material is absent.

Finally, the model is applied for estimating the mechanical properties of parenchyma
tissues (carrots, apples and potatoes). The theory provides values for Young moduli rea-

sonably close to the ones measured experimentally for turgid samples.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of cellular structures allows good mechanical
properties at low weight. Nature adopts this advantageous
strategy on numerous occasions in biological systems
such as wood, bone, tooth, mollusk shells, crustaceans
and many siliceous skeleton species like radiolarians, sea
sponges and diatoms (Gordon et al., 2008; Neethirajan
et al., 2009). Cellular structures have a diversity of func-
tions but a fundamental one is mechanical, providing
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protection and support for the body. Natural cellular ma-
terials have been studied widely, the pioneering textbook
by Gibson and Ashby (2001) and the exhaustive work by
Gibson et al. (2010).

The factors influencing the mechanical properties of
a cellular material are the apparent density, defined as
the ratio between the density of the cellular solid and
the density of the material, the internal architecture and
the material properties of the microstructure. In its most
sophisticated form, natural cellular materials are even
able to adapt their architectures to changing mechan-
ical environments (Fratzl and Weinkamer, 2007; 2011).
One example is the combination of dense and strong
fibre-composite outer faces and an inner foam-like core
in the leaves of monocotyledon plants, like irises and
maize (Gibson, 2012), which better resist bending and
buckling. The lightweight core, in particular, is a simple
plant tissue, known as parenchyma (Gibson, 2012; Gibson
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Fig. 1. (a) Parenchyma tissue from the moss Plagiomnium Affine, (b) Natural tubular structures: celery cross section.

et al., 2010; Bruce, 2003; Warner et al., 2000; Georget
et al,, 2003) made up of thin-walled polyhedral cells filled
by liquid and, notwithstanding its low relative density
and low mechanical properties, can significantly improve
the resistance of the leaf. Similar composite solutions are
found in the natural tubular structures, like plant stems or
animal quills. In these systems, the inner honeycomb or
foam-like core behaves like an elastic foundation support-
ing the dense outer cylindrical shell and makes it more
performant (Gibson, 2005; Dawson and Gibson, 2007),
Fig. 1.

It is well known (Gibson and Ashby, 2001) that the
main problem with cellular materials is to extract an
equivalent continuum model. In fact, the formulation of
a continuum model is hindered by two types of diffi-
culties: the spatial variability of size and morphology of
the microscopic architecture, on one side, and the crucial
passage from the microscopic discrete description to the
coarse continuous one, on the other. The typical approach
to the continuum modeling of cellular materials includes
the assumption of periodicity and the selection of a repre-
sentative volume element (RVE). Moreover, it necessitates
the application of micro-macro relationships in terms of
forces and displacements and energy equivalence concepts.
Furthermore, the material properties are typically assumed
to be as simple as possible, for example linear-elastic and
isotropic (Altenbach and Oechsner, 2010).

Various authors extensively studied cellular materials.
Among them, Gibson and Ashby (2001), Gibson et al.
(2010), Gibson (1989), Gibson et al. (1982) obtained simple
power-law relations between the density of a wide range
of honeycombs and foams and their mechanical proper-
ties, studying regular cellular structures and assuming a
prevalent mode of deformation and failure. Other authors,
like Chen et al. (1998), Davini and Ongaro (2011), Kumar
and McDowell (2004), Warren and Byskov (2002), Wang
and Stronge (1999), Dos Reis and Ganghoffer (2012), Pugno
(2006), Chen and Pugno (2012, 2011), Gonella and Ruzzene
(2008) focused on the passage from discrete to continuum
and deduced the constitutive model for the in-plane de-
formation of various two-dimensional microstructures (tri-
angle, hexagonal, rectangular, square, re-entrant or mixed
lattices). (Chen et al., 1998) and (Kumar and McDowell,
2004), in particular, considered an infinite arrangement of
equal cells and derived a continuum model (a micropolar
continuum) introducing asymptotic Taylor expansion of
the displacement and rotation fields in the strain energy of
the system. Applying the principles of structural analysis
to the representative volume element, Warren and Byskov

(2002) and Wang and Stronge (1999) obtained the equiv-
alent (micropolar) constitutive equations associated with
the homogenized continuum model of the discrete lattice.
Dos Reis and Ganghoffer (2012) elaborated a variant of
the asymptotic homogenization technique introduced by
Caillerie et al. (2006) and calculated the effective behav-
ior of a 2D square and hexagonal lattices through the
analysis of discrete sums. In accordance with the papers
quoted above, the adopted technique leads to a micropolar
equivalent continuum. Adopting the viewpoint of homog-
enization theory, Davini and Ongaro (2011) constructed a
continuum model for the in-plane deformations of a hon-
eycomb material from general theorems of I'-convergence.
Differently from (Chen et al., 1998), (Kumar and McDowell,
2004), (Warren and Byskov, 2002), (Wang and Stronge,
1999), it emerges that the limit model is a pseudo-polar
continuum, that is a material that can undergo applied
distributed couples without developing couple stresses.
Finally, Gonella and Ruzzene (2008) investigated the
equivalent in-plane properties of a square, hexagonal and
re-entrant lattices through homogenization techniques. In
particular, the adopted homogenization approach yields
the continuum set of partial differential equations associ-
ated with their equivalent continuum model. The assump-
tion of no concentrated couples acting to the structure
in conjunction with the appropriate elasticity equations
lead to the equivalent Young's moduli and Poisson’s
ratios.

In the literature, few investigations concern the char-
acterization of cellular materials having filled cells. Niklas
(1989), for example, dealt with the mechanical behavior of
plant tissues and provided an analytical description of the
influence of the turgor pressure on the effective stiffness.
Georget et al. (2003) considered the stiffness of the carrot
tissue as a function of the turgor pressure and the mechan-
ical properties of the cell walls. By modeling the tissue
as a fluid-filled foam, the authors found good agreement
between their predictions and the experimental values.
Warner et al. (2000), which goes in this direction, inves-
tigated a range of deformation mechanisms of closed-cell
cellular solids, unfilled and filled with liquid, to charac-
terize elasticity and failure in foods. In particular, above a
critical strain, it emerged that the filling liquid forced the
walls to stretch rather than to bend as they do when a
dry cellular solid is deformed. In the context of sandwich
panels, Burlayenko and Sadowski (2010) presented a finite
element-based technique to evaluate the structural perfor-
mance of sandwich plates with a hexagonal honeycomb
core made of aluminium alloy and filled with PVC foam.
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Fig. 2. (a) The hexagonal microstructure, (b) The unit cell, (c) The triplet of elastic beams, (d) The beam on Winkler elastic foundation: degrees of freedom

in the local reference system.

Specifically, the investigation suggests that the effective
elastic properties of a honeycomb sandwich panel are
improved by the presence of the filling PVC foam. The in-
plane crush response and energy absorption of a circular
cell honeycomb filled with PDMS elastomer is studied in
(D’'Mello and Waas, 2013). It emerged an increase in the
load carrying capacity and an improvement in the energy
absorption capability due to the presence of the filling
material. More recently, Guiducci et al. (2014) investigated
the mechanics of a diamond-shaped honeycomb internally
pressurized by a fluid phase. The authors proposed a theo-
retical model based on the Born model, as well as a finite
element-based analysis to study the consequences of the
pressure within the cells. Two different effects emerged: a
marked change in the lattice’s geometry and an improve-
ment in the load-bearing capacity of the material.

This paper, inspired by the aforementioned high effi-
ciency of the composite structures in nature, deals with
the mechanical behavior of a 2D composite cellular mate-
rial subjected to in-plane loads. In particular, the analysis
focuses on a honeycomb-like microstructure having the
cells filled by a generic elastic material, represented by
a sequence of beams on Winkler elastic foundation. The
paper proceeds as follows. Firstly, Section 2 describes the
equivalence between the hybrid system continuum-springs
and the biphasic continuum-continuum. Numerical simu-
lations on a single composite cell show the implications
of the modeling approach based on the Winkler model.
Then, Section 3 focuses on the passage from the discrete
description to the continuum one and the effective con-
stitutive equations and elastic moduli are derived. Some
considerations about the influence of the microstructure
parameters on the overall elastic constants are reported in
Section 4, as well as a comparison between our model and
those available in literature. The results of the comparison

between numerical and theoretical homogenization are
also provided. Finally, Section 5 illustrates the application
of the theoretical model to the biological parenchyma
tissue of carrot, apple and potato.

To the authors’ best knowledge, this is the first time to
report such results. In fact, the beam on Winkler founda-
tion model has never been applied to represent the mi-
crostructure of a 2D composite cellular material.

2. Equivalence between the biphasic continuum and
the hybrid system continuum - springs

A sequence of elastic beams of length ¢, forming a peri-
odic array of hexagonal cells (Fig. 2a), simulates a cellular
composite material having a hexagonal microstructure. The
Euler-Bernoulli beam on Winkler foundation model sim-
ulates each beam. Specifically, a series of closely spaced
independent linear elastic springs of stiffness ky, the
Winkler foundation constant per unit width, approximate
the elastic material filling the cells (Fig. 2c and d).

It should be noted that modeling the material within
the cells by a Winkler foundation is a simplification aimed
at obtaining a more mathematically tractable problem.
However, this could affect the prediction ability of the pro-
posed model.

Numerical simulations on a computational model of a
single composite cell provide the right value of the k,, con-
stant. Also, the Finite Element (FE) simulations illustrate
the implications of the modeling approach based on the
Winkler model, Figs. 5 and 6, as well as the deformation
mechanisms of the system continuum-springs, Fig. 7. As
Fig. 3 shows, two different configurations are considered.
In the first one, Fig. 3a, the filling material is represented
by the Winkler foundation while in the second, Fig. 3b,
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Fig. 3. Equivalence between the elastic moduli of the filling material and
corresponding spring. (a) Filling material as a Winkler foundation, (b) Fill-
ing material as a classical continuum.

by a classical continuum having Young's modulus E; and
Poisson’s ratio of vy.

First of all, let us focus on a suitable relation between
E, vy and the Winkler foundation constant ky. As Fig. 3
shows, the elastic energy of the cell, W, is obtained by
summing the contribution of the walls, W,,, and of the fill-
ing material, Wy

WC:WW+Wf. (1)

Assuming that the elastic energy of the cell walls is the
same of the elastic beams, Fig. 3a, and in the case of filling
material as a classical continuum, Fig. 3b, the equivalence

WW. beams = w, continuum (2)

takes the form

Wf, Winkler = Wf, continuum- (3)

Note that in (2) and (3) Wy, peamss Wy winkier and
Wy, continuums W, contimum Stand for the elastic energies of
the cell walls and of the filling material in the cases of
Winkler foundation model and of continuum model, re-
spectively. In particular, Wy yyjnier derives from the elastic
energies of the three sets of springs in the directions nq,
n,, n3 (Fig. 3a):

3
1
Wf, Winkler = (Z 2 A U{ ‘KwA Ui) b, (4)

i=1

with A U; the elongation of the springs in the n; direction,
b the width,

(ke O
Ky = [0 1<W] ()

the stiffness matrix of the elastic foundation, Ky, = kw¢ the
Winkler constant and ¢ the length of the walls. It should
be noted that in Fig. 3a, for ease of reading, the series of
springs are represented by three single springs having stiff-
ness Ky in the directions ny, n,, ns.

Moreover,

1 1
Wf,continuum = i/\/o—} € dv = 3 [/G}Cf € dv, (6)

3./3¢2

beenV =Aband A= , respectively, the volume and
the area of the cell, €, o5, C;, in turn, the strain tensor,

stress tensor and elastic modulus tensor of the material
within the cell, satisfying the relation

O'f :Cfo, (7)
or

on E;

o2 =T u)d =20

o012 f f

(1 — Vf) Vr 0
X Vs (1 — Uf) 0 . (8)
0 0 1 —2vf)

From classical continuum mechanics, the deformation
of the filling material in the generic n; direction is (Fig. 3)

dd‘, i=1,2,3 (9)

where Ad; is the elongation in the n; direction and d =
V/3¢. The assumption

T —
n; €/n; =

AU =Ad;, i=1,2,3 (10)
leads to
n/em; = ] L AU = (nfempd, i=1,2,3.  (11)

Substituting (11) into (3) gives
1 1
> 5 d(n!en;)"n! Kyn;(n]e/n;) d = 5(4 Crep)A. (12)
i=1
Considering the deformation states

1 0 0
€f2{0:|, €f=|:1j|, €f=[0j| (13)
0 0 1

and substituting, in turn, (13) into (12) provides

3V3Ky  Ep(vp-1)
8 - 2Qv -1 (vy+1)°
E
VKo (14)
2 (Vf+ 1)
Accordingly,
Vg = 0.25, Ef = 5€I<W (15)

and, in the case of isotropic filling material, the shear mod-
ulus takes the form

Ef V3 Ku

Gy = 20 +1) 4 (16)

As clearly seen, this theory leads to a fixed Poisson’s ratio,
known result from the Spring Network Theory (Alzebdeh
and Ostoja-Starzewski, 1999), (Ostoja-Starzewski, 2002).
Regarding the cell considered in the numerical simula-
tions, K,y = 10~! GPa. The walls, assumed to be isotropic
linear elastic, have Young’s modulus Es = 79 GPa, Poisson’s
ratio vs = 0.35, thickness h = 1 mm, length ¢ = 10 mm and
unitary width. As more fully described in Section 4, each
node has three degrees of freedom: two in-plane displace-
ments and the rotational component. The three loading
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states analyzed, Fig. 4, are simulated by applying uniax-
ial forces of the same intensity at the boundary nodes.
Specifically, forces of intensity, 10~3 N in the directions e;,
Fig. 4a, and e,, Fig. 4b, and shear forces of 10~> N, Fig. 4c
are adopted. As Fig. 4 shows, constrained nodes are intro-
duced to avoid rigid body motions that could lead to an er-
roneous comparison between the deformed configurations
of the two considered models.

The results of the analysis, summarized in Figs. 5 and
6, illustrate that the predictions of the Winkler foundation
model are in accordance with those obtained in the case
of filling material as a classical continuum.

Specifically, in terms of the horizontal and vertical dis-
placements of the nodes, Ux and Uy respectively, the dif-
ference between the two estimates, AUy and AUy, is gen-
erally 1 - 3% (Fig. 6).

Furthermore, in the case of uniaxial compression in
the e; direction it emerges an higher difference between
the horizontal displacements of node 1 predicted by the
two models, Fig. 6a. This is due to the limitations of the
Winkler foundation model, where the elastic springs only
connect two opposite beams, 1-2 and 4-5, 6-1 and 3-4
(Fig. 3a). The beams 1-2 and 3-4, 6-1 and 4-5 that, in re-
ality, are coupled by the presence of the filling material,
in the Winkler model are not connected. However, in view
of Figs. 5a and 6a, the consequences of this simplification
slightly affect the prediction ability of the proposed model.

Similarly, in the case of vertical compression, Fig. 4b,
the high values of AUy and AUy at nodes 1, 4 are related
to the limitations induced by the Winkler model.

Regarding Fig. 6¢, the same considerations apply. That
is to say, the missing influence of the filling material on
the beams 1-6 and 4-5 provides an high value of AUy at
the nodes 5 and 6.

As a conclusion, it can be said that the analysis reveals
the validity of the modeling approach based on the Win-
kler model, notwithstanding the simplifications introduced.

3. Theoretical model and homogenization of the
continuum - springs system

3.1. Geometry and energy of the discrete problem

3.1.1. Geometric description

The hexagonal microstructure of the composite mate-
rial considered here can be described as the union of two
simple Bravais lattices,

Li(6) = {x e R* : x = n'ly + n’ly, with (n', n?) e 22},
Ly(€) =s+Li(0), (17)
simply shifted with respect to each other by the shift vector
s. In Cartesian coordinates,
s=(V3¢/2, ¢/2), I, =(V3¢, 0), I,=(V3¢/2, 3¢/2)
(18)

describe the shift vector and the lattice vectors, 1; and 1,
(Fig. 2a).

The lattice vectors and the shift vector define the unit

cell of the periodic array (Fig. 2b), which is composed by
the central node (0) and the three external nodes (1), (2),

Fig. 4. Finite element implementation of the composite cell, the load con-
ditions. (a) Uniaxial compression in the e; direction, (b) Uniaxial com-
pression in the e, direction, (c) Shear forces.

(3), linked by the elastic beams (0)-(1), (0)-(2) and (0)-(3),
represented by the vectors by =1; —s, by =1, —s, by =
—s. The area of the unit cell is Ag = |l; x I,| = #[2.

The analysis of the representative cell of the mi-
crostructure provides the strain energy density of the dis-
crete structure. Its continuum approximation is then the
consequence of a particular assumption.

3.1.2. The hybrid system: Euler-Bernoulli beam on Winkler
foundation

Let us consider the beam element in the 2D space. Ne-
glecting, for simplicity, the second order effects and the
shear deformability, it is subjected to bending and axial
deformation. The hypothesis of two-dimensional structure
also prevents the possibility of torsion and bending in the
normal plane. The fields of axial and transverse displace-
ment of its axis and the rotation of its section describe
the kinematics of a generic element. In a global reference
system, defined by the unit orthonormal vectors e; and
e, with origin in O and by the Cartesian coordinate sys-
tem X = (X,Y)T, the configuration of the eth structural el-
ement is known by specifying the coordinates of its end
nodes I and J. According to the kinematics of the incident
beams, each node has three degrees of freedom, two trans-
lations and one rotation (Fig. 2d). Finally, forces arbitrar-
ily oriented and couples act at the extreme nodes of each
beam.

To analyze the generic structural element is more con-
venient to use a local reference system, specific to the
considered beam and closely dependent to its geometry.
Such reference consists of two orthonormal unit vectors
(m§, n5), Figs. 2c¢ and d, and a coordinate system (x,y).
Note that, in the sequel, the extreme nodes of the beam
in the local notation are denoted by the indices i and j,
Fig. 2d.
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Fig. 5. Filling material as a Winkler foundation vs. filling material as a classical continuum, superposition of the deformed configurations in the case of

(a) Uniaxial compression in the e; direction with forces of 103 N, (b) Uniaxial compression in the e, direction with forces of 10-3 N, (c) Shear forces of
10> N, and with K,, = 10! Pa, E; = 79 GPa, vs = 0.35, h = 1 mm, [ = 10 mm.
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node number

Fig. 6. Filling material as a Winkler foundation vs. filling material as a classical continuum, comparison between the nodal displacements in the case of
(a) Uniaxial compression in the e; direction with forces of 103 N, (b) Uniaxial compression in the e, direction with forces of 10-3 N, (c) Shear forces of
10> N, and with K,, = 10! Pa, E; = 79 GPa, vs = 035, h = 1 mm, [ = 10 mm.

The introduction of the local reference system allows us
to define more easily the stiffness matrices ki and k, f that
are, respectively, the stiffness matrix of the classical elastic
beam and of the Winkler foundation (Janco, 2010), denoted
by lowercase letters since they are expressed in the local
reference. Their components are

m Co/t 0 0 —Cy/t 0
0 12D, /¢3 6D, /> 0 —12D,/¢3
e — 0 6D, /0> 4D, /¢ 0 —6D, /¢?
L 7, 0 0 G/t 0
0 —12D, /6>  —6D,/¢> 0 12D, /63
| 0 6D, /¢? 2D, /¢ 0 —6D, /2
and
0 0 0 0 0
0 13 K,/35 11K,¢/210 0 9K,/70
. 0 11K,¢/210 Kw¢2/105 0 13K,¢/420
k=10 0 0 0 0
0 9K,/70 13K,£/420 0 13 K,/35
|0 —13K,£/420 —K,£%2/140 0 —11K,¢£/210

with Ky, = kw¢, k, the Winkler foundation constant per

unit width, ¢, = 1E_ 111152 and D, = ﬁfv@ respectively, the

tensile and bending stiffness (per unit width) of the beams,
Es, v, h and ¢, in turn, the Young’s modulus, Poisson’s ra-
tio, thickness and length of the cell walls.

0 -
6D, /¢%
2D, /¢
0
—6D, /¢?
4D, /¢

(19)

0 -
—13 K,£/420
—Kyt?/140

0
—11K,¢/210
Kw2/105

, (20)
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The elastic energy of each beam, obtained by superposi-
tion principle due to the assumption of linear elastic beam,
is

we = %(ue)T kgue + %(%(A uH’ KA u)
+% (%(A TR LI K, A u“’), (21)

where u® = [u;, u;]" = [u;, v;, @i, uj. v}, @;]T is the general-
ized vector of nodal displacement expressed in the local ref-
erence and

Au®? = [A uf, AuﬂT
I NN NT NN (22)

T
Autl = [A uf, Au?]

(s avaghaanagd] @

is the elongation of the springs a, the first, and of
the springs b, the second (Figs. 8 and 9). In particular,
the springs a and the springs b connect each beam with
the opposite one in the —n$ and +x$ direction, respec-
tively. See Appendix A for further details. Note that the fac-
tor 1/2 in the second and third term of (21), is due to the
fact that each spring is shared by two opposite beams and
contribute only half of its strain energy to the unit cell.

In the local reference, the forces and couples acting at
the end of each beam are

ff =K u + K, Au’ + K, Au®’, (24)

with £ = [f;. £;1T = [fy. fyi. mi. fyj. fy;. m;]T the vector of
nodal forces and couples and u®, Au®?, Au® Db, ki and ka/f
the same as before. Also in this case, forces and couples
are obtained by superposition principle and are the sum of
three terms. The first one, ki u®, corresponding to the clas-

sical elastic beam, the second and the third, ksvf Au®® and

l(sv f Au®P , related to the Winkler foundation.

3.1.3. Energetics of the discrete system

The elastic energy of the unit cell, W, derives from that
of the three beams it consists of and it depends on the
displacements and rotations of the external nodes.

First of all, it is not difficult to see that the first node
of each beam coincides with the central node (0). There-
fore, denoted by ug the displacements of the node (0) and
by Aul, Aub the elongation of the springs in (0), fol-
lows u; = ug, Aul = Aud and A u? = A ub. Moreover, (24)
takes the form

fe _ | fo| _ [ K011+ K00 U0
f; Ky 11 0j + Ky 10 Uo
N K01 Auj +Kypoo Aug
kwf,ﬂ Au‘} + kwf,lO Aug

Kuro1 A +Kyp00 Aug
+ o, (25)
Kyp 11 Auj +Kkyr10Aug

a 20- 0.8
154
0.6
mim
10
0.4
5_
0.2
O_
5 T T T T T 1 0
5 0 5 10 15 20 25
mm
b 2, 0.8
157 0.6
10
mi 04
5_
2
63 0
5 T T I T T 1 0

-5 0 5 10 15 20 25

mim
C 207 0.05
] —\
15-_ / 0.04
10 0.03
min 4
5 0.02
0_: 0.01
'54""I""I""I'"'I""I""I 0
-5 0 5 10 15 20 25
mim

Fig. 7. The hybrid system continuum-springs: filling material as a Win-
kler foundation. Longitudinal stress (GPa) along the beams with K, =
107! GPa in the case of (a) Uniaxial compression in the e; direction and
applied forces of 103N, (b) Uniaxial compression in the e, direction and
applied forces of 10-3N, (c) Shear forces of 10->N.

where fy and f; are, respectively, the forces and moments
of the central and external nodes j=1,2,3. A mere parti-
tion of kj and kf;vf leads to the matrices

C,/¢ 0 0
ky;;=| 0 12D, /6> —6Dy/¢? |,
| 0 —6D,/¢®> 4D/t
I 0 0
Kyrn= |0 13K,,/35 —11Ky/210 |,
|0 —11Kw¢/210  K,¢%/105
m—C,/t 0 0
Ky10 = 0 —12D,/¢® —6D,/¢? |,
| 0 6D, /¢? 2D,/

0 0 0
Kyri0= |0 9K,,/70 13K, £/420 |,
|0 —13Kw£/420 —Ky0?/140
—C,/¢t 0 0
Kpor=| O —12D, /03>  6D,/¢?* |,
0 —6D, /2 2D/t
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Fig. 9. The two sets of springs connecting the triplet of elastic beams. (a) Springs a, (b) Springs b.

I 0 0
Kyfo1 = |0 9K,,/70 —13K,,¢/420 |,
|0 13Kwe/420  —K€?/140
_Cg/e” 0 0
Kyoo=| O 2D,/03 6D, /¢ |,
. O 6D, /02  4D,/¢
o 0 0
Kyroo = |0 13Kw/35  11K,¢€/210 |. (26)
|0 11K,¢/210  K,¢?/105

Then, expressing (24) in the global reference (see
Appendix B), adding up forces at the central node (0) and
condensing the corresponding degrees of freedom to take
account of the forces balance in (0), as in (Davini and On-
garo, 2011), leads to

W=Wuu.us;, Aud, Au, Aud, Aul, Au, Aud).
(27)

3.2. The continuum model

3.2.1. Energy

The assumption that in the limit ¢ — O there exist the
continuous displacement and microrotation fields, i(-) and
@(-), and that the discrete variables (u;, ¢;) previously in-
troduced to represent the degrees of freedom (displace-
ments and rotations) of the external nodes of the unit cell
can be expressed by

llj:ﬁ()-‘rVﬁbj, (ij(ﬁo-‘rV(ﬁbj, j=1,2,3, (28)

provides the continuum description of the discrete struc-
ture. The terms b; in (28) are the vectors formerly defined
while @iy and ¢y are the values of i(-) and ¢(-) at the cen-
tral point of the cell in the continuum description. Substi-
tuting (28) into (7) gives the strain energy of the unit cell
as a function of the fields @ and ¢. Note that the contin-
uous displacement (-) is referred to the global reference
and @(-) stands for U(.). Also in (28), u;, iy and Vi stands

for U;, 0y and VU. The use of lowercase letters simplifies
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the notation and, in what follows, @t and ¢ stand for i
and @g.

Dividing the expression that turns out from the calcula-
tion by the area of the unit cell, Ay, gives the strain energy
density in the continuum approximation w. The following
relation summarize the adopted procedure:

W) W@ _

29
A A (29)

In particular, the resulting energy density
wW=w(eup, (@ =), D) (30)

is a function of the infinitesimal strains .4 = %(ﬁaﬁ +
iig o) and the infinitesimal rotation @ = %(fh,z —1lp 1) that
represent, respectively, the symmetric and skew-symmetric
part of Vi1 as in the classical continuum mechanics. @ o
are the microrotation gradients. Its explicit expression is

In particular, it emerges that ¢ is a non-symmetric ten-
sor and its components are
ow ow degp W dw
=35 = Geas 94, T 9w 3, VPV I=12 (35)
where w is the strain energy density defined in (33). By
observing that
ow 0&es  1( dw ow ow sym
— = = + = =
aSaﬁ 8uy,5 2 a8y3 883y
ow Jw 1 ow
— = = — (61, 835 — 2, 8
dw o, 5 2 Ba)( 1y B2y = 02y b13)
1 0w

— sk
=530 eys = o;(‘;"", (36)
with e,; the alternating symbol (e;; =exn =0,e =
—ey = 1) and §j; the Kronecker delta (§;; =1 ifi=j. §
0 if i # j), follows

ij=

(62, + £3,) (C2e* +36D,C,0?) + 2611622 (C2* — 12D,C,t2) + 96D, C,£26%, + 48D,C, 03 €129 5

4/363(12D, + C,6?)

. 24D,C, 63 (832 — £11)P1 + 8Dp€? (3D, + Cot?) (9% + @3) + 12D, (12D, + Cot?) (w0 — @)2

4V/303(12D; + C,42)
K (813 (g% + £3,) + 122462, + 402611 62,) . Kt (—12€1202 + (P2 + @%) + 691 (e — €22))

+

249643
After rewriting (31) in terms of c=(C, /¢ = 55157’1152‘) and d =

3 . . .
Dy/e3 = % it emerges that in the energy obtained
Vs
from the calculation the coefficients scale with different

order in ¢, as in (Davini and Ongaro, 2011):

(31)
96
Oys =a‘y’"+g,3‘W, y,8§=1,2, (37)

7

that is

1(0ow 1/ 0w
015 = a;gmi(%)ew. azaﬂggui(%)em_ s-12  (38)

_ (63, +3,)(c +36cd) + 2e11602(c? — 12cd) + 96 cd &3, + 48 cd €15 P

4v3(12d +¢)
R . R 2
. 24cd(s2 — 1) €91 +8d(3d +¢) €2(94 + @3) + 12d(12d + ¢) (w — P)
4v/3(12d +¢)
. K (813 (g% + £3,) + 1224¢2, + 402¢1; ;) . Ki(—12812 @2 + €2(@% + %) + 6£@1 (611 — £22)) (32)
24963 963 '
Also,
Specifically, the coefficients in (32) are independent of ow ow I w—9) ow
¢, with the exception of the microrotation gradients that T 3 w—9) EP) = N w—-0) (39)
scale with first order in ¢. Consequently, in the limit ¢ — ) ¢ ¢
0 the contribution of the microrotation gradients is miss- Accordingly,

ing and the equivalent continuum is non-polar, differently
from (Chen et al, 1998). Accordingly, the strain energy
density in the continuum approximation takes the form:

_ (8%1 + 8%2) (C[2€4 + 36D3Cgf2) + 2€11E22 (ng‘l - 12D5Cg€2) + 96D(C[£2812

4/30