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Anticracks (also known as rigid line inclusions) occur frequently in a variety of natural and engineered
composites as very stiff and extremely sharp (almost zero-thickness) fibers or lamellae embedded in a
softer matrix.
In the linear elastic regime, similarly to cracks, anticracks generate a singularity in the stress

distribution around the tip. Because of this similarity, existing analytical techniques and solutions (for
simple cases) can be easily translated to anticracks. However, despite their importance in many biological
and engineering composites, there has been surprisingly little development of numerical methods that
would account simultaneously for the presence of multiple fibers or lamellae, arbitrary loadings and
nonlinear behavior of the matrix.
This paper presents the first numerical approach for rigid line inclusions, based on a meshfree scheme

recently developed for multiple crack growth in elastic media. The inclusion of zero thickness is created
as a crack, and a rigid motion (rotation and translation) is enforced at the anticrack faces. The equations of
motion are solved according to a Total Lagrangian framework, and the matrix supposed hyperelastic.
Contrarily to available analytical solutions, the degrees of freedom of the rigid motion are determined a

posteriori as a consequence of the (discretized) elastic equilibrium, expressed in a variational approach.
Results show that the proposed approach match well the analytical solutions and provides accurate

stress intensity factors (SIFs) for relatively little computational cost. Moreover, the method can reproduce
some peculiar features of the anticracks: unlike cracks, singularities also appear under compressive and
parallel loads; moreover, for a certain combination of biaxial load, stress concentrations disappear.
Finally, the paper presents examples drawn from biological and engineering composites: the reorienta-

tion of one ormore fibers under large strains, resulting in a smart stiffening and strengtheningmechanism.
Reorienting towards the direction of applied load has structural importance since reinforcements can have
the most effectiveness in withstanding loads. If the matrix is compliant, the reorientation is eased.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A rigid line inclusion (RLI) is a mathematical abstraction of an
extremely thin stiff inclusion dispersed within a matrix. The defini-
tion assumes the inclusion as infinitely rigid and zero-thickness.
Kinematically, this model consists in a surface of discontinuity (a
crack) where a rigid motion is imposed on all the material points
belonging to the upper and lower faces of the inclusion. For this
reason, some authors (Hurtado et al., 1996) refer to this model as
an anticrack. However, in geology this terminology indicates some-
thing different: a classical Mode I crack displacement solution with
a reversed sign (Fletcher and Pollard, 1981), which in classical frac-
ture mechanics means a violation of the non-penetrability of the
crack faces. However, the justification is the dissolution and
removal of material when the anticrack surfaces move toward each
other, which is useful to explain triggering mechanism for snow
slab avalanches (Heierli et al., 2008) or shallow earthquakes
(Green et al., 1990; Burnley and Green, 1989). In RLI instead, the
impenetrability is automatically imposed by a rigid motion
common to both faces.

RLIs are useful to model the effects on the matrix of thin
reinforcements in form of fibers, platelets, needles or rods of
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characteristic sizes much smaller than that of the embedding
matrix. These reinforcements appear in many biological systems
and engineered nanocomposites. For example, in biological
systems (Pingle et al., 2008) like bones, teeth or nacre, the
reinforcement is usually in mineralized crystal form arranged in
a staggered disposition within a protein matrix. In calcified tissues,
(Landis, 1995), these fibers influence their strength, and the overall
effect is a tough nanocomposite (Ji and Gao, 2004; Pugno, 2006)
produced from very poor materials (Fratzl and Guille, 2011). In
engineered nanocomposites, RLIs appear as needle-like reinforce-
ments (Bilotti et al., 2008, 2009, 2010), nanowhiskers (Eichhorn
et al., 2010), nanoplatelets (Porwal et al., 2013b,a,c) and carbon
nanotubes (Nishimura and Liu, 2004).

Many theoretical papers are available in the literature for the
RLI problem, often encountered with different terminology, such
as line stiffener or anticrack, owed to its resemblance with a crack.
Most likely, this abundance is due to the application to RLI of
already well-known techniques at that time for 2D problems: for
instance, the Mushkelishvili solutions in terms of complex variable,
and the Wiener–Hopf technique, previously applied for crack
problems (Muskhelishvili, 1953).

Probably the first paper on RLI appeared in 1973 (Atkinson,
1973), with the term ribbon instead of rigid line inclusion. The scope
of this paper was to study the response of a metallic strain measur-
ing device in a rubber matrix. This paper presented firstly the solu-
tion for stresses in an elastic linear matrix due to a single isolated
rigid ribbon, and secondly the solution for the elastic ribbon. The
crack analogy is then exploited to obtain the solution for two col-
linear rigid inclusions, and finally, the interaction of a RLI with a
free boundary. Later, Brussat and Westmann (1975) proved the
correspondence between theWestergaard stress function for cracks
and a stress function for RLI, and subsequently, the relation
between their stress intensity factors (SIFs). Hasebe et al. (1984)
instead proposed a rational mapping function (again taken from
the elasticity of cracks) to analyze the stress state near a the tip
of a crack initiated from the tip of a RLI. Wang et al. (1985)
obtained the asymptotic expansion near the tip of a RLI (reported
in Section 2.2 of this paper) for both stress and strain fields. Chen
(1986) and later Stagni (1989) proved the path-independence of
the J-integral around the tip of a RLI, and found that the J-integral
for an anticrack is negative, rather than positive like in cracks.
Dundurs and Markenscoff (1989) and Ballarini (1987) reported a
full-field solution for the stresses in the matrix due to a RLI, respec-
tively using a weight function technique and an integral equation
approach, and later for a RLI at the interface of two dissimilar mate-
rials (Ballarini, 1990). Hurtado et al. (1996) introduced the term
anticrack for RLI and quasicracks for elastic line inclusion: they
obtained similar solutions to Atkinson (1973) starting from the
Eshelby’s ellipsoidal equivalent inclusion, for the limit to zero of
the ratio between the axes.

Despite the great amount of theoretical work produced over the
years, there was no attention to investigate experimentally the
stress distribution near a line stiffener, until 2008, when Dal
Corso et al. (2008) and Bigoni et al. (2008), and later Dal Corso
and Bigoni (2009) and Noselli et al. (2010) interestingly disclosed,
with photo-elasticity, the full-field stress state of an extremely thin
and stiff inclusion made of steel embedded in a transparent epoxy
matrix. They validated with their experiments some intriguing
aspects of the RLI problem, already known from the analytical solu-
tions: for instance, the appearance of a square root singularity also
for tensile loading parallel to the stiffener.

With the field of nanocomposites in rapid growth, it becomes of
paramount importance to develop numerical methods that
implement RLI models that could be used by materials scientists
and engineers to investigate the toughness properties of both
natural and man-made composites, or to imitate artificially the
hierarchical structures present in nature. This topic seems to have
been overlooked by researchers in numerical methods, with almost
absent literature in this field. It is worth to acknowledge the signif-
icant contributions of Radtke et al. (2010, 2011) where they
employ a Partition of Unity Finite Element Method (PUFEM) to
introduce short thin fibers in a cementitious matrix as a tunneling
crack with a finite very short thickness, not zero. The tunnel is
introduced as a two-dimensional Heaviside enrichment (1 inside
the fiber, 0 otherwise) over the span of the fiber. Instead, we intro-
duce an exactly zero thickness. Moreover, in these works it is not
reported any connections with a negative J-integral, nor compar-
isons with existing analytical solutions, whereas instead we make
use of the relation in Chen (1986) and a numerically computed
J-integral to validate our results in terms of stress intensity
factors.

Exploiting the strong relation with cracks, we used an idea
recently developed (Barbieri et al., 2012; Barbieri and Petrinic,
2013b,a) for fracture in a meshfree context: the aim is to create a
crack where the RLI is positioned, and then impose a rigid motion
at the (anti) cracks surfaces. The orientation of the inclusion can be
arbitrary inside the matrix, without restrictions imposed by the
underlying discretization of the matrix.

The structure of the paper is the following: Section 2 summa-
rizes the analytical solutions available in the literature, alongside
with the formulas for the extraction of the SIFs; Section 3 describes
the governing equations in strong and weak form and the ones
arising from their discretization; Section 4 presents the examples
for the validation of the method, comparison with analytical solu-
tions (full field and SIFs) and reorientation of fibers under a tensile
loading; finally, in Section 5 conclusions are drawn.

2. Analytical solutions, J-integral and stress intensity factors

2.1. Analytical solution

Atkinson (1973) derived an analytical solution for an horizontal
rigid line inclusion problem in an infinite isotropic elastic matrix
under uniform remote biaxial loading r1

x and r1
y . In the following,

the orthogonal reference has axis x aligned with the inclusion with
the origin in its middle point. The rigid line inclusion has length 2a.

Under uniform biaxial tension, and without the inclusion, the
matrix strains uniformly, with a displacements field given by

u0ðx; yÞ ¼ x
8l

ðjþ 1Þr1
x þ ðj� 3Þr1

y

� �
ð1Þ

v0ðx; yÞ ¼ y
8l

ðj� 3Þr1
x þ ðjþ 1Þr1

y

� �
ð2Þ

where j is

j ¼ 3� 4m plane strain
3�m
1þm plane stress

(
ð3Þ

and l is the shear modulus and m is the Poisson ratio. The component
�x0 of the strain tensor given by

�x0ðx; yÞ ¼ 1
8l

ðjþ 1Þr1
x þ ðj� 3Þr1

y

� �
ð4Þ

The line inclusion can only move rigidly. Hence, with the rigid line
inclusion now inserted in the matrix, and for the symmetry of the
problem, the motion is only translational in the horizontal direction
and with no rotation. For the compatibility of the displacements,
this translation must be equal to the displacement u0 (1) at its tips
(x ¼ �a; y ¼ 0). In deriving the analytical solution, Atkinson, 1973
conveniently subtracted out the uniform strain of the matrix to
obtain zero stresses at infinity. Hence,
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uðx;0Þ ¼ �u0 jxj < a
vðx;0Þ ¼ 0 8x

�
ð5Þ

and, for the equilibrium, sxy ¼ 0 jxj > a . Additionally, all stresses
tend to infinity for x tending to zero. With these boundary condi-
tions, the stress tensor at y ¼ 0 (1) has components

rx ¼ �ðjþ 3ÞA 1� jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
� �

jxj > a ð6Þ

ry ¼ ðj� 1ÞA 1� jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
� �

jxj > a ð7Þ

sxy ¼ jþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p Ax jxj < a ð8Þ

where A is

A ¼ 1
8

ðjþ 1Þr1
x þ ðj� 3Þr1

y

� �
ð9Þ
2.2. Asymptotic near-tip solution

Wang et al. (1985) derived a near-tip expansion of the stress
fields that resembles the asymptotic crack-tip solution, namely

rx

ry

sxy

2
64

3
75 ¼ HIffiffiffiffiffiffiffiffiffi

2pr
p

cos h
2

jþ3
2 � sin h

2 sin 3h
2

� 	
cos h

2
1�j
2 þ sin h

2 sin 3h
2

� 	
sin h

2
1þj
2 þ cos h

2 cos 3h
2

� 	
2
64

3
75 ð10Þ

where r and h is a polar coordinate system (Fig. 1) with r � a. The
parameter HI is not an equivalent stress intensity factor (SIF):
however, it can be related to the remote loading conditions and to
the value of the J-integral, as it will be shown next.

It easy to realize that the Mode I SIF KI is then

KI ¼ 1� j
2

HI ð11Þ

Moreover, according to Eq. (11), KI and HI might be of a different
sign.

2.3. Relation between SIF and analytical solution

From Eq. (7) and assuming r � a, with r ¼ x� a

ry �ð1�jÞA rþaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2þ2ra�a2

p
� �

�ð1�jÞA affiffiffiffiffiffiffiffi
2ra

p
� �

¼ð1�jÞAffiffiffi
2

p
ffiffiffi
a

pffiffiffi
r

p

ð12Þ
Fig. 1. Reference frame and loading for the analytical solution (Atkinson, 1973).
Comparing with the second of (10)

HI ¼ 2A
ffiffiffiffiffiffi
pa

p ð13Þ
and, for (11)

KI ¼ ð1� jÞA ffiffiffiffiffiffi
pa

p ð14Þ
2.4. Relation between the SIF and the J-integral

As reported in Chen (1986), the J-integral for anticracks is
negative. Using an integral domain method (Walters et al., 2005),
the J-integral on line inclusions can be computed as follows

J ¼
Z
A
r
@u
@x

$q dA�
Z
A
W

@q
@x

dA�
Z
Sþ[S�

tT
@u
@x

dS ð15Þ

where A is a domain enclosing the crack tip. In Eq. (15) an additional
term appears that takes into account the presence of non-zero
tractions t on the line inclusion, and Sþ [ S� are the two sides of
the anticrack. Furthermore, q is a virtual displacements scalar
weight function, and W is the strain energy density. More details
can be found in Appendix A.

Chen proved that

J ¼ �jðjþ 1Þ
8l

H2
I ð16Þ

Hence, the numerical SIF can be extracted from Eq. (16) after having
computed J from Eq. (16)

Hnum
I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J

8l
jðjþ 1Þ

s
ð17Þ
3. Governing equations

3.1. Strong form

Justified by the assumption of soft and deformable matrix, com-
mon in biological tissues, the kinematics in this paper is one of a
finite deformation. In addition, finite deformation of the matrix
allows to demonstrate the effectiveness of the numerical method
for large rotations of the RLI. The continuum formulation is Total
Lagrangian (TL), with X0 being the reference configuration, and X
the deformed configuration. In the following, X denote the material
coordinates and x the deformation. We will also consider static
problems, and for ease of readability, this section treats only one
anticrack. However, the equations extend easily to multiple
anticracks, as showed in Section 3.5.

In a discrete meshfree setting, the anticracks can be explicitly
introduced by the intrinsic enrichment presented in Barbieri et al.
(2012) and Barbieri and Petrinic (2013b,a), which is based only
on geometry (distance fields) therefore completely independent
from the particular constitutive model.

The Boundary Value Problem (BVP) is the following: find the
displacement fields u : X0 � R3 ! R3 such that it satisfies the
following equilibrium equations in a Lagrangian description, in
absence of body forces:

r0 � P ¼ 0 X 2 X0

n0 � P ¼ t0 X 2 C0
t

u ¼ �u X 2 C0
u

8><
>: ð18Þ

where P is the First Piola–Kirchhoff stress, n0 is the normal unity
vector (in the reference configuration) of the boundary C0

t where

the traction t0 is prescribed, and C0
u is the boundary where the

displacement �u is prescribed. The symbol r0 denotes the gradient
with respect to the material coordinates.
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In addition, a rigid motion must be imposed on the surfaces of
the inclusion: calling Sþ the top side of the inclusion and S� the
bottom side

uþ � uL ¼ 0 X 2 Sþ

u� � uL ¼ 0 X 2 S�

(
ð19Þ

where uL is the rigid motion of the inclusion, which can be
decomposed in a rotation and a translation. In a TL framework,
the undeformed configuration XL can me mapped into the current
configuration of the inclusion xL

xL ¼ cþ R XL ð20Þ

where c is the deformation of the center of rotation (which may not
belong to the RLI), R is a rotation matrix (in 2D)

R ¼ cos h � sin h

sin h cos h


 �
ð21Þ

Thus, the displacement uL of the inclusion in Eq. (19) is given by

uL ¼ xL � XL ¼ cþ R � Ið ÞXL ð22Þ

or, in an expanded form

uL ¼ cx þ cos h� 1ð Þ XL � sin h YL

vL ¼ cy þ sin h XL þ cos h� 1ð Þ YL

�
ð23Þ

From Eq. (23) emerges that there are 3 additional unknowns
(cx; cy; h) for each rigid inclusion. Such motion is not imposed a
priori, but is a consequence of the equilibrium.

3.2. Weak form

Using the displacement u as a test function for Eqs. (18), the
variational form can be written asZ

X0

dE : SdX0 �
Z
C0
t

duTt0 dC0
t þ a

Z
C0
u

d u� �uð ÞT u� �uð Þ dC0
u

þ a
Z
Sþ
d uþ � uLð ÞT uþ � uLð ÞdSþ

þ a
Z
S�
d u� � uLð ÞT u� � uLð ÞdS� ¼ 0 ð24Þ

where E is the Green–Lagrange strain, S is the Second
Piola–Kirchhoff stress, a is a penalty parameter (usually a large
number of the same order of magnitude of the elastic properties)
used to enforce the essential boundary conditions. The Green
Lagrange strain is defined as

E ¼ 1
2

FTF� I
� �

ð25Þ

with F being the deformation gradient. The Second Piola–Kirchhoff
stress is related to P and to the Cauchy stress r with the following
relations:

S ¼ F�1 P r ¼ 1
J
F S FT ð26Þ

with J being the Jacobian of the deformation gradient. The
variations in (24) can be expanded as follows:

d uþ � uLð ÞT ¼ duþT � duT
L ð27Þ

where

duþT ¼ ddT /þ 0
0 /þ


 �
ð28Þ
where /þ are the shape functions of the discretization nodes on
Sþand d the global vector of the nodal unknowns. From Eq. (18),

duT
L ¼ dcT þ dh � sin h XL � cos h YL cos h XL � sin h YL½ � ð29Þ

Therefore, the penalty term of the rigid line inclusion in Eq. (24) for
Sþ can be written as

addT
Z
Sþ

/þ uþ � uLð Þ
/þ vþ � vLð Þ

 �

dSþ þ adcT
Z
Sþ

uL � uþð Þ
vL � vþð Þ


 �
dSþ

þ adh
Z
Cc

sin h XL þ cos h YLð Þ uþ � uLð Þ

þ ð� cos h XL þ sin h YLÞ vþ � vLð ÞdSþ ð30Þ

and similarly for S�.

3.3. Discretized equations of motion

The approximation uh of the field variable uðXÞ in Eq. (18) is an
expansion

uhðXÞ ¼
XN
I

/IðXÞdI ð31Þ

where N is the number of discretization points, /I : X ! R is the
I�th shape function and UI is the nodal value related to the position
XI. The expressions for the shape functions in Eq. (31) depend on
the method employed for the discretization: in this paper we use
the Reproducing Kernel Particle Method (RKPM) (Liu et al., 1995)
because it allows a fast introduction of crack surfaces without
remeshing (Barbieri and Meo, 2012; Barbieri et al., 2012; Barbieri
and Petrinic, 2013a,b). On these crack surfaces, a rigid motion
(22) is enforced.

Following Belytschko et al. (2000), using Eq. (31), the dis-
cretized variation of the deformation gradient becomes

dFh ¼ dd BT
0 ð32Þ

with

BT
0 ¼ @/T

@X
@/T

@Y
@/T

@Z

h i
ð33Þ

and the following holds

dF : P ¼ dE : S ð34Þ
Replacing (31) into (18) and considering Eq. (30), the following
equilibrium equations are obtained

FðiÞðdÞ � FðeÞ þ Fþ
d ðd; c; hÞ þ F�

d ðd; c; hÞ ¼ 0
Fþ
c ðd; c; hÞ þ F�

c ðd; c; hÞ ¼ 0
Fþ
h ðd; c; hÞ þ F�

h ðd; c; hÞ

8><
>: ð35Þ

where FðeÞ is the external forces vector

Fe
I ¼

Z
Cu

/T
I t0dCu ð36Þ

Fþ
d (and similarly F�

d ) is the coupling between the matrix and the
inclusion

Fþ
d ðd; c; hÞ ¼ a

Z
Sþ

/þ uþ � uLð Þ
/þ vþ � vLð Þ

 �

dSþ ð37Þ

Fþ
c (and similarly F�

c )

Fþ
c ðd; c; hÞ ¼ a

Z
Sþ

uL � uþð Þ
vL � vþð Þ


 �
dSþ ð38Þ

Fþ
h (and similarly F�

h )
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Fþ
h ðd; c; hÞ ¼

Z
Sþ

sin hXL þ cos hYLð Þ uþ � uLð Þ
þ ð� cos hXL þ sin hYLÞ vþ � vLð ÞdSþ ð39Þ

and finally, FðiÞ is the internal forces vector that depends on the
constitutive model of the material

ddTFðiÞðdÞ ¼
Z
X0

dEh : Sh dX0 ¼
Z
X0

dFh : Ph dX0

¼ ddT
Z
X0

@/
@X P11ðdÞ þ @/

@Y P21ðdÞ
@/
@X P12ðdÞ þ @/

@Y P22ðdÞ

" #
dX0 ð40Þ
3.4. Tangent stiffness matrix

Eq. (35) is nonlinear in ðd; c; hÞ. For n inclusions, the total num-
ber of unknowns is then 2N þ 3n in two dimensions. Therefore,
solving (35) requires an iterative numerical scheme (for instance
Newton–Raphson). For each iteration, it is necessary to compute
the tangent stiffness matrix (or the Jacobian) KT that is the gradient
of the left-hand side of Eq. (35) with respect to the unknowns
ðd; c; hÞ. This gradient has the following form:

KT ¼
@F
@d

ðiÞ þ @Fþ
d

@d þ @F�d
@d

@Fþ
d

@c þ @F�d
@c

@Fþ
d

@h þ @F�d
@h

@Fþc
@d þ @F�c

@d
@Fþc
@c þ @F�c

@c
@Fþc
@h þ @F�c

@h

@Fþh
@d þ @F�h

@d
@Fþh
@c þ @F�h

@c
@Fþh
@h þ @F�h

@h

2
6664

3
7775 ð41Þ

We will show in the following that the matrix in (41) is symmetric.
Indeed, the entries are

@Fþ
d

@d
¼
Z
Sþ

/þ/
T
þ 0

0 /þ/
T
þ

" #
dSþ ð42Þ

@Fþ
d

@c
¼
Z
Sþ

�/þ 0
0 �/þ


 �
dSþ ¼ @Fþ

c

@d

T

ð43Þ

@Fþ
d

@h
¼
Z
Sþ

/þ sin hXL þ cos hYLð Þ
/þ � cos hXL þ sin hYLð Þ

 �

dSþ ¼ @Fþ
h

@d

T

ð44Þ

@Fþ
c

@c
¼
Z
Sþ
dSþI ð45Þ

where I is the identity matrix,

@Fþ
c

@h
¼
Z
Sþ

� sin hXL þ cos hYLð Þ
� � cos hXL þ sin hYLð Þ


 �
dSþ ¼ @Fþ

h

@c

T

ð46Þ

@Fþ
h

@h
¼
Z
Sþ

sin hXL þ cos hYLð Þ2 þ cos hXL � sin hYLð Þ2dSþ ð47Þ

It can be shown that

@F
@d

ðiÞ
¼ @F

@d

ðiÞ !
g

þ @F
@d

ðiÞ !
m

ð48Þ

where subscript �ð Þg stands for geometric part, which takes into
account geometrical nonlinearities

@F
@d

ðiÞ !
g

¼
Z
X0

BT
0SðdÞB0

BT
0SðdÞB0

" #
dX0 ð49Þ

whilst �ð Þm stands for the material part, which takes into account
material nonlinearities

@F
@d

ðiÞ !
m

¼
Z
X0

BTðdÞ CSEðdÞ BðdÞ dX0 ð50Þ
where

B dð Þ ¼
F11

@/
@X

T
F21

@/
@X

T

F12
@/
@Y

T
F22

@/
@Y

T

F11
@/
@Y

T þ F12
@/
@X

T
F21

@/
@Y

T þ F22
@/
@X

T

2
6664

3
7775 ð51Þ

and CSE is the Second Elasticity Tensor in Voigt form, defined, in ten-
sorial form, as

CSE ¼ @S
@E

ð52Þ
3.5. Multiple rigid line inclusions

For multiple anticracks, Eq. (24) modifies asZ
X0

dE : SdX0 �
Z
C0
t

duTt0 dC0
t þ a

Z
C0
u

d u� �uð ÞT u� �uð Þ dC0
u

þ
Xna
i¼1

a
Z
Sþi

d uþ � uL;i
� 	T uþ � uL;i

� 	
dSþi

þ a
Z
S�i

d u� � uL;i
� 	T u� � uL;i

� 	
dS�i ¼ 0 ð53Þ

with na being the number of anticracks. With similar steps as in
Sections 3.1 and 3.2, the discretized equations of motion are

FðiÞðdÞ � FðeÞ þ
Xna
i¼1

Fþ
d ðd; ci; hiÞ þ F�

d ðd; ci; hiÞ ¼ 0

Fþ
c1
ðd; c1; h1Þ þ F�

c1
ðd; c1; h1Þ ¼ 0

Fþ
c2
ðd; c2; h2Þ þ F�

c2
ðd; c2; h2Þ ¼ 0

. . .

Fþ
cna

ðd; cna ; hna Þ þ F�
cna

ðd; cna ; hna Þ ¼ 0

Fþ
h1
ðd; c1; h1Þ þ F�

h1
ðd; c1; h1Þ ¼ 0

Fþ
h2
ðd; c2; h2Þ þ F�

h2
ðd; c2; h2Þ ¼ 0

. . .

Fþ
hna

ðd; cna ; hna Þ þ F�
hna

ðd; cna ; hna Þ ¼ 0

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð54Þ

where the terms are analogous to Eqs. (37)–(39). Similarly, the tan-
gent stiffness matrix is given by:

KT ¼

@F
@d

ðiÞ þ
Xna
i¼1

@Fþ
d

@d þ @F�d
@d KT

dc KT
dh

Kdc Kcc KT
ch

Kdh Kch Khh

2
666664

3
777775 ð55Þ

where

KT
dc ¼ @Fþ

d
@c1

þ @F�d
@c1

@Fþ
d

@c2
þ @F�d

@c2
. . .

@Fþ
d

@cna
þ @F�d

@cna

h i
ð56Þ

KT
dh ¼ @Fþ

d
@h1

þ @F�d
@h1

@Fþ
d

@h2
þ @F�d

@h2
. . .

@Fþ
d

@hna
þ @F�d

@hna

h i
ð57Þ

Kch ¼

@Fþc1
@h1

þ @F�c1
@h1

. . .

@Fþc2
@h2

þ @F�c2
@h2

. . .

. .
.

. . .
@Fþcna
@hna

þ @F�cna
@hna

2
66666666664

3
77777777775

ð58Þ



 

 

 

 

  

 

(a) Vertical loading

  
 

 

  

 

(b) Horizontal loading

Fig. 2. Mode I anticrack. Thin black line: rigid line inclusion.

Fig. 3. Mode I under vertical loading: stress tensor normalized to r1
y ; L ¼ 1 m and a ¼ 0:075 L.
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Kcc ¼

@Fþc1
@c1

þ @F�c1
@c1

. . .

@Fþc2
@c2

þ @F�c2
@c2

. . .

. .
.

. . .
@Fþcna
@cna

þ @F�cna
@cna

2
66666664

3
77777775

ð59Þ
Khh ¼

@Fþh1
@h1

þ @F�h1
@h1

. . .

@Fþ
h2

@h2
þ @F�h2

@h2
. . .

. .
.

. . .
@Fþhna
@hna

þ @F�hna
@hna

2
66666664

3
77777775

ð60Þ

where the entries in these matrices are analogous to Eqs. (42)–(47).
4. Numerical examples

4.1. Comparisons of SIFs with analytical solutions

For ease of comparison with the analytical solutions (6)–(8)
and (10), the finite deformation in this section is linearized to rec-
oncile with the theory described in Section 2. The matrix is an
isotropic linear elastic body, defined by shear modulus l and
Poisson ratio m, both in plane stress and plane strain. Nonetheless
the approach is general, and applicable to non-linear constitutive
models, as in Section 4.7. The nodal spacing (or mesh size) will be
indicated in the following with h. The radius for the numerical
computation of the J-integral (see Appendix A) in all cases was
varied from 0:4 a to 0:7 a to verify the path independence of
the J-integral. The values are 0:5 a are reported in the following
tables.



Fig. 4. Numerical (continuous line) and analytical (dashed line) solutions (Atkinson, 1973) according to Eqs. (6)–(8) for the vertical tensile loading (Fig. 2a).

Table 2
Convergence analysis for the test in Fig. 2a in plane strain with a ¼ 0:075 L :

HI ¼ �0:0809 Pa
ffiffiffiffiffi
m

p
.

h=a a=h HI numerical ½Pa ffiffiffiffiffi
m

p � Error %

0.133 7.50 0.0856 5.81
0.089 11.25 0.0846 4.57
0.067 15.00 0.0840 3.83
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4.2. Mode I under vertical tensile loading

In this section we will consider a central horizontal line inclu-
sion embedded in a rectangular matrix subjected to a vertical ten-
sile loading (Fig. 2a). Fig. 3 shows the distribution of the stress
tensor and the Von Mises stress inside the matrix: the stress con-
centrations at the tips of a relatively short inclusion (0:15 L) are
clearly visible. These concentrations are singular for r ¼ 0, as in
Eqs. (8), (6) and (7). The functional space of the approximation
(31) does not contain singular functions, the singularity cannot
appear in the computed stresses: however, as visible in Fig. 4,
the numerical solution can capture with great accuracy the
analytical solution near the tips. Most importantly, the method
does capture stress intensities. Indeed, a significant comparison
is reported in Tables 1–3 where the numerical values of the
Table 1
Convergence analysis for the test in Fig. 2a in plane strain with a ¼ 0:01 L :

HI ¼ 0:0934 Pa
ffiffiffiffiffi
m

p
.

h=a a=h HI numerical ½Pa ffiffiffiffiffi
m

p � Error %

0.100 10 0.0960 2.78
0.067 15 0.0950 1.71
0.050 20 0.0945 1.18
J-integrals (Eqs. (16) and (17)) for different mesh sizes are com-
pared to the value HI (Eq. (13)), which is connected to the theoret-
ical Stress Intensity Factor KI (Eq. (14)). Tables 1–3 show rapid
convergence to the analytical value of HI , for a relatively short
inclusions (close to the hypothesis of infinite matrix, see
Section 2.1). Table 3 shows that even with a small number of nodes
per half-length (5) it is possible to obtain the analytical answer
Table 3
Convergence analysis for the test in Fig. 2a in plane strain with a ¼ 5% L :

HI ¼ �0:0661 Pa
ffiffiffiffiffi
m

p
.

h=a a=h HI numerical ½Pa ffiffiffiffiffi
m

p � Error %

0.200 5.00 0.0696 5.30
0.133 7.50 0.0678 2.57
0.100 10.0 0.0658 0.46



Fig. 5. Numerical (continuous line) and analytical (dashed line) solutions (Atkinson, 1973) according to Eqs. (6) and (7) for the horizontal tensile loading (Fig. 2b).

Table 4
Convergence analysis for the test in Fig. 2b in plane strain with a ¼ 0:10 L :

HI ¼ 0:2180 Pa
ffiffiffiffiffi
m

p
.

h=a a=h HI numerical ½Pa ffiffiffiffiffi
m

p � Error %

0.100 10 0.2221 1.88
0.067 15 0.2215 1.61
0.050 20 0.2200 0.92

Table 5
Convergence analysis for the test in Fig. 2b in plane strain with a ¼ 0:075 L :

HI ¼ 0:1888 Pa
ffiffiffiffiffi
m

p
.

h=a a=h HI numerical ½Pa ffiffiffiffiffi
m

p � Error %

0.133 7.50 0.1974 4.56
0.089 11.25 0.1958 3.71
0.067 15.00 0.1947 3.13

Table 6
Convergence analysis for the test in Fig. 2b in plane strain with a ¼ 0:05 L :

HI ¼ 0:1577 Pa
ffiffiffiffiffi
m

p
.

h=a a=h HI numerical ½Pa ffiffiffiffiffi
m

p � Error %

0.200 5.00 0.1618 5.00
0.133 7.50 0.1583 2.73
0.100 10.0 0.1577 2.34
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with a small error (around 5%). It is interesting to notice that for
the cases in Tables 2 and 3 the values of HI are negative. However,
this does not mean a reversed stress singularity: using m ¼ 0:3 and
Young modulus E ¼ 50 GPa, and applying Eq. (11), it is obtained a
KI ¼ 0:0324 Pa

ffiffiffiffiffi
m

p
for a ¼ 0:075 L and KI ¼ 0:0264 Pa

ffiffiffiffiffi
m

p
for

a ¼ 0:05 L. The sign of KI determines the sign of the singularity
(see Eq. (10)), and it is found consistently to be positive.

4.3. Mode I under vertical compressive loading

Nonetheless, conversely to cracks, rigid line inclusion can have
negative Mode I stress intensity factors, because the rigid motion
of the inclusion always prevents a negative displacement jump.
This case is the one in Section 4.2 (a ¼ 0:05 L) with a reversed
load, for which the computed stress intensity factor is
KI ¼ �0:0264 Pa

ffiffiffiffiffi
m

p
. In this test, 5 nodes per half length were

employed.

4.4. Mode I under horizontal tensile loading

Another difference from cracks, is the presence of a stress singu-
larity for loading parallel to the inclusion. The value of KI needs to
be computed with a different formula than (14): indeed, applying
(14) with a ¼ 0:075 L; m ¼ 0:3; E ¼ 50 GPa and r1

x > 0; r1
y ¼ 0

leads to HI ¼ 0:1888 Pa
ffiffiffiffiffi
m

p
and KI ¼ �0:0755 Pa

ffiffiffiffiffi
m

p
, which is neg-

ative and counter-intuitive. In fact, Fig. 5a shows a positive singu-
larity in the rx plot. The negative value so calculated corresponds
to the ry distribution (Fig. 5b). To get a consistent KI for Fig. 5a,
let us consider Eq. (10): the expression for rx for h ¼ 0 is

ryðr; h ¼ 0Þ ¼ HIffiffiffiffiffiffiffiffiffi
2pr

p jþ 3
2

� �
ð61Þ

hence, the correct expression for KI under loading parallel to the
anticrack is

KI ¼ jþ 3ð ÞA ffiffiffiffiffiffi
pa

p ð62Þ

Substituting the values in Eq. (62) leads to KI ¼ 0:4530 Pa
ffiffiffiffiffi
m

p
,

which is correctly positive. Comparing the HI values for different
loading conditions is therefore more convenient than comparing
KI , because the expression for HI is independent from the relative
position between loading and inclusion.

Tables 4–6 show that good convergence is obtained also for the
inclusion under parallel loading.
4.5. Mode I under horizontal compressive loading

Analogously to the vertical compressive loading in Section 4.3,
there is a singularity in the stress also for horizontal compressive
loading, as showed in Fig. 6, captured quite accurately by the pro-
posed numerical scheme.

4.6. Mode I under biaxial loading

From the previous section, it emerged that an anticrack creates
a singularity in the stress under any arbitrary biaxial loading, both
tensile and compressive. However, this is true except in some cir-
cumstances. For instance, in plane strain for incompressible mate-
rials (Eq. (14)), for which j ¼ 1. For a compressible solid, KI is null
if HI ¼ 0, and, for Eq. (13), when A ¼ 0. Hence, for Eq. (9), A ¼ 0 for
the following ratio between the loadings

w ¼ r1
y

r1
x
¼ �jþ 1

j� 3
ð63Þ



Fig. 6. Numerical (continuous line) and analytical (dashed line) solutions (Atkinson,
1973) according to Eq. (6) for horizontal compressive loading.

Fig. 7. Biaxial loading with ratio w in Eq. (63): numerical (continuous line) and
analytical (dashed line) solutions (Atkinson, 1973). Note that the singularity
disappears, as evidenced by the horizontal lines (Fig. 7a and b) and by the uniform
distribution (Fig. 7c).

Fig. 8. Anticrack in mixed-mode loading under a large uniaxial stretch.
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Fig. 7 show that for this ratio there is no singularity, and that the
inclusion is transparent to the applied load: the stress state in the
matrix is uniform.

4.7. Inclined multiple rigid line inclusions in a soft matrix

To test the numerical method for large rotations of the RLI, the
following examples assume an initially inclined anticrack within a
very deformable matrix. The domain is stretched uni-axially. The
matrix follows a compressible hyperelastic Neo-Hookean model.
The choice of a compressible model stands in avoiding numerical
issues related to incompressibility. There is quite an abundant lit-
erature on the treatment of the incompressibility constraint in
meshfree methods. However, the incompressibility issue is outside
the scopes of the paper. This section wants to show that, under the
assumption of finite deformation, the fibers rotate (and translate)
in an evident manner. These results prove that the method can
capture the physical intuition. For example, it can reproduce the
reorientation of inclined fibers towards the direction of loading,
phenomenon important in many biological systems (Tower et al.,
2002). The alignment of the fibers with the loading has structural
importance since, in this manner, reinforcements can be the most
effective in withstanding loads. The reorientation is facilitated if
the matrix is compliant. The strain energy functionW of the hyper-
elastic model is

W ¼ 1
2
l0 I1 � 3ð Þ þ k0

1
2

log Jð Þ2 � l0 log J ð64Þ

where l0 is the initial shear modulus, k0 the initial bulk modulus, I1
is the first invariant of the Right Cauchy Green tensor

C ¼ FTF ð65Þ

The corresponding Second Piola–Kirchhoff Stress is

S ¼ l0I� l0 � k0 log J
� 	

C�1 ð66Þ

The second elasticity tensor (in index notation) is

CSEð Þijkl ¼ k0C
�1
ij C�1

kl þ l0 � k0 log J
� 	

C�1
ik C�1

jl þ C�1
il C�1

kj

� �
ð67Þ

In the following examples, unless differently specified,
l0 ¼ 0:4 MPa, with initial Poisson ratio of m ¼ 0:3. The domain of
study is the same as the previous sections (unit square of
L ¼ 1 m) under uniaxial stretch k in the Y direction. The midpoint
of the RLI is in the middle of the square (see Fig. 8).



Fig. 9. Reorientation of a RLI with b ¼ 15
 embedded in a soft matrix, under uniaxial stretch: dots are color-coded with a fixed value of k.

Fig. 10. Reorientation of a RLI for different b; red: b ¼ 75
; magenta: b ¼ 60
; blue: b ¼ 45
; green: b ¼ 30
; brown: b ¼ 15
 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Influence of the initial stiffness (with the same initial m); blue:
l0 ¼ 0:42 MPa; red: l0 ¼ 4:2 MPa. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

10 E. Barbieri, N.M. Pugno / International Journal of Solids and Structures 77 (2015) 1–14
4.7.1. One inclined anticrack: influence of large strains
The first series of results show the reorientation of the RLI under

large values of k. The length of the anticrack 2a is set to L=10,
inclined with an angle b. The sample is discretized with a regular
grid of 100	 100 nodes, where the top and the bottom edges are
clamped, and the top one free to move in the Y direction. The test
is under displacements-controlled conditions, applied with an inter-
val Dk ¼ 0:02. Figures in block 9 show the angle h as a (non-linear)
function of k, and all the consequent deformations (translation and
rotation) of a RLI with a slight initial inclination b ¼ 15
ð Þ. Under a
large finite strain of 400%, the RLI rotates of 55
. At k ¼ 5 the
simulation halted for excessive localized deformation near the
RLI, which brought J to be negative. As expected, the midpoint of
the RLI (which is different from the center of rotation c) translates
only vertically.



Fig. 12. Influence of the initial length a, showing a detail of the final position of the
anticrack (inclined straight lines) and the final deformation; green: 2a ¼ L=10; blue:
2a ¼ 2=5L; red: RLi along the width. Axes are rescaled for enhanced visualization.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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4.7.2. One inclined anticrack: influence of the initial angle
Figures in block Fig. 10 show the reorientation of RLIs with dif-

ferent initial inclination. As expected, under tension, the reorienta-
tion is less for RLIs with high initial inclination, while the reverse
verifies for compressive loadings. In fact, for compressive strains
of 30%, the anticrack at b ¼ 75
;60
;45
;30
 reorientate of nearly
Fig. 13. Interaction of two anticracks: test cases and boundary conditions. (For interpreta
version of this article.)

Fig. 14. Interaction of two anticracks: numerical results for b ¼ L=3. (For interpretation of
of this article.)
�15
. Some with a nonlinear variation (b ¼ 75
;60
), whilst the
remaining with almost a linear law. Instead, the anticrack with
b ¼ 15
 reorientates of �6
.
4.7.3. One inclined anticrack: influence of the initial stiffness
Fig. 11 shows the influence of the stiffness of the matrix on the

reorientation of the anticrack, as obtained from the numerical
results. As intuitively expected, the same load can reorientate the
RLI of a larger amount than a stiffer matrix: for example, for a load
of 2 MPa, a 10 times stiffer matrix reorientates of 5
, instead of
more than 20
. From a different point of view, a stiffer matrix
requires a higher stress than a more compliant matrix to reorien-
tate of the same quantity. A 10 times stiffer matrix requires a 10
times higher stress. This is justifiable also from a theoretical per-
spective, where under uniaxial stress, the Cauchy stress along the
direction of loading is given by

r22 ¼ l0

J5=3
k2 � J

k

� �
ð68Þ

where J is obtained by solving the following nonlinear equation

k0 J8=3 � J5=3
� �

þ l0
J
3k

� k2

3

 !
¼ 0 ð69Þ

Eqs. (68) and (69) are valid in absence of anticracks, or, for relatively
small ones, far from them. It is evident from Eq. (69) that under
tion of the references to color in this figure legend, the reader is referred to the web

the references to color in this figure legend, the reader is referred to the web version



Fig. 15. Interaction of two anticracks: numerical results for same initial inclination
b ¼ 45
 and b ¼ a.
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uniaxial stress, different l0 (and hence k0) give the same J. There-
fore, for Eq. (68), r22 is linearly proportional to the shear modulus.
4.7.4. One inclined anticrack: influence of the initial length
Fig. 12 shows the effect of the length of the anticrack on the

deformation of the matrix. The initial angle is b ¼ 15
, with three
different lengths, from relatively small, to the extreme case of an
anticrack along the entire width. Fig. 12 is a zoom of the position
Fig. 16. Reorientation of 49 ran

Fig. 17. Deformed configuration of an hyperelastic
of the anticrack and the deformation of the edges for k ¼ 5. There
is no influence of the length on the final rotation and position of
the anticrack. However, as the length augments, the RLI increas-
ingly strains the matrix. In the extreme case, the edges deform
by creating a kink.
4.7.5. Two inclined anticracks
This section examines the mutual influence of the inclined ant-

icracks as depicted in Fig. 13. The centers of the two RLIs are sep-
arated by a distance b ¼ L=3, with 2a ¼ L=10. Fig. 14 shows the
results of two different configurations: one with anticracks with
equal inclination, and one with opposite. The colors of the curves
are the same of the RLIs in Fig. 14. In both cases, for this value of
b there is no influence on the rotation, and the two line inclusions
deform as they were isolated, as reported in Fig. 10b (blue curve).
To seek evidence for an interaction of the RLIs, the offset length b
was reduced to half the length of the anticrack (a). Fig. 15 displays
only a slight difference in h compared to Fig. 14a, and at large
strains. The influence is the same also for RLIs inclined in an oppo-
site direction (not reported). For anticracks, the local stress state
near the tips does not seem to hinder significantly their
reorientation.
4.7.6. Multiple RLIs
The last example considers a large number of randomly ori-

ented anticracks. This case proves the power of the method, espe-
cially in handling multiple couplings between the matrix and the
domly oriented anticracks.

matrix with 49 randomly oriented anticracks.



Fig. 18. Domain and weight function w for the J-integral.
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inclusions. It is useful to recall that no remeshing is necessary, and
neither a mesh conforming to the anticrack lines: the distribution
of nodes is a regularly arranged grid of 100	 100 points. The test
in Fig. 16 shows the reorientation of 49 anticracks. Their centers
are regularly distributed, but their lengths and initial orientation
are randomly chosen. The lengths are drawn from a uniform prob-
ability distribution function within an interval of L=20 and L=15;
the initial angles instead from an interval of p=4 and 3=4p. Once
again, Figs. 16 and 17 show the realignment of the anticracks
towards the direction of loading (p=2).
4.8. Remarks on the nonlinear solution

Owing to the strong diagonal dominance of the tangent stiffness
matrix in Eq. (55), the method converges rather quickly even for
numerous anticracks. For the loads increments of Dk ¼ 0:02, the
solutions converged to a relative residual norm of 0:1% in only a
couple of iterations. Even if a sophisticated nonlinear solver, like
a line search, was available, this option was never activated, and
a standard Newton–Rahpson solver sufficed. However, it is advis-
able to keep the increments short: for large increments, the solver
might fail due to negative Jacobian.
5. Conclusions

This paper presented a numerical implementation of the rigid
line inclusion model. A rigid line inclusion, also known as anticrack,
line stiffener, lamellar inhomogeneity or rigid ribbon, is a kinematic
model of a very thin and infinitely stiff reinforcement in an elastic
matrix. Using numerical meshfree techniques for crack modeling,
we presented a straightforward generalization that could prove
to be useful for modeling engineered nanocomposites and nano
and microstructures occurring in natural systems. Linear elastic
matrices were initially considered for ease of validation with exist-
ing analytical solutions; results showed rapid convergence to ana-
lytical stress intensity factors, for relatively coarse mesh sizes, and
very good agreement (apart from the stress singularities) with the
theoretical solutions given by Atkinson (1973). Differently from
cracks, stress singularities appear also for compressive loadings
normal to the inclusion, and for both tensile and compressive load-
ings parallel to the inclusion: instead, it is transparent (no singular-
ity) for a certain combination of biaxial loadings, whose ratio can
be predicted from the theory (Atkinson, 1973). The presented
method is able to reproduce successfully all these peculiar charac-
teristics of an anticrack. Furthermore, this paper presented exten-
sions to nonlinear elasticity (isotropic Neo-Hookean constitutive
law) and multiple anticracks. Firstly, we presented a fiber-
reorientation problem under large strains, common in many bio-
logical systems, and reported the influence of the orientation of
the inclusion with respect to its length, initial inclination and the
stiffness of the matrix. Furthermore, we discussed the influence
of two anticracks, and found that there is only slight influence (less
than 1�) on the reorientation of very close RLIs. Finally, to prove the
power of the approach, we presented an example with 49 anti-
cracks, randomly oriented, and proved that such a complicated sys-
tem requires no advanced meshing techniques for its treatment.
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Appendix A. Numerical computation of the J-integral

Following Li et al. (1985), the J-integral (Rice, 1968) for single
mode loading and a crack that grows straight ahead can be re-
formulated as in Eq. (15), where A is the domain enclosed by a
closed curve C oriented anti-clockwise that surrounds the crack
tip xc; q is a weight function that is zero on C and 1 on xc

(Fig. 18),W is the strain energy density that for a linear elastic mate-
rial can be written as

W ¼ 1
2
r : � ðA:1Þ

The chosen weight function (Fig. 18) is an asymmetric hat func-
tion given by

wðx;yÞ¼wxðxÞwyðyÞ

wxðxÞ¼ Hðxþdl
xÞ�HðxÞ

h ixþdl
x

dl
x

þ HðxÞ�Hðx�dr
xÞ

� �xþdr
x

dr
x

wyðyÞ¼ Hðyþdl
yÞ�HðyÞ

h iyþdl
y

dl
y

þ HðyÞ�Hðy�dr
yÞ

h i�yþdr
y

dr
y

ðA:2Þ
References

Atkinson, C., 1973. Some ribbon-like inclusion problems. Int. J. Eng. Sci. 11 (2),
243–266.

Ballarini, R., 1987. An integral equation approach for rigid line inhomogeneity
problems. Int. J. Fract. 33 (2), R23–R26.

Ballarini, R., 1990. A rigid line inclusion at a bimaterial interface. Eng. Fract. Mech.
37 (1), 1–5.

Barbieri, E., Meo, M., 2012. A fast object-oriented matlab implementation of the
reproducing kernel particle method. Comput. Mech. 49 (5), 581–602.

http://refhub.elsevier.com/S0020-7683(15)00363-7/h0005
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0005
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0010
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0010
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0015
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0015
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0020
http://refhub.elsevier.com/S0020-7683(15)00363-7/h0020


14 E. Barbieri, N.M. Pugno / International Journal of Solids and Structures 77 (2015) 1–14
Barbieri, E., Petrinic, N., 2013a. Multiple crack growth and coalescence in meshfree
methods with a distance function-based enriched kernel. In: Key Engineering
Materials – Advances in Crack GrowthModeling. TransTech Publications, p. 170.

Barbieri, E., Petrinic, N., 2013b. Three-dimensional crack propagation with distance-
based discontinuous kernels in meshfree methods. Comput. Mech., 1–18

Barbieri, E., Petrinic, N., Meo, M., Tagarielli, V., 2012. A new weight-function
enrichment in meshless methods for multiple cracks in linear elasticity. Int. J.
Numer. Methods Eng. 90 (2), 177–195.

Belytschko, T., Liu, W.K., Moran, B., 2000. Nonlinear Finite Elements for Continua
and Structures. John Wiley & Sons.

Bigoni, D., Dal Corso, F., Gei, M., 2008. The stress concentration near a rigid line
inclusion in a prestressed, elastic material. Part II: Implications on shear band
nucleation, growth and energy release rate. J. Mech. Phys. Solids 56 (3),
839–857.

Bilotti, E., Fischer, H., Peijs, T., 2008. Polymer nanocomposites based on needle-like
sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller,
crystallinity, and mechanical properties. J. Appl. Polym. Sci. 107 (2), 1116–1123.

Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., Peijs, T., 2009. Sepiolite needle-
like clay for pa6 nanocomposites: an alternative to layered silicates? Compos.
Sci. Technol. 69 (15–16), 2587–2595.

Bilotti, E., Deng, H., Zhang, R., Lu, D., Bras, W., Fischer, H.R., Peijs, T., 2010. Synergistic
reinforcement of highly oriented poly (propylene) tapes by sepiolite nanoclay.
Macromol. Mater. Eng. 295 (1), 37–47.

Brussat, T., Westmann, R., 1975. A westergaard-type stress function for line
inclusion problems. Int. J. Solids Struct. 11 (6), 665–677.

Burnley, P., Green, H., 1989. Stress dependence of the mechanism of the olivine-
spinel transformation. Nature 338, 753–756.

Chen, Y., 1986. Singular behaviour at fixed rigid line tip in plane elasticity. Eng.
Fract. Mech. 25 (1), 11–16.

Dal Corso, F., Bigoni, D., 2009. The interactions between shear bands and rigid
lamellar inclusions in a ductile metal matrix. Proc. Roy. Soc. A: Math. Phys. Eng.
Sci. 465 (2101), 143–163.

Dal Corso, F., Bigoni, D., Gei, M., 2008. The stress concentration near a rigid line
inclusion in a prestressed, elastic material. Part I: Full-field solution and
asymptotics. J. Mech. Phys. Solids 56 (3), 815–838.

Dundurs, J., Markenscoff, X., 1989. A green’s function formulation of anticracks and
their interaction with load-induced singularities. J. Appl. Mech. 56 (3), 550–555.

Eichhorn, S., Dufresne, A., Aranguren, M., Marcovich, N., Capadona, J., Rowan, S.,
Weder, C., Thielemans, W., Roman, M., Renneckar, S., et al., 2010. Review:
current international research into cellulose nanofibres and nanocomposites. J.
Mater. Sci. 45 (1), 1–33.

Fletcher, R.C., Pollard, D.D., 1981. Anticrack model for pressure solution surfaces.
Geology 9 (9), 419–424.

Fratzl, P., Guille, M.M.G., 2011. Hierarchy in natural materials. In: Hierarchically
Structured Porous Materials.

Green, H.W., Young, T.E., Walker, D., Scholz, C.H., 1990. Anticrack-associated
faulting at very high pressure in natural olivine. Nature 348 (6303), 720–722.

Hasebe, N., Keer, L., Nemat-Nasser, S., 1984. Stress analysis of a kinked crack
initiating from a rigid line inclusion. Part 1: Formulation. Mech. Mater. 3 (2),
131–145.
Heierli, J., Gumbsch, P., Zaiser, M., 2008. Anticrack nucleation as triggering
mechanism for snow slab avalanches. Science 321 (5886), 240–243.

Hurtado, J., Dundurs, J., Mura, T., 1996. Lamellar inhomogeneities in a uniform
stress field. J. Mech. Phys. Solids 44 (1), 1–21.

Ji, B., Gao, H., 2004. Mechanical properties of nanostructure of biological materials. J.
Mech. Phys. Solids 52 (9), 1963–1990.

Landis, W., 1995. The strength of a calcified tissue depends in part on the molecular
structure and organization of its constituent mineral crystals in their organic
matrix. Bone 16 (5), 533–544.

Li, F., Shih, C., Needleman, A., 1985. A comparison of methods for calculating energy
release rates. Eng. Fract. Mech. 21 (2), 405–421.

Liu, W., Jun, S., Zhang, Y., 1995. Reproducing kernel particle methods. Int. J. Numer.
Methods Fluids 20 (8–9), 1081–1106.

Muskhelishvili, N.I., 1953. Some Basic Problems of the Mathematical Theory of
Elasticity, vol. 15. Cambridge Univ Press.

Nishimura, N., Liu, Y., 2004. Thermal analysis of carbon-nanotube composites using
a rigid-line inclusion model by the boundary integral equation method.
Comput. Mech. 35 (1), 1–10.

Noselli, G., Dal Corso, F., Bigoni, D., 2010. The stress intensity near a stiffener
disclosed by photoelasticity. Int. J. Fract. 166 (1–2), 91–103.

Pingle, P., Sherwood, J., Gorbatikh, L., 2008. Properties of rigid-line inclusions as
building blocks of naturally occurring composites. Compos. Sci. Technol. 68
(10), 2267–2272.

Porwal, H., Grasso, S., Reece, M., 2013a. Review of graphene–ceramic matrix
composites. Adv. Appl. Cer. 112 (8), 443–454.

Porwal, H., Tatarko, P., Grasso, S., Hu, C., Boccaccini, A.R., Dlouhỳ, I., Reece, M.J.,
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