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sensors. Furthermore, nano plates with greater aspect ratios 
offer smaller dimensionless frequency shifts and the maxi-
mum belongs to a square one. The presented results could be 
useful as a guideline for designing nano resonant sensors of 
plane shapes like graphene based mass sensors.

1 Introduction

In recent years, nano structures as new members in struc-
tural mechanics have received a notable attraction due to 
their wide application in nano technology and therefore 
prediction of response of these elements against various 
mechanical loading situations like vibration, buckling, 
bending, and etc. is prominent in designing of future nano 
scale devices and structures. Reviewing the literature, mod-
eling of nano sized structures is mainly conducted based 
on four main approaches: (I) molecular dynamics (MD) 
(Ansari et al. 2012; Xiang and Shen 2014), (II) molecu-
lar structural mechanics (Sakhaee-Pour 2009; Wang et al. 
2013), (III) local (classical) continuum elasticity (Liew 
et al. 2006; Behfar and Naghdabadi 2005), (IV) nonlocal 
elasticity (Zenkour and Abouelregal 2014; Jomehzadeh 
et al. 2012). The computational expense for the first two 
approaches is directly related to the size of the studied sys-
tem, as they consider all constitutive particles of the nano 
structure. Hence, their application is limited to a restricted 
size of nano structures. Instead, both local and nonlocal 
approaches are able to model nano structures without any 
restriction in the number of consisting particles, thanks to 
their continuum method of modeling. In the continuum 
view, based on the geometry and the mechanical properties, 
nano structures are usually considered as known structural 
elements like beams, plates and shells and their mechanical 
behavior is analyzed using related well-known theories.

Abstract Present paper investigates the potential applica-
tion of planar nano structures with attached nano particles 
as nano resonant sensors by introducing a nonlocal plate 
model which considers size effects. To take into account an 
elastic connection between the nano plate and the attached 
nanoparticle, the nano particle is considered as a mass-spring 
system. Then, a mixed approach based on pseudo-spectral 
and integral quadrature rule is implemented to numerically 
determine the frequency shift caused by the attached mass-
spring system. Obtained results are in a good agreement with 
those available in the literature which reveals that the pro-
posed combined method provides accurate results for struc-
tural problems with concentrated objects. Results show that 
for soft connections with small values of spring constant the 
predicted frequency shift is greater than rigid connections. 
It means that considering a rigid connection instead of elas-
tic one will underestimate the frequency shift of nano reso-
nant sensors. Also, it is shown that neglecting size effects 
results in overestimating the frequency shift of nano resonant 
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Although the local (classical) continuum elasticity may 
make a desirable insight about the behavior of nano struc-
tures, however, due to neglecting the structural discreteness 
the obtained results are not realistic enough. This limita-
tion overcomes in nonlocal version of continuum elastic-
ity (Eringen 1983) with introducing small scale effects. 
Reports reveal that the results obtained by nonlocal model 
with a proper small scale parameter are in good agreement 
with those obtained by atomistic approaches. A review on 
the application of nonlocal elasticity in modeling of carbon 
based nano structures could be found in the work by Arash 
and Wang (2012).

Nano structures are main candidates for nano sens-
ing applications because of their proper sizes and superior 
mechanical and electrical properties (Angione et al. 2014). 
Resonant sensors are a group of nano sensors which detect 
nano particles in a dynamic mode from a vibration analysis. 
The main idea for detecting attached particles is to meas-
ure the resonant frequency shift of the sensor caused by 
changes in total mass of the system. Potential application 
of carbon based nano structures like Fullerene and Carbon 
nanotubes as resonant mass sensors are widely investigated 
(Giannopoulos 2014; Joshi et al. 2010; Mehdipour et al. 
2011). Recently, graphene, the thinnest two-dimensional 
flat structure consisting of carbon atoms settled in a hex-
agonal lattice, is taken into consideration in resonant sens-
ing application due to its remarkable sensing privilege like 
large surface area and high bending flexibility. Therefore, 
vibration analysis of graphene sheets with attached masses 
is a significant issue in the field and has been studied in 
both continuum and atomistic approaches.

In continuum approaches, a graphene based nano res-
onant sensor is usually considered as a nano plate with 
attached masses. Murmu and Adhikari (2013) proposed 
a nonlocal mass sensor model using vibrating monolayer 
cantilever graphene sheets and analytical solution were 
derived for the frequency shift due to the added mass. 
Adhikari and Chowdhury (2012) also investigated the pos-
sibility of implementing graphene sheets as nano resonant 
sensors based on local elasticity. The potential applica-
tion of single-layered graphene sheets as nano mass sen-
sors based on nonlocal Kirchhoff plate theory and Galer-
kin method was studied by Shen et al. (2012) studied and 
influence of the mass value and position on the frequency 
shift were discussed. As a similar work, Zhou et al. (2014) 
analyzed a circular graphene sheet carrying a nano particle 
as a nano resonant mass sensor. Lee et al. (2013a) apply-
ing nonlocal elasticity considered the graphene sheet as a 
rectangular nano plate with an attached mass and equa-
tions of motion are analytically solved for simply sup-
ported boundary conditions and effects of the small scale 
effect and aspect ratio on sensitivity of sensor were studied 
in detail.

In Atomistic view, both MD and molecular structural 
mechanics have also been implemented by researchers for 
modeling of nano resonant sensors. Arash et al. (2011) inves-
tigated the potential application of single-layered graphene 
sheets in detection of noble gases was by applying MD simula-
tions. Sakhaee-Pour et al. (2008) applied finite element molec-
ular structural mechanics to model the vibrational behavior of 
single-layered graphene sheets and investigated the effect of 
point mass on the fundamental frequencies for mass sensing 
applications. Lee et al. (2013b) studied single layered graphene 
mass resonant sensors with various boundary conditions by 
using finite element molecular structural mechanics and influ-
ence of value and position of attached mass and boundary con-
ditions on the sensitivity of sensor was explored. Jalali et al. 
(2014) studied the application of graphene sheets as resonant 
sensors in detection of ultra-fine nanoparticles via both MD 
and nonlocal elasticity approaches. To take into consideration 
the effect of geometric nonlinearity, nonlocality, and atomic 
interactions between graphene and nanoparticles, a nonlinear 
nonlocal plate model carrying an attached mass-spring system 
is introduced. Nonlocal small scale parameter is calibrated by 
matching frequency shifts obtained by nonlocal and MD simu-
lation approaches with same vibration amplitude.

Reviewing the literature reveals that analysis of frequency 
characteristics of nano structures and especially nano plates is 
a consequential issue for designing future ultra-sensitive nano 
sensors. This paper aims to propose a nano plate model with 
an attached mass for vibration analysis of resonant mass sen-
sors, in the framework of nonlocal continuum elasticity. How-
ever, with regard to the previous researches, it can be con-
cluded that the influence of interaction between the attached 
mass and the sensor has not been reported. Therefore, in pre-
sent work this interaction has taken into account by consider-
ing a mass-spring system as the attached nano particle. Also 
a pseudo-spectral procedure in conjunction with integration 
quadrature (IQ) method is introduced to numerically solve 
the problem. Influence of small scale parameter, value and 
position of the attached mass, spring constant, aspect ratio, 
thickness to side ratio and boundary conditions on frequency 
characteristics of these sensors will be discussed in detail.

2  Nonlocal shear deformation nano plate model

Consider a rectangular nano plate of length a, width b, the 
effective thickness h and mass density ρ with a mass-spring 
system (M0, K0) mounted on an arbitrary position (x0,y0) of 
the plate as shown in Fig. 1. The origin of the Cartesian coor-
dinates system (x,y,z) lies on the corner of the mid-plane. Dis-
placement components U, V, W, ϕx and ϕy define displace-
ments in x, y and z directions and the rotation about the y and 
x axis, respectively. To take into consideration shear deforma-
tion effects especially for nano plates with large thickness to 
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length size ratios, the first order shear deformation plate the-
ory (FSDT) is applied to the model as follows.

where w0 is the mid-plane displacement components along 
z directions and t defines time. The linear strain–displace-
ment relations are (Reddy 2003):

where (),x and (),y indicate the differentiation with respect 
to x and y, respectively.

The small scale effect of nonlocal continuum elasticity 
appears in constitutive stress–strain relations. Based on the 
known local (classical) elasticity, stress at a point depends 
only on the strain at that point and the local stress tensor t 
at a point is related to the strain tensor ε at that point by the 
generalized Hooke’s law as follows:

where C is the fourth-order elasticity tensor (Reddy 2008). 
However, according to nonlocal elasticity of Eringen 

(1a)U(x, y, z, t) = zϕx(x, y, t)

(1b)V(x, y, z, t) = zϕy(x, y, t)

(1c)W(x, y, z, t) = w0(x, y, t)

(2a)εx = zϕx,x

(2b)εy = zϕy,y

(2c)γxy = z
(

ϕx,y + ϕy,x

)

(2d)γxz = ϕx + w0,x

(2e)γzy = ϕy + w0,y

(3)t : C : ε

(2002), the stress at a point is related on the strain at the 
every point of the continuum domain through an integra-
tion on the whole elastic body. Eringen (1983) showed that 
the integral form of constitutive relations can be written in 
an equivalent simpler differential form as follows.

In which μ is the nonlocal parameter, e0 is a material 
constant, a0 is the internal characteristic length, ∇2 is the 
two-dimensional Laplace operator, and σ is the nonlocal 
stress tensor. The nonlocal version of elasticity is able to 
consider discontinuities in the elastic medium by consider-
ing small scale parameter opposed to zero. The nonlocal 
form of stress–strain relationship for the plane stress state 
of nano plates can be explained as:

E, v and G are Young’s modulus, Shear modulus and 
Poison’s ratio of the nano plates, respectively. The nonlocal 
force and moment resultants can be calculated by integrat-
ing stress components across the plate thickness.

where Ks is the shear correction coefficient set to 5/6 (Reddy 
2003). Considering Eqs. (5) and (6a, 6b) one can obtain:

where A and D are the longitudinal and flexural rigidity of 
the nano plate, respectively.

(4)
(

1 − µ∇2
)

σ : C : ε, µ = (e0a0)
2

(5)
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(6a)M =
[

Mxx, Myy, Mxy

]T
=

h/2
∫

−h/2

[

σxx , σyy, σxy

]T
zdz

(6b)Q =
[

Qx, Qy

]T
= Ks

h/2
∫

−h/2

[

τxz, τzy

]T
dz

(7a)







Mxx

Myy

Mxy







− µ∇2







Mxx

Myy

Mxy







=





D νD 0

νD D 0

0 0
D(1−ν)

2











ϕx,x

ϕy,y

ϕx,y + ϕy,x







, D =
Eh3

12
�

1 − ν2
�

(7b)

{

Qx

Qy

}

− µ∇2

{

Qx

Qy

}

= Ks

[

A(1−ν)
2

0

0
A(1−ν)

2

]{

γxz

γzy

}

, A =
Eh

(

1 − ν2
)

Fig. 1  Schematic of the studied nano plate with an attached mass-
spring system
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The governing equations of motion for free vibration of 
a shear deformable plate carrying a mass-spring system can 
be obtained by using stationary potential energy method as 
follows (Reddy 2003):

where dot operator indicate differentiation with respect to t 
and I0 and I2 are mass moments of inertia which are defined 
as follows:

Also, the Dirac Delta function, given in Eq. (8a), is 
defined as:

Substituting Eqs. (7a, b) in Eq. (8a, b, c) gives the non-
local equations of motion in terms of the displacement 
components:

Equation (9a) is singular at the point (x0, y0) where 
the mass-spring system is located. However, considering 
Eq. (8f) one can integrate Eq. (9a) as follows:

(8a)Qx,x + Qy,y + K0

[

z0 − w0(x0, y0)
]

δ(x − x0)δ(y − y0) = I0 ẅ0

(8b)Mxx,x + Mxy,y − Qx = I2ϕ̈x

(8c)Myy,y + Mxy,x − Qy = I2ϕ̈y

(8d)K0

[

w0(x0, y0) − z0

]

= M0z̈0

(8e)(I0, I2) =

h/2
∫

−h/2

ρ

(

1, z2
)

dz

(8f)

δ(x − x0) = 0, x �= x0

∞
∫

0

f (x)δ(x − x0)dx =

a
∫

0

f (x)δ(x − x0)dx = f (x0), x < a

(9a)

KsA
(1 − ν)

2

(

w0,xx + w0,yy + ϕx,x + ϕy,y

)

+ K0

[

z0 − w0(x0, y0)
]

δ(x − x0)δ(y − y0)

= I0

(

ẅ0 − µ ẅ0,xx − µ ẅ0,yy

)

(9b)

D

[

ϕx,xx + νϕy,xy +
1 − ν

2

(

ϕx,yy + ϕy,xy

)

]

− KsA
(1 − ν)

2

(

ϕx + w0,x

)

= I2

(

ϕ̈x − µ ϕ̈x,xx − µ ϕ̈x,yy

)

(9c)

D

[

ϕy,yy + νϕx,xy +
1 − ν

2

(

ϕy,xx + ϕx,xy

)

]

− KsA
(1 − ν)

2

(

ϕy + w0,y

)

= I2

(

ϕ̈y − µ ϕ̈y,xx − µ ϕ̈y,yy

)

(9d)K0

[

w0(x0, y0) − z0

]

= M0z̈0

This integration form will be used in the next section 
for solution procedure. For a nanoplate problem it is theo-
retically possible to consider either clamped or simply sup-
ported boundary conditions as follows:

Clamped (CCCC):

Simply Supported (SSSS):

In the result section we will consider both these bound-
aries for the purpose of generality. However, it should be 
noted that for graphene sheets as the main candidate for 
planar nano resonant sensors, carbon atoms next to the 
boundaries can easily move in transverse direction and 
the slope of deformed SLGSs next to the boundaries is 
considerable during vibration. Accordingly, for graphene 
based sensors it is recommended to address the results 
obtained by considering simply supported boundary 
conditions.

In the next section, this set of partial differential equa-
tions will be numerically solved as an eigenvalue problem 
in order to determine the frequency response of the nano 
plate with attached mass.

3  Pseudo‑spectral solution procedure

The spectral method as a powerful numerical technique 
has been widely applied to scientific problems (Boyd 
2000). Usually, for the non-periodic finite domains 
like plates, the collocation version of spectral method 
called the pseudo-spectral method with use of Cheby-
shev polynomials as the basis function could be the best 
choice (Jalali et al. 2010; Jalali et al. 2011). The basic 
idea in this method is to approximate the derivative of 
an unknown function, F, at a collocation point by an 
equivalent weighted linear sum of the function values at 
all collocation points. In one-dimensional domains it is 
explained as follows:

(9e)

a
∫

0

b
∫

0

{

KsA
(1 − ν)

2

(

w0,xx + w0,yy + ϕx,x + ϕy,y

)

−I0

(

ẅ0 − µ ẅ0,xx − µ ẅ0,yy

)

}

dxdy = K0

[

w0(x0, y0) − z0

]

(10a)Alledges : w0 = 0, ϕx = 0, ϕy = 0

(10b)
Atx = 0, a : w0 = 0, ϕy = 0, ϕx,x = 0

Aty = 0, b : w0 = 0, ϕx = 0, ϕy,y = 0

(11)

F(n)
,x (xi) =

N
∑

k=0

d
(n)

ik F(xk)or

{

F(n)
,x

}

(N+1)×1

=
[

D(n)
]

(N+1)×(N+1)
{F}(N+1)×1
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where (N + 1) is the number of collocation points, F(n)
,x (xi) 

indicates nth differentiation of function F in ith colloca-
tion point and 

[

D(n)
]

 is called the nth differentiation matrix 
whose components for the first derivative, 

[

D(1)
]

, based on 
Chebyshev basic functions are (Trefethen 2000):

The second differentiation matrix, 
[

D(2)
]

, can be easily 
computed as the square of 

[

D(1)
]

. Trefethen(2000) provides 
some explicit formulas for higher order differentiation 
matrices. The method could be extended to two-dimen-
sional domains by explaining the nth partial derivative by 
use of Kronecker products as follows:

(12a)d
(1)
00 =

2N2 + 1

6
, d

(1)
NN = −

2N2 + 1

6
,

(12b)
d

(1)
jj =

−xj

2

(

1 − x2
j

) , j = 1, . . . , N − 1,

(12c)d
(1)
ij =

ci(−1)i+j

cj

(

xi − xj

) , i �= j, i, j = 0, . . . , N ,

(12d)ci =

{

2 i = 0 or N,

1 otherwise

(13a)

{

∂(n)F

∂x(n)

}

(N+1)2×1

=
[

D
(n) ⊗ I

]

(N+1)2×(N+1)2
{F}

(N+1)2×1
,

(13b)

{

∂(m)F

∂y(m)

}

(N+1)2×1

=
[

I ⊗ D(m)
]

(N+1)2×(N+1)2
{F}

(N+1)2×1

(13c)

{

∂(n+m)F

∂x(n)∂y(m)

}

(N+1)2×1

=
[

D
(n) ⊗ I

]

(N+1)2×(N+1)2

[

I ⊗ D
(m)

]

(N+1)2×(N+1)2
{F}

(N+1)2×1

If A and B are two matrices of dimensions p × q and 
r × s, respectively, then the Kronecker product, A ⊗ B, 
is the matrix of dimension pr × qs with p × q block 
form, where the i,j block is aijB. Also, I denotes the 
(N + 1) × (N + 1) identity matrix (Trefethen 2000).

Chebyshev polynomials are orthogonal in the range 
of [−1, 1]. Therefore, the rectangular real domain of 
nano plate needs to be mapped to a 2 × 2 square com-
putational domain by the following transformations  
(see Fig. 2).

The grid points in both x̄ and ȳ directions are selected 
based on the Gauss–Lobatto interpolation points as follows 
to optimize the distribution (Boyd 2000):

Also, the following dimensionless parameters are intro-
duced to make the problem dimensionless.

where Ω and ω̄ are the factual and dimensionless natural 
frequency of the system, respectively. For the purpose of 
frequency analysis, the dimensionless displacement com-
ponents are considered as:

(14)x̄ =
2x

a
− 1, ȳ =

2y

b
− 1, x̄, ȳ ∈ [−1, 1]

(15)x̄i = cos

(

π i

N

)

, ȳj = cos

(

π j

N

)

, i, j = 0, 1, 2, . . . , N

(16)

(w̄0, z̄0) = (w0, z0)/h, α = h/a, β = h/b, γ = a/b,

µ̄ = µ/a2
, t̄ =

t

h

√

A/I0

(

ω̄ = Ωh
√

I0/A

)

,

m̄ = M0/ρhab, k̄ = K0/A

(17a)w̄0

(

x̄, ȳ, t̄
)

= w̄(x̄, ȳ)eiω̄t̄

(17b)ϕx

(

x̄, ȳ, t̄
)

= ϕ̄x(x̄, ȳ)eiω̄t̄

(17c)ϕy

(

x̄, ȳ, t̄
)

= ϕ̄y(x̄, ȳ)eiω̄t̄

Fig. 2  Real and computational 
domains
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Substituting Eqs. (14), (16) and (17a, 17b, c, d) into 
Eqs. (9a, b, c, d, e and 10a, b), the dimensionless eigen-
value problem for free vibration of nano plates with 
attached mass can be rewritten in the following form:

The dimensionless boundary conditions are
Clamped (CCCC):

Simply Supported (SSSS):

One can obtain the discrete form of equations based on 
the pseudo-spectral method by applying Eqs. (13a, b, c) to 
Eqs. (18a, b, c, d) and (19a, b)

(17d)z̄0

(

t̄
)

= z̄eiω̄t̄

(18a)

Ks

(1 − ν)

2

(

4α2w̄,xx + 4β2w̄,yy + 2αϕ̄x,x̄ + 2βϕ̄y,ȳ

)

= −ω̄2
(

w̄ − 4µ̄w̄,xx − 4γ 2µ̄w̄,yy

)

(18b)

4α2ϕ̄x,xx + 4ναβϕ̄y,xy + 2(1 − ν)

(

β2ϕ̄x,yy + αβϕ̄y,xy

)

− 6Ks(1 − ν)
(

ϕ̄x + 2αw̄,x̄

)

= −ω̄2
(

ϕ̄x − 4µ̄ϕ̄x,xx − 4γ 2µ̄ϕ̄x,yy

)

(18c)

4β2ϕ̄y,yy + 4ναβϕ̄x,xy + 2(1 − ν)

(

α2ϕ̄y,xx + αβϕ̄x,xy

)

− 6Ks(1 − ν)
(

ϕ̄y + 2βw̄,ȳ

)

= −ω̄2
(

ϕ̄y − 4µ̄ϕ̄y,xx − 4γ 2µ̄ϕ̄y,yy

)

(18d)k̄[w̄ − z̄](x0,y0) = −ω̄2 m̄

αβ
z̄

(18e)

1

∫
−1

1

∫
−1

{

Ks
(1 − ν)

2

(

4α2w̄,xx + 4β2w̄,yy + 2αϕ̄x,x̄ + 2βϕ̄y,ȳ

)

+ω̄2
(

w̄ − 4µ̄w̄,xx − 4γ 2µ̄w̄,yy

)

}

dx̄dȳ = 4k̄αβ
[

w̄(x̄0, ȳ0) − z̄
]

(19a)Atx̄ = −1, +1 and ȳ = −1, +1 : w̄ = 0, ϕ̄x = 0, ϕ̄y = 0

(19b)
Atx̄ = −1, +1 : w̄ = 0, ϕ̄y = 0, ϕ̄x,x̄ = 0

Atȳ = −1, +1 : w̄ = 0, ϕ̄x = 0, ϕ̄y,ȳ = 0

(20a)

Ks

(1 − ν)

2

(

4α2
(

D
(2) ⊗ I

)

{w̄} + 4β2
(

I ⊗ D
(2)

)

{w̄}

+2α

(

D
(1) ⊗ I

)

{ϕ̄x} + 2β

(

I ⊗ D
(1)

)

{

ϕ̄y

}

)

= −ω̄2
(

{w̄} − 4µ̄

(

D
(2) ⊗ I

)

{w̄}

−4γ 2µ̄

(

I ⊗ D
(2)

)

{w̄}
)

4α2
(

D
(2) ⊗ I

)

{ϕ̄x}

+ 4ναβ

(

D
(1) ⊗ I

)(

I ⊗ D
(1)

)

{

ϕ̄y

}

where {w̄}, {ϕ̄x} and 
{

ϕ̄y

}

 are the vectors of the dimension 
(N + 1)2 × 1 which indicate dimensionless displacement 
components in the grid points. The spectral analogs of 
boundary conditions for simply supported boundaries can 
be expressed as:

The standard matrix form of the eigenvalue problem of 
Eqs. (20a, b, c, d) and (21) could be presented as follows:

Equation (22), which represents the discrete govern-
ing equations of motion, is valid in all the grid points 
except than kth grid point where the mass-spring system 
is located, due to the singularity of the lateral govern-
ing equation in this point. Therefore, the lateral govern-
ing equation in kth grid point needs to be replaced with 
the integral Eq. (18e) as it will be explained in the next 
section.

4  Integral quadrature procedure

In integral quadrature (IQ) method, the main idea is to 
evaluate the integration of an arbitrary function, H, on a 
domain by an equivalent weighted linear sum of the func-
tion values at all collocation points of the domain (Eft-
ekhari and Jafari 2012). The IQ method for the present 
two-dimensional computational domain (Fig. 2) can be 
written as:
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For applying the method, it is necessary to determine the 
associated weighting coefficients, li. It can be simply per-
formed by introducing a set of (N + 1)2 polynomial test 
functions as follows (Eftekhari and Jafari 2012):

As the values of these polynomials are known in the grid 
points and the values of their integrals on the domain can 
be easily computed, the weighting coefficients matrix, [L], 
will be simply evaluated through an inverse problem.

Here, the IQ method will be implemented to discrete the 
integral form of the lateral governing equation of motion, 
Eq. (18e), as follows:

(23)

+1
∫

−1

+1
∫

−1

H(x̄, ȳ)dx̄dȳ =

(N+1)2

∑

i=1

liHi = [L]
1×(N+1)2{R}

(N+1)2×1

(24)Ht = xmyn, m, n = 0, . . . , N

To establish the standard eigenvalue form of the prob-
lem, the displacement vectors can be divided to the bound-
ary and the domain parts as follows.

where the subscripts b and d indicate boundary and domain, 
respectively. Then, the resulting eigenvalue of equations 
can be written in the matrix form as:
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(29b)[Kbb]{b} + [Kbd]{d} = 0,

(29c)[Kdb]{b} + [Kdd]{d} = −ω̄2([Mdb]{b} + [Mdd]{d})

(25)
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Now, the singular lateral governing equation in kth grid 
point in Eq. (22) could be replaced with Eq. (25) as the fol-
lowing matrix form:

where

Components of 
[

K̂
]

 are equal to zero except than two 
components in kth row which contains terms from the right 
hand of Eq. (25). Due to the simple form of matrices 
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 and 
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]

, Eq. (26a) can be rewritten in the following form:
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=
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K̂
]

/lk

Eliminating the boundary displacement vector, {b}, from 
Eq. (29a, 29b, 29c) one obtains

where 
[

K̄
]

 and 
[

M̄
]

 are the total stiffness and mass matrices, 
respectively.

5  Results and discussion

At first, the validation and convergence study is done to be 
sure about the reliability and accuracy of the solution pro-
cedure. Table 1 lists the fundamental frequency of a bare 
nano plate without any attached mass-spring system for 
various values of small scale parameter, length size, and 
aspect ratio. An excellent agreement with the exact results 
of nonlocal FSDT plate model by Pradhan and Phadikar 
(2009) is observed that confirms the competence of the pre-
sent method. Also, an admissible convergence is obtained 
with N = 8 grid points which is used for all the next results.
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Influence of attached mass-spring system on frequency 
response of the plate is presented in Table 2 and results are 
compared with exact results by Avalos et al. (1993). For pos-
sibility of comparison, small scale parameter, µ, is consid-
ered equal to zero and thickness to length size ratio is set to 
α = 0.001, as the result by Avalos et al. (1993) are presented 
for a thin macro plate. The desirable match between present 
and exact results proves the accuracy and efficiency of com-
bined pseudo-spectral and IQ approach in prediction of vibra-
tional characteristic of systems with concentrated objects.

In following, the frequency response of a nano plate 
carrying a mass-spring system is presented and influence 
of spring constant, small scale parameter, boundary condi-
tions, thickness to side ratio, aspect ratio, and mass loca-
tion on the frequency response as a resonant mass sen-
sor is discussed in detail. Since graphene is most famous 
nano structure with a plane shape and its potential appli-
cation as a resonant mass sensor is addressed in many 
recent researches, the material properties of nano plate in 
coming results are considered equal to a graphene sheet 
with Young’s modulus E = 1.06 TPa, Poisson’s ratio 
ν = 0.16, density ρ = 2250 kg/m3, and effective thickness 
h = 0.34 nm (Kitipornchai et al. 2005).

The potential application of a nano plate as a resonant 
sensor for detecting attached masses is related to its fre-
quency shift, Δf, due to changes in the value of attached 
mass. Frequency shift is defined as the difference between 
fundamental frequency of a nano plate with attached mass 
and fundamental frequency of a bare nano plate, f0, and 
dimensionless frequency shift is indicated as Δf/f0. In order 
to investigate the influence of elastic connection between 
the nano plate and the attached mass, Fig. 3 shows variation 
of Δf/f0 versus variation of dimensionless spring constant, k̄ 

for different values of thickness to side ratio, α. An attached 
mass of m̄ = 0.5 at the center of a simply supported square 
nano plate with µ̄ = 0.01 is considered. It is shown that 
for soft connections with small values of spring constant 
the frequency shift has its maximum value while increas-
ing the rigidity of connection decreases the frequency 
shift to an ultimate frequency shift of a fully rigid connec-
tion. It means that considering a rigid connection instead 
of an elastic one will underestimate the frequency shift 
of nano resonant sensors. It should be noted that for very 
small spring constants, the connection between the nano 
plate and the attached mass is not strong enough to allow 

Table 1  Convergence study of 
fundamental frequencies (THz) 
of simply supported nano plates. 
(

E = 1.06 Tpa, ρ = 2250 kg/m3,
)

(ν = 0.16, h = 0.34 nm)

γ a(nm) e0a0(nm) N = 5 N = 8 N = 10 Pradhan and Phadikar (2009) Error %

0.5 2.5 0 0.6319 0.6359 0.6359 0.6385 0.408

1 0.3666 0.3688 0.3688 0.3703 0.406

2 0.2120 0.2132 0.2132 0.2141 0.422

3 0.1460 0.1468 0.1468 0.1474 0.408

10 0 0.0406 0.0411 0.0411 0.0409 0.486

1 0.0383 0.0387 0.0387 0.0386 0.258

2 0.0333 0.0336 0.0336 0.0335 0.297

3 0.0280 0.0283 0.0283 0.0282 0.353

1 2.5 0 0.9933 0.9978 0.9978 1.0062 0.841

1 0.4873 0.4893 0.4893 0.4934 0.837

2 0.2692 0.2703 0.2703 0.2725 0.813

3 0.1832 0.1840 0.1840 0.1855 0.815

10 0 0.0651 0.0656 0.0656 0.0654 0.304

1 0.0595 0.0600 0.0600 0.0598 0.333

2 0.0487 0.0490 0.0490 0.0489 0.204

3 0.0391 0.0394 0.0394 0.0392 0.507

Table 2  Dimensionless frequency, ω̂ = Ωa2
√

I0/D = 2
√

3ω̄/α2, of 
a square SSSS plate with elastically mounted spring-mass system at 
its center (ν = 0.3, α = 0.001)

k̄ m̄ First mode Second mode

Present Avalos et al. 
(1993)

Present Avalos et al. 
(1993)

0.2 0.1 1.4126 1.41259 19.7600 19.75956

1.0 0.4467 0.44670 19.7599 19.75947

2.0 0.3159 0.31587 19.7599 19.75946

5.0 0.1998 0.19977 19.7599 19.75946

1.0 0.1 3.1437 3.14395 19.8450 19.84277

1.0 0.9942 1.00000 19.8437 19.84041

2.0 0.7030 0.70310 19.8436 19.84028

5.0 0.4446 0.44468 19.8436 19.84020

5.0 0.1 6.8514 6.85454 20.3224 20.30377

1.0 2.1734 2.17417 20.2588 20.24257

2.0 1.5370 1.53760 20.2559 20.23954

5.0 0.9722 1.00000 20.2542 20.23773
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them to vibrate together having a mode shape corresponds 
to the first mode shape of a bare plate, but with a smaller 
frequency. Hence, the minimum value of k̄ = 0.05 is con-
sidered in presented results. Although increasing thickness 
to side ratio decreases dimensionless frequency of nano 
plate due to shear deformation effects (Reddy 2003), how-
ever from Fig. 3 one can see that increasing thickness to 
side ratio increases dimensionless frequency shift for espe-
cially for soft connections. For a nano plate with a specified 
thickness, like graphene sheets with h = 0.34 nm, it means 
smaller sheets present higher value of Δf/f0 for a certain 
spring constant.

Figure 4 depicts the variation of dimensionless fre-
quency shift, Δf/f0 with respect to dimensionless nonlocal 
small scale parameter, µ̄, for various values of dimension-
less mass. Results are presented for a simply supported 
square nano plate with an attached mass-spring system in 
its center. It is observed that for every value of attached 
mass and spring constant, increasing nonlocal parameter 
causes a decrease in Δf/f0. It can be concluded that neglect-
ing the nonlocal small scale effect results in overestimating 
the capability of nano plates in resonant sensing applica-
tions. Two values of spring constant is considered in the 
presented results. From the plots in Fig. 3, for a nano plate 
with α = 0.03 the spring constant of k̄ = 0.05 is considered 
for a soft connection while k̄ = 0.30 is selected to represent 
an almost rigid connection. As it is expected soft connec-
tions propose greater frequency shifts for every value of the 
dimensionless nonlocal parameter and the attached mass.

Figure 5a demonstrates variation of dimensionless fre-
quency shift versus dimensionless attached mass for dif-
ferent values of dimensionless nonlocal parameter. Results 
are plotted for a simply supported square nano plate with 

α = 0.03 and a mass-spring attached in its center. It is obvi-
ous that when the value of attached mass increases the fre-
quency shift of nano plate increases. Indeed, it is the way 
to determine the value of mass by measuring the value of 
frequency shift. However, as it was observed in Fig. 4 for 
a constant value of attached mass, increasing the nonlocal 
parameter causes a decrease in frequency shift. It means 
nano plates with higher degree of discontinuity have less 
capability to detect attached particles. Dimensionless sen-
sitivity, S, is defined as the partial derivative of dimension-
less frequency shift with respect to dimensionless mass, 
∂(�f /f0)/∂(m̄). Figure 5b depicts dimensionless sensitivity 
of nano plates as the slope of Fig. 5a. In general, sensitivity 
increases when the dimensionless mass decreases and the 
maximum sensitivity is achieved when the mass tends to 
zero. Sensitivity decreases dramatically when the attached 
mass tends to the value as great as the nano plate mass 
(m̄ = 1), which means nano plates are not much sensitive 
to the changes of the value of attached mass for such heavy 
masses.

Boundary conditions can significantly affect the fre-
quency shift. As it is expected, clamped boundaries present 
higher dimensionless frequency shift than simply supported 
ones due to increasing total stiffness of the system. Table 3 
lists the percent of enhancing of dimensionless frequency 
shift due to changing boundary conditions from simply 
supported to clamped boundaries. It is seen that when the 
dimensionless nonlocal parameter increases the enhancing 
effect of clamped boundaries increases. Also, nano plates 
with clamped boundaries present greater enhancing effect 
when the dimensionless attached mass is smaller.

In order to explore the influence of aspect ratio, γ, vari-
ation of dimensionless frequency shift versus aspect ratio 

Fig. 3  Dimensionless frequency shift versus dimensionless 
spring constant for various values of thickness to side ratios 
(µ̄ = 0.01, m̄ = 0.5, γ = 1, x̄0 = ȳ0 = 0, B.C. : SSSS)

Fig. 4  Dimensionless frequency shift versus dimensionless nonlocal 
small scale parameter for various values of dimensionless attached 
mass and spring constant (α = 0.03, γ = 1, x̄0 = ȳ0 = 0, B.C. : SSSS)
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for various values of spring constant is shown in Fig. 6. 
An attached mass of m̄ = 0.5 at the center of a simply sup-
ported nano plate with µ̄ = 0.01 and α = 0.03 is consid-
ered. Results reveal that increasing aspect ratio decreases 

the frequency shift which means for a specified thickness 
to side ratio, nano plates with longer rectangular shapes 
have less dimensionless frequency shift and the maximum 
belongs to square nano plates. Also, it is shown that soft 
connections between nano plates and the attached mass 
propose greater frequency shifts especially for rectangular 
plates with great aspect ratios.

The position of attached mass is also a significant issue. 
Figure 7 gives the influence of the attached mass-spring 
position on dimensionless frequency shift of a square nano 
plate with µ̄ = 0.01 carrying an attached mass of m̄ = 0.5

. Although the absolute maximum frequency shift occurs 
when the mass is exactly located at the center of plate, for 
a central area equals to 25 % of the total sensing surface, 

(a)

(b)

Fig. 5  a Dimensionless frequency shift, b dimensionless sensi-
tivity, versus dimensionless attached mass for various values of 
dimensionless nonlocal small scale parameter and spring constant 
(α = 0.03, γ = 1, x̄0 = ȳ0 = 0, B.C. : SSSS)

Table 3  Percent of increase (%) of dimensionless frequency shift 
(�f /f0) due to changing boundary conditions from SSSS to CCCC

m̄ k̄ µ̄

0.00 0.01 0.03 0.06

0.3 0.05 28.97 29.49 30.08 30.34

0.25 23.98 24.14 24.27 24.39

0.5 0.05 22.12 22.92 24.21 25.53

0.25 18.58 18.94 19.52 20.25

1.0 0.05 14.71 15.41 16.69 18.35

0.25 12.60 12.97 13.64 14.55

Fig. 6  Dimensionless frequency shift versus aspect ratio for various 
values of spring constant (α = 0.03, µ̄ = 0.01, m̄ = 0.5, x̄0 = ȳ0 = 0,

B.C. : SSSS)

Fig. 7  .



Microsyst Technol 

1 3

the frequency shifts are at least 70 % of the absolute maxi-
mum value. The frequency shifts decrease dramatically by 
approaching the boundaries. Hence, in particular it is rec-
ommended to locate the measured object as near as the 
center of resonant sensor.

This work aims to parametrically investigate the influ-
ence of geometric parameters and material properties 
of a planar nanostructure on its potential application as a 
resonant mass sensor. The aforementioned results may be 
used as a general guideline for designing future such nano 
resonant sensors. Hence, all provided results are dimen-
sionless to keep the generality and possibility of applica-
tion for various planar nano sensors. However, it should 
be noted that based on selected nanostructure as resonant 
sensor and specifying the object nano particle, all the geo-
metric and material properties can be obtained and the pre-
sented dimensionless results can be utilized. For instance, 
an SLGS with a proper surface area may be selected to 
detect metallic nanoparticles. In this case, all the geomet-
ric parameters and material properties of graphene are 
specified and the spring constant is considered to represent 
atomic forces between carbon atoms of SLGSs and the 
attached metallic particle.

6  Conclusion

In the present study, the potential application of nano plates 
as nano resonant mass sensors is investigated by introduc-
ing a nonlocal shear deformation plate model with an elas-
tically mounted attached mass. A combination of pseudo-
spectral and integral quadrature methods is implemented 
to numerically determine the frequency shift caused by 
attached mass-spring system. Influence of several dimen-
sionless parameters like small scale parameter, spring con-
stant, thickness to side ratio, aspect ratio, mass location and 
boundary conditions on the frequency shift is discussed in 
detail and the conclusions are listed as follows.

•	 The validation study approves that the proposed com-
bined numerical method can be implemented to solve 
structural problems with concentrated objects.

•	 Increasing the spring constant results in lower values 
of frequency shift. Therefore, it can be conclude that 
considering rigid connection instead of elastic one will 
underestimate the frequency shift of nano resonant sen-
sor.

•	 Nano plates with greater aspect ratios offer lower 
dimensionless frequency shifts and the maximum is 
related to a square one. Also, increasing thickness to 
side ratio increases dimensionless frequency shifts.

•	 Nano plates with clamped boundary conditions present 
greater dimensionless frequency shift in comparison to 

simply supported ones, especially when the dimension-
less attached mass is smaller.

•	 Increasing the small scale parameter causes a decrease 
in frequency shift. It means neglecting nonlocal small 
scale parameter results in overestimating the frequency 
shift of nano resonant sensors.

•	 Increasing the value of attached mass as well as closing 
it to the center of plate increase the frequency shift.
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