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Abstract. Drilling perforations and tool wear are intimately and mutually connected by fracture prop-
agations at different size-scales. To study this interaction phenomenon, we propose an ad hoc devel-
oped fractal coupled theory. Describing the two processes in terms of drilling and wear velocities,
the theory is able to predict the relation between these two quantities. The result is represented by a
power law between wear and drilling velocities with exponent comprised between 2/3 and 3/2. Some
experimental tests on different materials like mortar, concrete and reinforced concrete have also been
performed. Theoretical predictions and experimental results agree satisfactorily.
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1. Introduction

Drilling and wear are different forms of the same physical phenomenon, i.e., fracture.
Drilling (Carpinteri and Pugno, 2002a) can be considered simply artificial fragmenta-
tion. On the other hand, wear is studied in the Tribology science. The word Tribology
is derived from the greek word tribos, meaning “rubbing” and it is defined as “the
science and technology of interacting surfaces in relative motion and of the prac-
tices related thereto‘’. It embraces the scientific investigation of all types of friction,
lubrication and wear and also the technical application of tribological knowledge
(Rabinowicz, 1995).

Focusing our attention on wear, we can distinguish four main forms of wear (Ra-
binowicz, 1995):
1. Adhesive wear occurs when two smooth bodies are sliding one over each other, and

fragments are pulled off one surface and adhere to the other. It derives from the
strong adhesive forces set up whenever atoms come into intimate contact.

2. Abrasive wear occurs when a rough hard surface, or a soft surface containing hard
particles, slides on a softer surface and ploughs a series of grooves on it.

3. Corrosive wear occurs when sliding takes place in a corrosive environment. In the
absence of sliding, the products of the corrosion will form a film on the surfaces.
This film tends to slow down or even arrest the corrosion. However, the sliding
action wears the film away, so that the corrosive attack continues.

4. Surface fatigue wear occurs during repeated sliding or rolling over a track. The
repeated loading and unloading cycles to which the materials are exposed may



132 A. Carpinteri et al.

induce the formation of surface or subsurface cracks, which eventually will result
in the formation of large fragments, leaving large pits in the surface.
Other forms of wear are

5. Fretting occurs when contacting surfaces undergo oscillatory tangential displace-
ment of small amplitude.

6. Erosion is a process in which a particle carried in a fluid medium hits a solid sur-
face and removes material from it (low-speed, high-speed and cavitation erosion).

7. Impact wear happens when two surfaces collide while having large relative veloci-
ties normal to their interface.

8. Brittle fracture wear occurs during sliding in brittl materials, when a characteristic
series of cracks is observed in the wear track. Subsequently, large wear particles
tend to be produced during surface breakup.
The examination of a failed sliding member, to determine the type of wear respon-

sible, can be a complex process; several pioneer manuscripts deal with this topic
(Snook, 1953; Burwell, 1957; Furman et al., 1957; Love, 1957; Sprague and Dundy,
1959; Eyre, 1976).

In this paper we try to unify all these different wear mechanisms on the basis of
their particle production, applying the universal law for the energy dissipation dur-
ing fragmentation (Carpinteri and Pugno, 2002b). A fractal approach is expected to
be powerful in the context of wear, as emphasized in a recent analysis on erosion due
to space debris impacts (Carpinteri and Pugno, 2004a).

Considering tool wear during drilling perforations, the studies of impregnated dia-
mond core-bits have been largely concentrated on the diamond wear. The documen-
tation on metal matrix wear and the wear of the entire impregnated diamond tool
is rare and substantially experimental (Miller and Ball, 1990, 1991; Tian and Tian,
1994). Experimental results on micro-bit drilling tests indicate that the penetration
per revolution is one of the most important factors influencing the wear of impreg-
nated diamond bits. In fact, the bit weight loss per distance drilled increases drasti-
cally with an increase in the penetration per revolution. On the other hand, the bit
weight loss per distance drilled is found to decrease slightly with an increase in the
rotational speed.

Referring to the described wear types, the wear modes for the drilling process are
substantially of brittle fracture, abrasive, adhesive and erosion. Under ordinary dril-
ling conditions, the brittle fracture wear is the predominant wear mode. This wear
mechanism generates sharp diamonds. On the other hand, under very small applied
thrust loads, the abrasive wear is the predominant wear mode. This wear mechanism
generates excessive wear flats at the diamond cutting edges that often result in rapid
decrease of the penetration rate. Furthermore, under very high penetration rates, the
so-called “micro-burn” phenomenon takes place at the cutting surface. Drilling detri-
tus particles adhere to the matrix between diamond grits. They are delaminated under
rock abrasion, causing rapid adhesive wear of the impregnated diamond bit. In addi-
tion, the flow of drilling detritus constitutes the major abrasive third body against the
matrix; in this case, the wear of the bit matrix is a mixed micro-ploughing process of
erosion.

In order to achieve the proper wear rate of bit matrix in steady state drilling, it
is important to maintain an optimal value of penetration per revolution to produce
the right amount of drilling detritus under the bit cutting face and a proper diamond
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cracking for maintaining rock cutting ability. If the penetration per revolution is too
large, excessive wear of diamonds and metal matrix takes place, shortening the work-
ing life of the diamond bits. On the other hand, if the penetration per revolution is
too small, excessive wear flats of diamond cutting edges result in a rapid decrease of
the penetration rate.

As previously argued, drilling perforation and tool wear appear complex phenom-
ena, intimately and mutually connected. In the present paper, we propose a cou-
pled theory, based on statistical and fractal concepts (Mandelbrot, 1982; Feder, 1988;
Turcotte, 1992; Carpinteri and Pugno, 2002a,b), to describe the phenomena from a
global point of view. According to Carpinteri and Pugno (2002a), the drilling process
is described in terms of drilling velocity. A similar global parameter, the wear rate, is
introduced to describe the tool wear. The coupled fractal theory is able to predict the
relationship between these two quantities.

2. Coupled law of drilling and wear velocities

In this section we present a coupled law of drilling and wear velocities based on clas-
sical wear concepts. The wear loss w is defined as the volume removed V per unit
area A and per unit length x of sliding (Horbogen, 1986), i.e.,

w = V

xA
= V̇

ẋA
, (1)

where the dot over the symbol has the meaning of time derivative.
On the other hand, the wear coefficient k is defined as the probability of wear in

the portion of the surface which is interacting (Horbogen, 1986)

w =k
Acontact

A
=k

F

AH
, (2)

where Acontact is the portion of the nominal area A in contact, H is the hardness
(of the worn material) and F is the thrust. The main difference between the wear
loss w and the wear coefficient k is that the first is not a material property being
thrust-dependent. On the other hand, the second, in the classical approach, can be
considered as a material property and it is obviously thrust-independent.

Assuming that all the friction energy is dissipated in wear (e.g., a soft body sliding
on a rigid surface), we have

dW =µFdx, (3)

where µ is the friction coefficient (between the two materials in contact). Eliminating
F from Eqs. (2) and (3), we obtain

w = k

AHµ

dW

dx
= k

AHµ

Ẇ

ẋ
. (4)

From Eq. (1) and from the definition of wear resistance S = Ẇ/V̇ , ratio of dissi-
pated power to removed volume per unit time (Paone and Bruce, 1963; Carpinteri
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and Pugno, 2002), we have

w = V̇

ẋA
= 1

ẋA

Ẇ

S
. (5)

Combining Eqs. (4) and (5), we obtain the wear resistance S, which is a macroscopic
parameter, as a function of microscopic material constants

S = µH

k
. (6)

The developed theory has permitted to obtain the relationship between the classi-
cal wear coefficient k and the wear strength S (of the tool with hardness H). If Eq.
(6) were applied to the drilling process, S would represent the drilling strength (of the
base-material). In this latter case, the drilling strength S is a function of the friction
coefficient µ, of the hardness H and of the wear coefficient k of the base material.

It is important to emphasize that the derivation of Eq. (6) is rigorous only for a
pure wear (or drilling) process, i.e., when we assume that the whole power is entirely
dissipated in wear (or drilling). This can not be assumed (by definition) in a coupled
(e.g., drilling-wear) theory, for which the Equation (6) must be modified taking into
account that not the whole power is dissipated in wear (or drilling). According to
these considerations, the hypothesis used in Eq. (3) must be replaced with the fol-
lowing relationship:

dWi =αiµFdx, αi = Ẇi

Ẇ
, (7a)

2∑
i=1

αi =1, (7b)

where αi is the ratio of the power Ẇi , dissipated in the drilling (i =1) or wear (i =2)
processes, to the total power supplied Ẇ . As a consequence, Eq. (6) becomes

Si =αi

µHi

ki

, (8)

Hi and ki being the hardness and the wear coefficient for the base (i = 1) and tool
(i = 2) materials. As a first approximation, for a multiphase material, they can be
obtained from the usual rules of mixture (Horbogen, 1986; Zum-Gahr, 1987)

Hi =
∑

j

v
(i)
j H

(i)
j , (9)

ki =
∑

j

v
(i)
j k

(i)
j , (10)

v
(i)
j being the volumetric percentage of the phase j in the composite material i, and

H
(i)
j , k

(i)
j the corresponding hardness and wear coefficient. Thus, by Eq. (10) different

materials or cut configurations in reinforced concrete (e.g., “central” and “banana”
cuts, see Figure 1) can be investigated.
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Figure 1. Central and banana-cut re-bar configurations.
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Figure 2. Wear vs. drilling depth for reinforced concrete in central cut configuration.

Table 1. Experimental results of wear and drilling depths.

Material Reinforced concrete Reinforced concrete Mortar Concrete 1 Concrete 2
central cut banana cut

δ2

δ1

∼= δ̇2

δ̇1
60×10−5 43×10−5 9×10−5 3×10−5 60×10−5

Equation (8) is useful, permitting us to obtain theoretically the ratio between wear
and drilling velocities (coupled parameter)

α2

α1
≡ Ẇ2

Ẇ1
= S2A2δ̇2

S1A1δ̇1
= α2µH2

k2

k1

α1µH1

A2δ̇2

A1δ̇1
= α2H2k1A2δ̇2

α1H1k2A1δ̇1
, (11)

where A1, A2 are the area of the ring hole and of the segments, respectively, (A1
∼=

A2) and δ̇1, δ̇2 are the drilling and wear velocities (V̇i =Aiδ̇i), from which the Coupled
Law becomes

δ̇2

δ̇1
= H1k2A1

H2k1A2
= constant (12)

and predicts a linear relationship between wear and drilling velocities, as a function
of classical parameters like hardness and wear coefficient of base and tool materials.
This law can be considered only a first approximation of the physical reality (since
it neglects the multi-scale and fractal character of the energy dissipation, see Section
3), as shown by our experimental results (Figures 2–6 and Table 1). The tests were
performed on tool segment profiles by a computer aided optical system. The experi-
mental apparatus is able to take into account the volumetric wear rate.
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Figure 3. Wear vs. drilling depth for reinforced concrete in banana cut configuration.
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Figure 4. Wear vs. drilling depth for mortar.
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Figure 5. Wear vs. drilling depth for concrete 1.
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Figure 6. Wear vs. drilling depth for concrete 2.

Even if Eq. (12), as emphasized, represents a simplification of the reality, it allows
one to solve the coupled problem. We have in fact

Ẇi =αiẆ =SiAiδ̇i =αi

µHi

ki

Aiδ̇i (13)
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and, eliminating αi

δ̇i = kiẆ

µAiHi

. (14)

It is important to emphasize that, in Eq. (14), Ẇ is the total (measurable) power and
not the unknown power fractions dissipated in the wear or drilling processes. This
equation can be used to evaluate both the wear and drilling velocities. Usually, the
drilling and wear resistances (as well as the wear coefficient) can be considered con-
stant parameters. Substantially, this is a consequence of the classical wear theory pro-
posed by Reye (1860) 140 years ago and universally accepted, for which the removed
volume is proportional to the energy dissipation (see also Villaggio, 2001). As a con-
sequence, drilling and wear velocities become proportional to the power consump-
tion. For a better description, we have to take into account the multi-scale and frac-
tal character of the phenomenon. A “geometrical” multifractal extension has been
also proposed by the same authors (Carpinteri and Pugno, 2003).

3. Fractal coupled law of wear and drilling velocities

In this section, a multi-scale and fractal theory, extending the classical concepts
developed in the previous one, is presented. This theory is substantially based on
the fractal universal law for energy dissipation during fragmentation (Carpinteri and
Pugno, 2002b), that can be here summarized as

Ẇ =�∗V̇ γ , 2/3�γ �1, (15)

i.e., the power Ẇ dissipated in the comminution process is proportional to the frag-
mented volume per unit time V̇ raised to a fractal exponent γ , comprised between
2/3 and 1. For wear it can be considered the generalisation of the Reye’s hypothesis
(Reye, 1860). As a matter of fact, the energy dissipation is classically assumed arising
in a volume, so that γ =1. On the other hand, if the dissipation arises on a surface,
the fractal exponent becomes γ =2/3. In general, it arises over a fractal domain com-
prised between a surface and a volume, so that 2/3�γ �1. �∗ is the so-called fractal
fragmentation strength and appears to be a constant, differently from the usual frag-
mentation strength S. It is important to emphasize that its physical dimensions are
[F ] [L]1−3γ [T ]γ−1 and become those of a pressure only in the classical case of γ =1.
Therefore, we can define a fractal wear loss w∗, generalising the classical concept, as
proportional to the energy dissipated in the comminution wear process, per unit area
A, per unit length x of sliding and per unit time

w∗ = V̇ γ

ẋA
. (16)

On the other hand, the fractal wear coefficient k∗ can be defined as the probability
of wear in the portion of the surface which is interacting

w∗ =k∗ Acontact

A
=k∗ F

AH
. (17)

where Acontact is the portion of the nominal area A in contact, H is the hardness (of
the worn material) and F is the thrust. The main difference between the fractal wear
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loss w∗ and the fractal wear coefficient k∗ is that the first is not a material property
being thrust-dependent. On the other hand, k∗ can be considered as the real mate-
rial constant with anomalous dynamic dimensions of [L]3(γ−1) [T ]1−γ . It is important
to emphasise that only in the classical case γ =1 it is a dimensionless parameter.

The energy dissipated during a pure wear process can be obtained from Eq. (3).
Eliminating F from Eqs. (3) and (17), we obtain

w∗ = k∗

AHµ

dW

dx
= k∗

AHµ

Ẇ

ẋ
. (18)

From Eq. (16) and from the definition of fractal wear strength �∗ (see Eq. (15)), we
have

w∗ = V̇ γ

ẋA
= 1

ẋA

Ẇ

�∗ . (19)

Combining Eqs. (18) and (19), we obtain the fractal wear strength �∗ as

�∗ = µH

k∗ . (20)

The developed theory has facilitated the relationship between the fractal wear
coefficient k∗ and the fractal wear strength �∗ (of the tool with hardness H). For γ

tending to 1, Eq. (20) becomes Eq. (8) (energy dissipation assumed to occur in a vol-
ume).

If Eq. (20) were applied to the drilling process, �∗ would represent the fractal dril-
ling strength (of the base material). It is a macroscopic parameter (Carpinteri and
Pugno, 2002, 2003) and has been previously obtained as a function of microscopic
material constants, like the hardness H and the fractal wear coefficient k∗ of the base
material.

It is important to emphasize that relationship (20) is rigorous only for a pure wear
(or drilling) process, i.e., we have assumed that the whole power is entirely dissipated,
even if on a multi-scale domain – in wear (or drilling). This can not be assumed (by
definition) in a coupled (e.g., drilling-wear) theory, for which the Equation (20) must
be modified taking into account that not the whole power is dissipated in wear (or
drilling). According to these considerations, Eq. (3) must be replaced with Eq. (7)
and, consequently, Eq. (20) becomes

�∗
i =αi

µHi

k∗
i

. (21)

As a first approximation, for a multiphase material Hi can be obtained from the
classical rule of mixture of Eq. (9) (Hornbogen, 1986; Zum-Gahr, 1987) and k∗

i from
the fractal rule of mixture (Carpinteri and Pugno, 2004b):

k∗
i =

∑
j

(
v

(i)
j

)γi

k
∗(i)
j , (22)

where v
(i)
j being the volumetric percentage of the phase j in the composite material i

(having fractal exponent γi), and H
(i)
j , k

∗(i)
j the corresponding hardness and fractal
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Figure 7. Bilogarithmic diagram wear vs. drilling depth for reinforced concrete in central cut config-
uration.
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Figure 8. Bilogarithmic diagram wear vs. drilling depth for reinforced concrete in banana-cut config-
uration.

wear coefficient. Equation (21) is useful, permitting us to obtain theoretically the
relationship between wear and drilling velocities (coupled parameter)

α2

α1
≡ Ẇ2

Ẇ1
= �∗

2

(
A2δ̇2

)γ2

�∗
1

(
A1δ̇1

)γ1
= α2µH2

k∗
2

k∗
1

α1µH1

(
A2δ̇2

)γ2

(
A1δ̇1

)γ1
= α2H2k

∗
1

(
A2δ̇2

)γ2

α1H1k
∗
2

(
A1δ̇1

)γ1
(23)

from which the Fractal Coupled Law becomes

δ̇
γ2
2

δ̇
γ1
1

= H1k
∗
2A

γ1
1

H2k
∗
1A

γ2
2

(24)

and takes into account the coupling of the multi-scale energy dissipations over fractal
domains. It is a power-law relationship; since 2/3�γi �1, its limit cases are

δ̇2 ∝ δ̇
2/3
1 , (25a)

δ̇2 ∝ δ̇
3/2
1 , (25b)

i.e., the exponent of the drilling velocity is theoretically comprised between 2/3 and
3/2.

The Fractal Coupled Law agrees well with the experimental results on impreg-
nated diamond drilling tests performed by ourself and other authors (Miller and Ball,
1990, 1991; Tian and Tian, 1994), showing that the main parameter influencing the
wear of the tool is the drilling velocity.

We have performed some experimental tests on tool segment profile by a computer
aided optical system. The corresponding wear as a function of the drilling depth con-
firms fractal exponents comprised between the limit cases of mortar (0.68) and con-
crete (1.43), for all the materials tested and tools utilized (Figures 7–11), according
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Figure 9. Bilogarithmic diagram wear vs. drilling depth for mortar.
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Figure 10. Bilogarithmic diagram wear vs. drilling depth for concrete 1.
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Figure 11. Bilogarithmic diagram wear vs. drilling depth for concrete 2.

Table 2. Experimental results of wear and drilling fractal exponents.

Material Reinforced concrete Reinforced concrete Mortar Concrete 1 Concrete 2
central cut banana cut

γ1

γ2
0.80 0.99 0.67 1.43 0.87

δ2

(δ1)
γ1
γ2

[m]1− γ1
γ2 76×10−5 43×10−5 19×10−5 1×10−5 7×10−5

to Eqs. (25). The experimental results are summarized in Table 2, where the slopes of
the straight lines, γ1/γ2, and the values of their intercepts, δ2/(δ1)

γ1/γ2 are reported.
This allows one to solve the coupled problem. We have in fact

Ẇi =αiẆ =�∗
i

(
Aiδ̇i

)γi =αi

µHi

k∗
i

(
Aiδ̇i

)γi (26)
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and, from Eq. (24), the total power consumption becomes

Ẇ =�∗
1

(
A1δ̇1

)γ1 +�∗
2

(
A2δ̇2

)γ2 =
(

�∗
1 +�∗

2

(
H1k

∗
2

H2k
∗
1

))(
A1δ̇1

)γ1 =�∗ (
A1δ̇1

)γ1
. (27)

It is important to emphasize that, in Eq. (27), Ẇ is the total (measurable) power and
not the unknown power fractions dissipated in the wear or drilling processes. Due to
this reason, the process constant �∗ can be determined just with one experiment; the
constant �∗ represents the fractal strength, size and drilling velocity independent, for
the studied coupled drilling and wear phenomenon.

From Eq. (27), we can obtain a multi-scale prediction of the drilling velocity and
Eq. (24) may provide the corresponding wear velocity.

4. Conclusions

The developed theory has permitted to predict the relationship between drilling and
wear velocities, as described by the Fractal Coupled Law of equation (24), taking
into account the coupling of the multi-scale energy dissipations over fractal volumes.
The experiments on wear and drilling velocities, summarized in Figures 7–11 and in
Table 2, agree well with the theoretical fractal predictions. By using Eqs. (24) and
(27), we can obtain separately the drilling and wear velocities during perforations as
functions of the total (measurable) power consumption. It has been emphasized how
Eq. (15) can be considered as a generalisation of the classical Reye’s assumption on
wear (Reye, 1860).

The fractal coupled theory of drilling and wear describes the competition between
the energy consumption in these two different processes. Fractal exponents γ around
1 would describe dissipations in a volume, as well as fractal exponents γ around 2/3
describe dissipations on a surface. Therefore, the ratio γ1/γ2 between the two fractal
exponents depends on the domain (volume or surface or fractal set) in which the two
energy dissipations arise.
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