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In this paper, the effects of rippling on the bending stiffness of a monolayer graphene are studied. The
initial rippling of the surface is modeled by cosine functions with a hierarchical topology. Considering
both large displacement and small scale effect, the governing equilibrium equations are determined and
solved. Then an equivalent bending stiffness is calculated for a rippled graphene and the effects of
rippling, material discreteness, and structural dimension on its stiffness are discussed in details. The

results quantify how the rippling strongly increases the effective bending stiffness of graphene and in-
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teracts with the discrete nature of the material not only because of increase in the moment of inertia.
This approach can be applied to ripples design of 2D materials in order to achieve stiffening in bending as
required in specific applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is a novel material with remarkable mechanical,
thermal and electrical properties and one of the strongest materials
tested in terms of elastic modulus and tensile strength [1,2].
Although monolayer graphene has an exceptional stiffness, it is
easily warped in out-of-plane direction and exhibits ripples [3] and
folds [4]. A detailed analysis beyond the harmonic approximation
proved that the coupling between bending and stretching modes
stabilizes the atomical thin membranes through deformations in the
third dimension called ripples [5]. In studies by Transmission Elec-
tron Microscopy (TEM), it has been shown that the freely suspended
graphene sheets are not perfectly flat and exhibits intrinsic micro-
scopic roughening with out of plane displacement up to 1 nm [5].

Due to the large computational expenses of nano-structures
analyses when using atomic lattice dynamics and molecular dy-
namic simulations [6], there is a great interest in applying quasi-
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continuum mechanics to explain size effects at the nano-scale [7].
There are several articles in the literature that studied the linear
analysis of graphene sheets and nanotubes based on the quasi-
continuum mechanics [8—12]. The linear vibration [13—15], buck-
ling [16,17] and wave propagation [18] analyses of graphene sheet
were studied using nonlocal elasticity theory. Also, Jomehzadeh
and Saidi [19] decoupled the three dimensional nonlocal equations
of nanoplates considering the length scale effect.

In reality, no physical system is strictly linear and hence the
linear models of physical systems have their own limitations. In
general, linear models are only restrictively applicable when the
amplitude is very small. Thus, in order to accurately identify and
understand the behavior of a nano-structural system under general
loading conditions, it is also essential to model the nonlinearities of
the system. Xu and Liao [20] investigated the elastic response of a
circular single layered graphene sheet under a transverse central
load using molecular dynamics and continuum mechanics. They
found that the continuum mechanics can yield predictions close to
the molecular mechanics under large deformation for certain
loading configurations, when modes of deformation are similar. A
theoretical framework of nonlinear continuum mechanics was
developed by Lu and Huang [21] for a graphene sheet under both
in-plane and bending deformation. They have shown that graphene
becomes highly nonlinear and anisotropic under finite strain
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uniaxial stretch, and the coupling between stretch and shear exists
except for stretching in the zigzag and armchair directions. Duan
and Wang [22] studied the deformation of a single layered circular
graphene sheet under a central point load by using molecular
mechanics and nonlinear plate theory. They found that, with
properly selected parameters, the von Karman plate theory can
provide a remarkably accurate prediction of the graphene sheet
behavior under linear and nonlinear bending and stretching. Rezaei
Mianroodi et al. [23] studied the nonlinear vibrational properties of
single layer graphene sheets using a membrane model. The
nonlinear equation of motion was obtained for graphene including
the effects of stretching due to large amplitudes.

Wang [24] presented molecular mechanics simulations for
bending rigidity of a graphene by calculations of its strain energy
subjected to a point loading. The rigidity was found to be depen-
dent on the size, deflection and shape of graphene. Considering the
small scale effect, postbuckling, nonlinear bending and nonlinear
vibration analyses were presented for simply supported stiff thin
films in thermal environments [25,26]. Also, Jomehzadeh and Saidi
[27] studied the large amplitude free vibration of multi layered
graphene sheets using the nonlocal elasticity.

Graphene is intrinsically non-flat and tends to be corrugated
due to the instability of two-dimensional crystals. Since the
deformation of graphene can strongly affect its properties and the
performance of graphene-based devices and materials [28], it is
highly desirable to obtain and control the stiffness of a wrinkled
graphene. Also, since graphene sheets can undergo large
displacement within the elastic limit, the nonlinear analysis is
clearly essential. Although some researchers studied the rippling of
graphene [29—31], the effects of length scale and geometrical
nonlinearity on the stiffness of a rippled graphene have not yet
investigated. In this article, the changes of bending—stretching
stiffness due to wrinkling are investigated for a monolayer gra-
phene. In order to consider the bending—stretching coupling,
nonlinear equations of large displacement are taken into account
and an equivalent size-dependent bending stiffness is obtained for
arippled graphene. The effects of initial amplitude and frequency of
surface on the bending stiffness of a rippled graphene are quanti-
fied and compared with the predictions based on the bending
moment of inertia for the first time.

2. Surface wrinkling

Description of the surface topography is important in applications
involving contact, friction, lubrication, and wear. The same concept of
the roughness has statistical implications as it considers some factors
such as sampling size and interval. In order to describe the effect of
roughness, three general mathematical surface modeling techniques
can usually be used, fractal geometry, Fourier transforms and sinu-
soidal function. A fractal surface is continuous but non-differentiable
and can be represented by Weierstrass—Mandelbrot (W—M) function
for one dimensional problems [32]. In fact, the real part of W—M
fractal function is a superposition of cosines with geometrically
spaced frequencies and amplitudes that obey a power law. Moreover,
the essence of the Fourier transform of a wave form is to decompose
or separate it into a sum of sinusoids of the different frequencies.
Therefore, it is quite reasonable to model the roughness of the surface
by the composition of trigonometric functions and it is a simplified
model of the surface profile.

Let us consider a graphene sheet that is not initially flat with
projection of dimensions l; and I, in x; and x, directions and
thickness I3 (Fig. 1). The Cartesian coordinate system is fixed at the
center of the middle plane in its undeformed state. In order to
model the wrinkling of the surface, we consider cosine terms with
arbitrary amplitudes and frequencies as

N
u0(x1,%) =y I3Ay cos (n”;:rx] ) cos (nkaxz) (1)

k=1 I

where Ay are the amplitudes of the wrinkling and parameters nqy
and nyj are the frequencies of the surface roughness in x; and x;
directions, respectively. By changing the frequencies and ampli-
tudes, several models for surface rippling can be obtained. For
example, the configuration of the surface with N = 2 is shown in
Fig. 2 and it can be seen that this expression is capable of modeling
a wide range of initial ripple modes even with N = 2.

3. Governing equations

Thanks to the thin lateral dimension of graphene sheets, the
Kirchhoff hypotheses [33] for displacement of graphene are appli-
cable. Therefore, the displacement components of a rippled gra-
phene can be represented as
U, =u, — X3U3 4, Us = u® + U3 (2)
where u, = uy(xy, x) are the displacement components at the
middle plane and x3 is the transverse direction. A comma stands for
differentiation with respect to the suffix index and the « can be 1 or
2. In whole of the article the Greek subscripts changes from 1 to 2.
As described in Eq. (1), u® is the initial displacement of the mid-
plane in transverse direction due to existence of the surface
rippling.

Since the linear theories are suitable only for infinitesimal
displacement of structures, it is recommended to use nonlinear
geometrical theories for large displacement of graphene [21,22].
Therefore, here the theory of large deflection of von Karman is
considered. In von Karman theory, nonlinear terms that depend on
us are retained, therefore the Green strain components of this
theory are expressed as [34].

Eaf = (uaﬁ + uﬂ,a + u3ﬁau3«ﬂ + 2u3,au?3> /2 - X3u3,a67 (3)

In order to describe the long-range interatomic interactions in
nano-scale materials and express the results in term of the size of
body, the nonlocal theory of elasticity can be used. The theory of
nonlocal elasticity was first extensively developed from the early
seventies in the last century [35]. The theory states that the stress at
a point in a body depends not only on the classical local strain at
that particular point but also on the spatial integrals with weighted
averages of the local strain contribution of all other points in the
body. Therefore, the nonlocal constitutive equations have the
following form

Gag(%) = Cagyrens + / Caprn (3, X ) (X )dX’ (4)

where ¢4 is the nonlocal stress component, ¢,¢ strain component
and Cygy, the elastic coefficient of material.

The nonlocal effect is thus indented through the introduction of
a nano-scale which depends on the material internal characteristic
length and can capture the discreteness of the material. This in-
ternal length has no influence at macro-scale where the structure
size is much bigger and hence the nonlocal effect vanishes for
classical mechanics. Since the nonlocal stress components (o,4) are
related to strains components (ey;) by an integral form, the gov-
erning equations are expressed in integro-differential equations.
Due to the integral form of the nonlocal stress, its final equations
are more difficult to solve with respect to the differential form. An
exact or approximate solution for the nonlocal integral function can
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I

Fig. 1. The geometry of a rippled graphene.

be determined in some very special circumstances using the Green
function and hence its use is rather limited. However, Eringen [36]
presented an equivalent expression of the nonlocal stress in an
equivalent differential form for nonlocal stress components as

1- (eOa)2V2 o = Cozﬁy)u‘syl (5)

where (ega)® = u is a small length scale or nonlocal parameter, eg is
a numerical constant to adjust the model to match the reliable
experimental results, a is an internal characteristic length such as
C—C bond length or wave length and V2 = () ;; + () 5, is the Lap-
lacian operator. Also, the Greek subscript can be 1 or 2. The nonlocal
effect is presented through the introduction of a nonlocal length
scale (1) which depends on the material and internal characteristic
length [8]. The ratio between nonlocal length scale to structural size
goes to zero at macro-scale and hence the nonlocal effect vanishes
in the limit of large structures recovering the classical mechanics. It
was noted that the equilibrium equations have the same form for
local and nonlocal theories [37]. However, the resultant forces and
moments of the nonlocal theory contain small scale effect. In fact,
these parameters are defined in terms of nonlocal stress and not
local one as

I/2 L2
Nog = / oap X3, Mys = / oapX3 dxs (6)
) —i3/2

in which ¢4 has been defined in Eq. (5). Nog and Mg are the in-
tensities of forces and moments, i.e., forces and moments per unit
length of the midplane.

It should be noted that the properties of the graphene depend
on the direction of chiral angle and they should be modeled as an
anisotropic directionally dependent material. Obtaining the resul-
tant forces and moments for an anisotropic graphene with
considering the small scale effect, the nonlocal nonlinear governing
equilibrium equations for a monolayer orthotropic graphene sheet
can be obtained as [38]:

Di1u3 1111 + 2(D12 + 2D33)u3 1122 + D22tz 2222

- (1 - (eoa)2V2>P(x1,x2) + (1 - (eoa)2v2)
x ((UO + u3>>”¢,22 - 2<UO + u3)>12€0,12

+ (UO + U3>Y22<ﬂ?11) (7a)

A119.1111 +2(A12+2A33)9 1122 +A220 2222

0 0 0
=U312U3 12 — U3 11U322 +2U3 12U 5 — U3 11U —Us Uy (7D)

where P(x1, X2) is the external pressure in transverse direction and
Djj is the bending stiffness of graphene

I3/2
Dij = Qz]x% dX3 (8)
—13/2

in which Q; is the plane-stress material constants and the sub-
scripts i and j changes from 1 to 3. Since the thickness of graphene is
thin and the initial deflection is small than the thickness, the plane-
stress state can be assumed for its modeling [13,25]. The parame-
ters Ay, Djj and Q; are defined in Appendix A in terms of material
properties of graphene sheet. Also, the stress function ¢ is defined
as

Ni1 =92, Npn=¢11, Np=-9¢1 9)
where N is the resultant force defined in Eq. (6). As it can be seen,
the governing equations (7) are two nonlinear partial differential
equations in terms of the transverse deflection and stress function.

4. Solution

Let us consider the large deflection of a graphene sheet with
uneven surface subjected to a constant pressure in transverse di-
rection. It is assumed that the sheet has either hinged or clamped
edges in which the conditions can be written as

L/2
Hinged:u; :0,1\/11-1:0,(0112:07 <P,22dX2:0
—1,/2
atxq :-_Fl—lt /
2 L/2
Clamped:u3:07 usq :0,(;2712 :O7 ®22 dX2:0
—h/2
1/2
Hinged:u3 =0,M5;=0,¢ 1, =0, ¢11dx; =0
I —1,/2
atxy; =+=
2772 b2
Clamped:u3=0,u3>=0,¢ 1, =0, ¢ 11dx;=0
L2

(10)
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b)

Fig. 2. Two samples of rippled graphene: a) ny; = ny; = 31, ny3 = nyy = 201, b) nyy = nyy = 51, nyy = nyy = 101,

Regarding to these boundary conditions and loading pressure,

the transverse deflection can be assumed in the following form For clamped graphene us(x;,x,) =l3u3 cos? (”Txl) cos? (“TXZ)
1 2
11b
Forhinged graphene u3(xq,x3)=I3u3cos (wa1> cos (Wl—xz> (11D)
1 2 Substituting Eq. (11) into Eq. (7b) and considering the initial

(11a) configuration as given by Eq. (1), the general solution for the stress
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function ¢ can be obtained. Substituting the resulting stress func-
tion into Eq. (7a) and applying Galerkin's technique [39], one can
obtain a single algebraic equation as follow

U%+A1U§+12U3+A3:O (12)

where 13, A2 and A3 are three coefficients which depend on the
material properties and geometric parameters. By obtaining the
amplitude uz from the above equation and putting the result into
Eq. (11), the transverse deflection of a graphene layer with an initial
rippling can be defined.

5. Closed form solution

To understand the effects of nonlocality and rippling more
clearly, a closed form solution is obtained for a special case. To this
end, a square graphene (l; = I, =) with isotropic material properties
is considered. For this case, the relation between external pressure
and transverse deflection of a rippled graphene is obtain as

6 N 302 n2
p=" lle{ (1 £y T (1,2 (1 +27r2%)Aﬁ)u3
4l ok 2(Nnp+1) !

+§(1—y2) (1+2w21ﬁ2)u§}

(13)

where D = EI3/12(1 — »?) is the bending stiffness of the classical
theory, E and v are Young modulus and Poisson's ratio of the
isotropic graphene, respectively. It can be seen that the relation is
nonlinear with respect to graphene deflection (us) therefore it can
capture the large displacement. It is easily verified that for a flat and
linear classical case (Ax =0, u% =0, u =0), Eq. (13) becomes the
prediction of the classical plate theory [40].

As it is seen from Eq. (13), the external pressure is related to the
non-dimensional deflection (us), with two coefficients which
represent the stiffness of graphene. The coefficients of uz and u3
indicate the effects of bending stiffness and stretching—bending
stiffness, respectively. It can be seen that the bending stiffness of
graphene increases by square power of rippling amplitude (A;).
However, the bending—stretching stiffness is not related to initial
rippling. It can be said that when a flat graphene wrinkles, its
stretching or in-plane stiffness decreases while its bending stiffness
increases. In our case, the invariant of stretching—bending stiffness
due to uneven surface indicates that these two effects neutralize
each other. Also, it can be seen that the initial rippling of graphene
causes increase in the stiffness. It can be concluded that the
nonlocal parameter plays a significant role in a rippled graphene.

Based on the Eq. (13), an equivalent bending stiffness for a
square rippled graphene can be obtained as

N 3112 n2
Deq—(l +5 Ttk 1_V2)<1 +27r21ﬁ2)Aﬁ
i=1 2k + 1)

3 p
+3 (1-) (1 + 27r21—2) ug)D

and for the linear case (u3 = 0), it becomes
N 3n2 n2

Deg = (1 +Y Ik (1-,2) (1 +27r2*2‘)Aﬁ>D (15)
i1 2(nqgng+1) L

To understand the changes of the bending stiffness due to
wrinkling, the equivalent linear bending stiffness of simply

supported rippled graphene to its flat counterpart (D), is depicted in
Fig. 3 for one term wrinkling (N = 1) and equal wave numbers in the
two directions (n1; = ny; = n). It can be seen that the bending stiff-
ness of a rippled graphene is more rigid than a flat one.

Variation of the bending stiffness ratio versus the surface rough-
ness frequency is shown in Fig. 4 for several length scale parameters. It
can be seen that the frequency of surface wrinkling has considerable
effects on the bending stiffness of graphene and it causes a rapid in-
crease in stiffness at low values of length scale. It can be seen that the
variation of stiffness converges to a specific value of frequency and
after that increase in surface frequency does not significantly change
the graphene stiffness. Since the projection length of graphene (1) is
constant, increase the frequency of surface roughness causes an in-
crease in the graphene length and this decreases its stiffness. At higher
frequencies, decrease of stiffness due to the length elongation coun-
teracts the increase in the stiffness due to rippling.

As a flat surface of the graphene changes to an uneven surface,
length of graphene decreases to keep constant surface area. A
crumpled sheet is an example of this case. It is clear that when a
sheet is crumpled by closing then opening, its surface area remains
constant and thus its projection lengths decrease due to the surface
roughness. To examine such a case, three rippled graphene sheets
with constant area, equal to 1 nm?, are considered with different
frequencies of the surface roughness. In these cases, because the
graphene area is kept constant, variation of surface roughness cau-
ses the change in projection lengths, e.g., graphene sheets withn =3,
n=11and n =21 have projection lengths equal to 0.9972, 0.9654 and
0.8979, respectively. The variation of the equivalent stiffness is
depicted in Fig. 5 for constant area graphene sheets with different
roughness frequencies. It can be seen that the bending stiffness in-
creases with increase in the frequency and it does not converge.

6. Pure geometrical model for an equivalent stiffness

In the previous sections, the rippling of graphene has been
modeled by an initial geometry. As the graphene surface becomes
wavy, its moment of inertia changes and this causes increase in its
stiffness. Thus, one can also find an equivalent stiffness of a wrin-
kled graphene for small roughness with pure geometrical consid-
erations in addition to the previous method. Consider a graphene
with an initial roughness like Eq. (1), then the bending stiffness for
a differential element of a non-flat shape can be written as

u0+l3/2
dDij = QI]X% dX3 (]6)
u0—13/2

As it can be seen the interval of the integral changes because of
the initial deflection u°. Since u° is not constant through the sur-
face, the integral and therefore the bending stiffness changes at
every point. In order to obtain an equivalent stiffness for a rippled
graphene, the average stiffness through the surface is calculated as

; ul+1h/2 3
Dl] :§ qug dX3 ds = %
s uo;[3/2
L2 hL/)2 3 P
Wi , 0 0
T () () oo

~b2 L2
(17)

where ds is an area element and u° is the initial deflection. Also, S is
the area of the wrinkled graphene as
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Fig. 3. Variation of the equivalent bending stiffness ratio of a rippled graphene with respect to surface parameters (epa = 0.1, » = 0.149).

2

L/2  L/2 duo 2 duO
u u

-L/2 —L/2

By substituting Eq. (1) into Eq. (17) and calculating the integrals,
an equivalent bending stiffness is obtained for a rippled graphene
by a pure geometrical model.

7. Numerical results

In order to verify the accuracy of the formulations, the results
are compared with available results for classical (epa = 0) corru-
gated plate. The stiffness of sinusoidal or cosine corrugated plate in
one direction was approximated in literature with an orthotropic
model [41]. In order to compare with this model, ny; = 0 has been
considered in our model. The results are compared in Fig. 6 with a
sinusoidal corrugated plate with the additional rigidities and it can
be concluded that formulations have a good accuracy.

For numerical simulations, the following material properties are
considered for the graphene layer [26,38].

2 ——cooT=
= ~N OO -
- oo
19F
18F
1.7F
16F ST
=] o
14 E 58888558589
13F
- u=(0.31°
12 u=(0.21y°
- u=(0.11y°
1.1
1F
— L l L L l L L l L L l L L
0 2 4 6 8 10

Fig. 4. Variation of equivalent bending stiffness versus frequency of surface rippling
(A1 =05, v = 0.149).

Dy; =0.234nNnm = 1.46eV; Dy, = 0.229 nNnm
—143eV; vy =0.149; 1y =0.145 (19)

where Bi,- = E,~,~l§/12(1 —v1avp1) is the bending modulus of a flat
graphene. Also, the nonlocal parameter and external loading are
considered equal to epa = 0.25 nm and P = 10E;(l3/1)%
respectively.

In order to find the linearity range of graphene deflection, the
maximum deflection of a flat graphene versus external load is
shown in Fig. 7. It can be seen that deflection of graphene is
completely nonlinear especially for large values of external pres-
sure. It can be concluded that for higher deflection, the in-plane
stretching—bending effects become more significant and they
play an important role in bending of graphene. Also, it can be seen
that the graphene has a hardening stiffness. Thus, in order to cap-
ture these effects and obtain more accurate results from large
deflection, the nonlinear effects should be considered.

To capture the stiffness of graphene for large deflection, the
gradient of the force—displacement curve is calculated as

35 q
3k
|- c
i —=—— n=3
25
a |
2
15
1&7—@//%‘ R P R !
0 0.1 0.2 0.3 0.4 0.5

Fig. 5. Variation of equivalent stiffness for different rippled graphene with constant
surface area (ega = 0.3, v = 0.149).
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Fig. 6. Comparison of the maximum deflection with one directional corrugated model
(En1 = Ez2 = 3.85 kPa, v = 0.148, A = 0.113).

op

K= s (20)

The variation between this stiffness to that of a flat graphene is
shown in Fig. 8 (for one and two terms uneven surface). Since we
have considered the nonlinear case, the stiffness is not constant and
depends on the external force. As it can be seen stiffness of a rippled
graphene has hardening effect and increases with respect to the
external force. It can also be seen that hierarchical rippling can
further increase the stiffness of a rippled graphene. Thus, it can be
concluded that the effect of surface amplitude on the graphene
stiffness is much more pronounced than the effect of surface
frequency.

The maximum non-dimensional central transverse deflection u3
for different values of initial wave number is presented in Table 1. A

1

B 7/
- v
| v
| e
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i — — — — Linear Model P 7
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B e
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| e
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Fig. 7. Variation of transverse deflection of flat graphene versus the external pressure.
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Fig. 8. Variation of stiffness of rippled graphene versus the surface amplitude
(12 = naz = 101).

Table 1
Maximum transverse deflection of graphene (us3) for different values of wave
number (A = 2I3, Ay = I5/4).

Ny = N N1z = N22

0 51 101
3 0.434 (3.5%) 0.4341 (3.56%) 0.4341 (3.56%)
5 0.432 (3.97%) 0.4319 (4.04%) 0.4319 (4.04%)
11 0.4311 (4.22%) 0.4308 (4.29%) 0.4308 (4.29%)
101 0.4308 (4.29%) 0.4305 (4.35%) 0.4259 (5.38%)

square graphene with dimension of 1 nm is considered and the
amplitudes of rippling waves are assumed as Ay = 2I3 and A, = I3/4.
The value in parenthesis is the decrease percentage of non-
dimensional deflection from that of flat graphene which is 0.45. It
can be seen that the first wave numbers (111, n1) have considerable

0.04
0.035
0.03
0.025
=0.02
0.015
0.01

0.005

Fig. 9. Transverse deflection of graphene for different initial surfaces and lengths.
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0.5 j Equivalent stiffness technique
= 045 e
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B e e

1

Fig. 10. Variation of maximum deflection of graphene with respect to initial rippling
for the two proposed methods (ny; = ny; =3, A, = 0, ega = 0).

effect on the stiffness of graphene. As the flat surface of graphene is
changed to uneven surface, its moment of inertial rapidly increases
and it causes an increase in stiffness. It can be seen that this effect is
more significant for lower wave numbers. A graphene with higher
values of wave numbers can be regarded as an opened crumpled
graphene. It can be seen that the roughness of graphene surface
significantly increases its stiffness.

When a flat surface of graphene changes to uneven surface,
length of graphene decreases due to constant surface area. Trans-
verse deflection of middle line of graphene versus x; direction is
depicted in Fig. 9 for a flat and uneven surface with constant area
and constant length. It can be seen that for an opened crumpled
graphene with constant surface area, the decrease of the transverse
deflection is very considerable. As compared to graphene sheets
with constant length but different surface area, the effect of length
change on the stiffness is more than that of roughness for an
opened crumpled graphene.

In order to define the maximum value of roughness amplitude,
in which the equivalent pure geometrical stiffness is a good
approximation of the real stiffness, the variation of maximum
deflection is depicted in Fig. 10 for both of the presented ap-
proaches. The equivalent geometrical stiffness has a suitable ac-

8. Conclusions

The effect of rippling on the bending stiffness of graphene has been
presented. Rippling has been modeled by cosine functions with
arbitrary amplitudes and frequencies. In order to obtain more accurate
results for large deflection, nonlinear strain—displacement relations
have been used according to von Karman assumptions. The governing
equilibrium equations have been determined by considering the small
scale effect and then solved using the Galerkin's method. Effects of
initial roughness, small length scale and dimension on the stiffness of
graphene have been discussed in details. The results reveal that the
rippling strongly increases the stiffness of graphene and affects the
behavior of small length scale. It has been concluded that the effect of
changing length on stiffness is more pronounced than changing
roughness for an opened crumpled graphene. It has been proved that
the increase in stiffness due to uneven surface is more considerable
when the small length scale is considered. This study can help design
of graphene with higher bending stiffness.
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Appendix A

The coefficients of the governing equilibrium equations are
obtained in terms of the mechanical properties of graphene as

Q2 _ Q2

Al] :—7 b
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curacy only for small rippling amplitudes, e.g., for initial (A1)
dimensionless amplitude of 1.5, the error becomes about 4.4%.
where the plane-stress constants are defined as

Eq1(cos* 0 + 2vy; sin® 6 cos 0) + Ey» sin* ¢ )

Q= + 4G, sin® 6 cos? 6
1 — vy

Eq (sin? 6 cos? 6 + vyq sin® 6 + v; cos? 6) + E, sin’ 6 cos? ¢ -

Qpp = — 4G5 sin® g cos® 6
(A.2)

En sin? 0 + 2vy; sin® 0 cos? 0) + E,y cos? ¢

1 — w10

<
( 1T— v
(
<

E“ sin® 6 cos? 0 — 2vyq sin® 6 cos 0) + Eop sin® ¢ cos? 0

1 -2

+ 4Gy, sin? 6 cos? ¢

+ G2 (cos2 0 — sin® 0)



202 E. Jomehzadeh, N.M. Pugno / Composites Part B 83 (2015) 194—202

where 6 denotes the chiral angle, E1; and E» are Young's modulus
in the direction and perpendicular of chiral vector, respectively.
Also, G2 and » are the shear modulus and Poisson's ratio of the
graphene sheet, respectively.

References

[1] Lee C, Wei X, Kysar JW, Hone ]. Measurement of the elastic properties and

intrinsic strength of monolayer graphene. Science 2008;321:385—8.

Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior

thermal conductivity of single-layer graphene. Nano Lett 2008;8:902—7.

[3] Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene. Nat Mater
2007;6:858—61.

2

[4] Kim K, Lee Z, Malone BD, Chan KT, Alemdn B, Regan W, et al. Multiply folded
graphene. Phys Rev B 2011;83:245433.
[5] Meyer JC, Geim AK, Katsnelson MI, Booth TJ, Roth S. The structure of sus-

pended graphene sheets. Nature 2007;446:60—3.

[6] Sung-Chiun S, Jia-Lin T. Characterizing thermal and mechanical properties of
graphene/epoxy nanocomposites. Compos Part B Eng 2014;56:691—7.

[7] Atalaya ], Isacsson A, Kinaret JM. Continuum elastic modeling of graphene
resonators. Nano Lett 2008;8:4196—200.

[8] Arash B, Wang Q. A review on the application of nonlocal elastic models in
modeling of carbon nanotubes and graphenes. Comput Mater Sci 2012;51:
303-13.

[9] Rafiee R, Maleki Moghadam R. On the modeling of carbon nanotubes: a critical
review. Compos Part B Eng 2014;56:435—49.

[10] Tserpes KI, Papanikos P. Finite element modeling of single-walled carbon
nanotubes. Compos Part B Eng 2005;36:468—77.

[11] LuX, Hu Z. Mechanical property evaluation of single-walled carbon nanotubes
by finite element modeling. Compos Part B Eng 2012;43:1902—13.

[12] Baykasoglu C, Kirca M, Mugan A. Nonlinear failure analysis of carbon nano-
tubes by using molecular-mechanics based models. Compos Part B Eng
2013;50:150—7.

[13] Murmu T, Adhikari S. Nonlocal vibration of bonded double-nanoplate-sys-
tems. Compos Part B Eng 2011;42:1901—11.

[14] Mohammadi M, Ghayour M, Farajpour A. Free transverse vibration analysis of
circular and annular graphene sheets with various boundary conditions using
the nonlocal continuum plate model. Compos Part B Eng 2013;45:32—42.

[15] Karlici¢ D, Adhikari S, Murmu T, Caji¢ M. Exact closed-form solution for non-
local vibration and biaxial buckling of bonded multi-nanoplate system.
Compos Part B Eng 2014;66:328—39.

[16] Mohammadi M, Farajpour A, Moradi A, Ghayour M. Shear buckling of
orthotropic rectangular graphene sheet embedded in an elastic medium in
thermal environment. Compos Part B Eng 2014;56:629—37.

[17] Radi¢ N, Jeremi¢ D, Trifkovi¢ S, Milutinovi¢ M. Buckling analysis of double-
orthotropic nanoplates embedded in Pasternak elastic medium using
nonlocal elasticity theory. Compos Part B Eng 2014;61:162—71.

[18] Narendar S, Gopalakrishnan S. Nonlocal continuum mechanics based ultra-
sonic flexural wave dispersion characteristics of a monolayer graphene
embedded in polymer matrix. Compos Part B Eng 2012;43:3096—103.

[19] Jomehzadeh E, Saidi AR. Decoupling the nonlocal elasticity equations for three
dimensional vibration analysis of nano-plates. Compos Struct 2011;93:
1015-20.

[20] Xu X, Liao K. Molecular and continuum mechanics modeling of graphene
deformation. Mater Phys Mech 2001;4:148—51.

[21] Lu Q, Huang R. Nonlinear mechanics of single-atomistic—atomic layer gra-
phene sheets. Int ] Appl Mech 2009;1:443—67.

[22] Duan WH, Wang CM. Nonlinear bending and stretching of a circular graphene
sheet under a central point load. Nanotechnology 2009;20:075702.

[23] Rezaei Mianroodi ], Amini Niaki S, Naghdabadi R, Asghari M. Nonlinear
membrane model for large amplitude vibration of single layer graphene
sheets. Nanotechnology 2011;22:305703.

[24] Wang Q. Simulations of the bending rigidity of graphene. Phys Lett A
2010;373:1180-3.

[25] Shen L, Shen HS, Zhang CL. Nonlocal plate model for nonlinear vibration of
single layer graphene sheets in thermal environments. Comput Mater Sci
2010;48:680—5.

[26] Shen HS, Shen L, Zhang CL. Nonlocal plate model for nonlinear bending of
single-layer graphene sheets subjected to transverse loads in thermal envi-
ronments. Appl Phys A 2011;103:103—-12.

[27] Jomehzadeh E, Saidi AR. A study on large amplitude vibration of multilayered
graphene sheets. Comput Mater Sci 2011;50:1043—51.

[28] Pereira VM, Castro Neto AH, Liang HY, Mahadevan L. Geometry, mechanics,
and electronics of singular structures and wrinkles in graphene. Phys Rev Lett
2010;105:156603.

[29] Wang CY, Mylvaganam K, Zhang LC. Wrinkling of monolayer graphene: a
study by molecular dynamics and continuum plate theory. Phys Rev B
2009;80:155445.

[30] Surya V], lyakutti K, Emelda K. Ripples in graphene: a theoretical analysis
using two dimensional vibrating membrane model. In: Solid State Physics
Proceedings of the 55th DAE Solid State Physics Symposium, vol. 1349; 2010.
p. 297-8.

[31] Bonilla LL, Carpio A. Model of ripples in graphene. Phys Rev B 2012;86:
195402.

[32] Berry MV, Lewis ZV. On the Weierstrass—Mandelbrot fractal function. Proc R
Soc A 1980;370:459—-84.

[33] Kirchhoff GR. Uber das gleichgewichi und die bewegung einer elastishem
scheibe. ] Reine Angew Math 1850;40:51—88.

[34] Von Karman Th. Encyklop die der mathematischen. Wissenschaften 1910:
5—6.

[35] Eringen AC, Edelen DGB. On nonlocal elasticity. Int ] Eng Sci 1972;10:233—48.

[36] Eringen AC. On differential equations of nonlocal elasticity and solutions of
screw dislocation and surface waves. ] Appl Phys 1983;54:4703—10.

[37] Jomehzadeh E, Saidi AR, Pugno NM. Large amplitude vibration of a bilayer
graphene embedded in a nonlinear polymer matrix. Phys E Low-Dimens Syst
Nanostr 2012;44:1973—82.

[38] Jomehzadeh E, Afshar MK, Galiotis C, Shi X, Pugno NM. Nonlinear softening
and hardening nonlocal bending stiffness of an initially curved monolayer
graphene. Int ] Non-Linear Mech 2013;56:123—31.

[39] Vendhan CP, Das YC. Application of Rayleigh—Ritz and Galerkin methods to
non-linear vibration of plates. J Sound Vib 1975;39:147—57.

[40] Ventsel E, Krauthammer T. Thin plates and shells: theory, analysis, and ap-
plications. Marcel Dekker, Inc; 2001. p. 51.

[41] Reddy JN. Theory and analysis of elastic plates. Taylor & Francis; 1999. p. 136.


http://refhub.elsevier.com/S1359-8368(15)00430-8/sref1
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref1
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref1
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref2
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref2
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref2
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref3
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref3
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref3
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref4
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref4
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref4
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref5
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref5
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref5
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref6
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref6
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref6
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref7
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref7
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref7
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref8
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref8
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref8
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref8
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref9
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref9
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref9
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref10
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref10
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref10
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref11
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref11
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref11
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref12
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref12
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref12
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref12
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref13
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref13
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref13
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref14
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref14
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref14
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref14
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref15
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref16
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref16
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref16
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref16
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref17
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref18
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref18
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref18
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref18
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref19
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref19
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref19
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref19
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref20
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref20
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref20
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref21
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref21
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref21
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref21
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref22
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref22
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref23
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref23
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref23
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref24
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref24
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref24
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref25
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref25
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref25
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref25
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref26
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref26
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref26
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref26
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref27
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref27
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref27
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref28
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref28
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref28
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref29
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref29
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref29
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref30
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref30
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref30
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref30
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref30
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref31
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref31
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref32
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref32
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref32
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref32
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref33
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref33
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref33
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref34
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref34
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref34
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref35
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref35
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref36
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref36
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref36
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref37
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref37
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref37
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref37
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref38
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref38
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref38
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref38
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref39
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref39
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref39
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref39
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref40
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref40
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref41
http://refhub.elsevier.com/S1359-8368(15)00430-8/sref41

	Bending stiffening of graphene and other 2D materials via controlled rippling
	1. Introduction
	2. Surface wrinkling
	3. Governing equations
	4. Solution
	5. Closed form solution
	6. Pure geometrical model for an equivalent stiffness
	7. Numerical results
	8. Conclusions
	Acknowledgment
	Appendix A
	References


