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Continuum modeling of free-standing graphene monolayer, viewed as a two dimensional 2-lattice,

requires specification of the components of the shift vector that acts as an auxiliary variable. If only

in-plane motions are considered, the energy depends on an in-plane strain measure and the shift

vector. The assumption of geometrical and material linearity leads to quadratic energy terms with

respect to the shift vector, the strain tensor, and their combinations. Graphene’s hexagonal symme-

try reduces the number of independent moduli then to four. We evaluate these four material param-

eters using molecular calculations and the adaptive intermolecular reactive empirical bond order

potential and compare them with standard linear elastic constitutive modeling. The results of our

calculations show that the predicted values are in reasonable agreement with those obtained solely

from our molecular calculations as well as those from the literature. To the best of our knowledge,

this is the first attempt to measure mechanical properties when graphene is modeled as a hexagonal

2-lattice. This work targets at the continuum scale when the insight measurements come from finer

scales using atomistic simulations. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928464]

I. INTRODUCTION

Ever since its discovery,8 graphene attracted significant

attention in the mechanics literature. Many works are devoted

on evaluating graphene’s Young’s modulus and Poisson ratio,

either by experimental or computational means. Lee et al.14

conduct nanoidentation measurements using an atomic

force microscope and measure Young modulus, E, of 340

6 40 N m�1, or of 1 6 0.15 TPa when graphene’s thickness is

assumed to be 0.335 nm, for a monolayer graphene. Cadelano

et al.3 combine tight binding atomistic simulations with

continuum elasticity theory and report an E of 312 N m�1

(0.93 TPa) and Poisson ratio � ¼ 0:31. Other tight binding

calculations10 report an E of 1.21 TPa.

Zhou and Huang31 utilize molecular dynamics and employ

the Tersoff–Brenner potential to evaluate E¼ 235 N m�1

(0.70 TPa), and � ¼ 0:413. Zhou et al.32 use molecular

mechanics to simulate an identation experiment end valuate

E¼ 1.19 TPa. A molecular dynamics method using the

Brenner potential9 render E ¼ 1.272 TPa and �¼ 0.147,

while Reddy et al.23 use the Tersoff–Brenner potential to

arrive at E¼ 0.67 TPa, � ¼ 0:42.

Empirical force constant calculations16 report E¼ 384 N

m�1 (1.15 TPa), and � ¼ 0:227, while ab-initio calcula-

tions13 arrive at E¼ 345 N m�1 (1.02 TPa), and � ¼ 0:149.

Other works15 utilize ab-initio methods as well and report

E¼ 350 N m�1 (1.04 TPA), and � ¼ 0:186. Kalosakas

et al.11 perform calculations from first principles to parame-

trize classical potentials and evaluate a Young modulus of

320 N m�1 (0.95 TPa). A density functional theory12 renders

E¼ 1.24 TPa.

Arroyo and Belytschko2 use a finite deformation contin-

uum theory derived from interatomic potentials to derive

E¼ 235 N m�1 (0.70 TPa), and � ¼ 0:413. Essentially, they

use a finite element formulation whose potential derive

from atomistic pictures, in line with the quasicontinuum

approach,30 combined with an appropriate definition of the

Cauchy–Born rule for surfaces.1 Finite element calculations

using the truss model22 result at E¼1.11 TPa and � ¼ 0:45.

The braced truss model24 using the AMBER force field result

at E¼ 1.22 TPa, while when the Morse force field is used

they render E¼ 1.91 TPa. In a recent review paper,7 we sum-

marize the relevant literature on graphene mechanics as

probed by deformation and spectroscopic measurements and

as calculated by ab-initio, molecular simulations, and contin-

uum mechanics methods.

The present work is a continuation of our previous

efforts25–28 to properly model graphene at the continuum

level. The starting point is the modeling of graphene as a

hexagonal 2-lattice,6 in line with well established theories of

multilattices.4,17–20 By making appropriate hypothesis (see

Ref. 25), one works with an energy depending on an in-planea)dsfyris@iceht.forth.gr or dsfyris@sfyris.net
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strain measure, the curvature tensor, and the shift vector.

Graphene’s symmetry is taken into account, in this frame-

work, by adding the structural tensor to the list of independ-

ent variables of the energy. This way the complete and

irreducible representation of the energy is evaluated and

from it, the stress tensor, the couple stress tensor as well as

the driving force related with the shift vector.

Simple closed form solutions for this genuinely geomet-

rically and materially nonlinear theory are reported in Ref.

26. The geometrically and materially linear counterpart of

the above theory is given in Ref. 27. There, graphene’s

energy is assumed to have quadratic dependence on the in-

plane strain measure, the curvature tensor, the shift vector as

well as to quadratic combinations of them. Hexagonal sym-

metry reduces then the overall number of moduli to nine. If

in-plane motions are considered, only four material parame-

ters should be determined; these are the constants

c1; c2; c5; c9 in the terminology of Ref. 27.

The present work is concerned with the evaluation of

these four material parameters using molecular mechanics

with the Adaptive Intermolecular Reactive Empirical Bond

Order (AIREBO) potential. So, while the overall theory

applies to the continuum scale, the calculations come from

atomistic insights in finer scales. We correspond to the mate-

rial parameters at the continuum level, four well defined

measures from molecular considerations. The strategy for

doing that is non-standard and goes as follows: we start at

the discrete level where we focus on graphene’s unit cell and

distinguish between the measured length of the shift vector

and the length of the lattice vectors. Then, we apply a tensile

strain up to 6% along the armchair direction for a graphene

monolayer that contains 31 600 carbon atoms. Then, we

evaluate the radial distribution diagram describing length

change due to loading for carbon–carbon connections.

At zero strain level, we find two peaks on the radial dis-

tribution diagrams: one corresponding to the equal length of

the lattice vectors (approximately 0,242 nm), while the other

peak corresponds to the shift vector (approximately

0,140 nm). As strain is gradually applied, we find that these

peaks split into 2 new peaks each. These peaks measure

changes that happen to graphene’s unit cell due to applied

strain. To these four peaks, we correspond, at the continuum

level, the four required material parameters c1; c2; c5; c9. To

do this we first define four strain measures as the differences

between the length at the peak point for strain level of 6%,

minus the initial length corresponding to the peak at zero

strain, divided by the initial length. We plot the applied

stress versus these four newly defined strain quantities.

Slopes of these four diagrams correspond to the material pa-

rameters c1; c2; c5; c9.

As a minimum validation/calibration of our approach,

we compare with reported values of E, and � from the litera-

ture. To obtain the relation of ðE; �Þ with ðc1; c2; c5; c9Þ, we

solve the equations ruling the shift vector, to express the

components of the shift vector as a function of the strain

components. Since the problem is geometrically and materi-

ally linear this is feasible; for the nonlinear case this would

have been cumbersome, if not non-solvable explicitly.

Having these expressions at hand, we can invert the

stress–strain relations to obtain the required expression of

ðE; �Þ as function of ðc1; c2; c5; c9Þ. Having ðc1; c2; c5; c9Þ
evaluated from molecular calculations, we can then evaluate

ðE; �Þ¼ (1.37 TPa, 0.41) for our framework.

Values for E and � from the reported literature (see the

first four paragraphs of this section) range as E¼ 0.67�1.91

TPa and �¼ 0.14–0.45 depending on the methodology used.

The central tendency of these values for E is the value

1 6 0.15 TPa. Compared to this value our outcome of

ðE; �Þ¼ (1.37 TPa, 0.41) overestimates these quantities but

still remain within the range of acceptable values. From the

literature cited, the continuum methods (i.e., the finite ele-

ment approaches of Refs. 2, 22, and 24) tend to have greater

discrepancy from the value 1 6 0.15 TPa. Thus, our theory,

being ultimately a continuous theory, is expected to follow

this trend.

On the other hand, our pure molecular mechanics mod-

eling render values ðE; �Þ¼ (0.95 TPa, 0.20). These values

are obtained using the definition of the AIREBO manual.

But, the values ðE; �Þ¼ (1.37 TPa, 0.41) are based on a dif-

ferent definition of ðE; �Þ: they are based on a genuinely con-

tinuous definition which is non-standard since it uses

c1; c2; c5; c9. Certainly, the two definitions (the discrete and

the continuous one) measure the same quantities in a differ-

ent way. So, the discrepancy in their reported values is based

on the different definition but still remains in the range of an

admissible difference.

The paper is organized as follows. Section II presents

compactly the key findings of our previous works,25–27) to

which we refer for more information. In Section III, we pres-

ent the core of our calculations. We lay down the strategy for

obtaining/defining the required material parameters at the

continuum level starting from discrete pictures and measure-

ments using the AIREBO potential. Section IV gives the

minimum validation by correlating with standard results.

The article ends up in Section V with some concluding

remarks as well as future directions. As far as notation is

concerned, we use tensor notation in component form

throughout the paper. All indices are assumed to refer to the

same Cartesian coordinate system and range from 1 to 2.

II. MODELING OF GRAPHENE AS A 2-LATTICE:
THE LINEAR CASE

We begin by presenting the main findings of our rele-

vant previous works25–27 that constitute the theoretical back-

bone of this work. Some more detailed information

regarding the continuum modeling of crystalline materials

can be found in the excellent book by Pitteri and Zanzotto.20

Graphene is modeled as a hexagonal 2-lattice6 at the

crystalline level. One arrives at the continuum level by

assuming validity of the Cauchy–Born rule.5 Validity of this

rule, together with confinement to weak transformation

neighborhoods18,19 enables one to work with the symmetry

groups classical elasticity uses; for the case of graphene

these are rotated by 60�.
For the geometrically and materially linear case, energy

depends on the in-plane strain tensor
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eab ¼
1

2
ua;b þ ub;að Þ; (1)

with u being the in-plane displacement, the curvature tensor

b as well as the shift vector p. Explicitly, energy has the

form27

W e; b; pð Þ ¼ 1

2
C1

ijkleijekl þ
1

2
C2

ijpipj þ
1

2
C3

ijkeijpk

þ 1

2
C4

ijklbijbkl þ
1

2
C5

ijkleijbkl þ
1

2
C6

ijkbijpk: (2)

Tensors C1; :::;C6 are tensors of material moduli. When out-

of-plane motions are neglected, terms related with the curva-

ture should be set equal to zero. In this case, the stress–strain

relations read27

r11 ¼ c1e11 þ c2e22 � c5p2; (3)

r22 ¼ c2e11 þ c1e22 þ c5p2; (4)

r12 ¼
c1 � c2

2
e12 � 2c5p1; (5)

stemming from the expression for the stress tensor

r ¼ @W

@e
¼ C1

ijklekl þ C3
ijkpk: (6)

For the components related with the shift vector, we

have

@W

@pi
¼ C2

ijpj þ C3
ijkejk: (7)

So, we finally take

@W

@p1

¼ c9p1 � 2c5e12; (8)

@W

@p2

¼ c9p2 � c5e11 þ c5e22: (9)

The field equations for such a model are the momentum

equation in the absence of body forces and inertial terms

rij;j ¼ 0; (10)

and the equation ruling the shift vector

@W

@pi
¼ 0: (11)

From the physical point of view, the momentum equation is

the force balance for the surface. The equation ruling the

shift vector expresses that the shift vector adjusts so as equi-

librium is reached.

So, for the above framework, we should evaluate mate-

rial parameters ðc1; c2; c5; c9Þ. These are material moduli at

the continuum level which are present in the constitutive

law, thereby characterizing graphene’s mechanical proper-

ties in the small strain regime. Section III describes how

these material parameters can be obtained/defined using mo-

lecular calculations.

III. CALCULATION OF c1;c2; c5; c9 FROM MOLECULAR
PICTURES

For our purposes, we load a graphene sheet along the

armchair direction as Figure 1 shows. In this figure, we

depict the unit cell at ease, as well as the loading direction of

the uniaxially strain which applies. Within the unit cell, we

differentiate with numbers 1, 2, 3, and 4 pair of carbon–car-

bon distances. At ease, pair of distances, no. 1, has equal

length of approximately 0.242 nm. The same holds true for

the pair of distances denoted by no. 2. The pair of distances

denoted by no. 4 has equal length of 0.140 nm, approxi-

mately. The same length is shared by distance denoted by

no. 3 in Figure 1. Inspecting the unit cell of graphene when it

is modeled as a 2-lattice (see figures in Refs. 25–27), it

appears that lengths nos. 1 and 2 correspond to the lattice

vectors of graphene. Lengths numbered as nos. 3 and 4 cor-

respond to graphene’s shift vector.

Now we apply an axial strain along the direction shown

in Figure 1. This is done by employing the AIREBO29 poten-

tial to describe the carbon–carbon interatomic forces. An or-

thogonal periodic computation cell is used with dimension

42.6 nm� 19.3 nm comprising 31 600 carbon atoms and the

x-axis along the armchair direction (the direction of loading).

The computational cell is initially relaxed, leading to an

equilibrium structure for the given potential. The in-plane

symmetry of the structure is broken by assigning randomized

velocities with a Gaussian distribution to all of the atoms

corresponding to a temperature of T¼ 40 K. The large num-

ber of atoms considered in the computational cell is needed

to properly capture the distribution of the nearest and next

nearest neighbor distances, in what follows. An energy equi-

libriation is performed within the microcanonical ensemble

(NVE). The structure and unit cell are further relaxed by a

follow up equilibriation within the isothermal–isobaric en-

semble (NPT) at the same temperature. Uniaxial tensile

strain applies then by a deformation control method. The

strain applies at every 200 time steps on the x-axis homoge-

neously with a strain rate of 0.0005 ps�1. The strain rate is

very small so we disregard viscous response, i.e., the system

is given ample time to respond to the applied deformations.

FIG. 1. Unit cell and loading direction for graphene. Numbers 1 and 2 per-

tain to pairs of lattice vectors having equal length changes due to loading,

while No. 4 pertains to a pair of the shift vector components having the

same length change due to loading. No. 3 is another component of the shift

vector which has different length change from No. 4.
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The Poisson’s effect is accounted for by allowing the y-axis

to relax during the slow elongation process. All of the MD

simulations are performed using the LAMMPS21 software

package.

As an outcome of this loading process, lengths are

denoted by nos. 1, 2, 3, and 4 within the unit cell change.

This change will not be same for all of them, due to their dif-

ferent position with respect to the loading direction. Pair of

distances denoted by no. 1 tends to shorten since they are

perpendicular to the loading direction; they are also affected

equally due to loading, this is why we group them together.

Pair of distances denoted by no. 2 tends to extent since they

are inclined with respect to the extension direction.

Certainly, due to symmetry and homogeneity of the applied

extension, lengths denoted by no. 2 experience the same

change. Pair of distances denoted by no. 4 tends to elongate

by the same amount between them. For the distance denoted

by no. 3, one expects elongation as well, since it is parallel

to the direction of loading.

Now, the idea is to correlate the continuum material pa-

rameters c1; c2; c5; c9 with distances denoted by nos. 1, 2, 3,

and 4 in the unit cell. This can be done using the following

procedure: at zero strain level, we plot the radial distribution

diagram (see Figure 2). On the horizontal axis of this dia-

gram, we have carbon–carbon distances measured in

Angstrom. The radial distribution (or pair correlation) dia-

gram describes the probability of encountering a carbon

atom at any given distance from another carbon atom. To

produce the radial distribution diagrams, we extract atomic

configuration at regular time step intervals. These are the

same configurations that we later use for the calculation of

the Poisson’s ratio and Young modulus from the molecular

modeling itself. For each atom, we identify the first and sec-

ond neighbors and calculate the corresponding distances.

Thermal fluctuations alter these distances in a canonical (ran-

dom) manner around a central value. Each of the distances is

accounted for uniquely. In Figure 2, the formation of distinct

density bands can be seen, one is near the radial distance of

0.145 nm and another is around 0.25 nm. These bands

correspond to first and second nearest neighbors. At ease

these bands are Gaussian peaks, one centered at 0.242 nm

and the second at 0.140 nm. These correspond to lengths of

distances denoted by nos. 1 and 2 and nos. 3 and 4 in Figure

1, respectively. We remind here that at ease, pair nos. 1 and

2 have equal length of 0.242 nm. Also, pair nos. 3 and 4 have

an equal length of 0.140 nm at ease.

As loading applies, these peaks split into two new peaks

each (see Figure 2, bottom). The bottom plot of Figure 2 cor-

responds to the radial distribution at strain level 6%. The

splitting of each peak into two new ones is apparent.

Essentially, these peaks describe the behavior of lengths nos.

1–4 upon loading. Inspecting Figure 2, we see that at 6% the

peak centered at 0.242 splits into two new peaks: one at

0.240 nm and a second at 0.252 nm. These most probable

values can be found by fitting two Gaussian functions to the

band. As noted earlier, fitting with Gaussian functions is the

most appropriate due to the stochastic nature of the bond

length variation which is a direct result of thermal move-

ment. Each of the Gaussian functions corresponds to specific

lengths no. 1 and no. 2, and the centers (positions) of which

provide the length values. Similarly, the peak centered at

0.140 nm at ease, upon strain splits into two peaks, one at

0.142 nm and another at 0.146 nm. Overall, this provides the

evolution of lengths nos. 3 and 4 upon application of strain.

Now, using these peaks we want to define the material

parameters c1; c2; c5; c9. We repeat that the radial distribution

diagram renders the most probable lengths for nos. 1–4 of

Figure 1, after loading applies. We first define strain meas-

ures from the evaluated peaks as

strainmeasure foreachpeak¼ final–initialð Þvalueof thepeak

finalvalueof thepeak
:

(12)

Namely, for each peak value, we subtract and divide by its

initial value (namely, the peak value for strain level zero).

We then plot the applied stress (in absolute value) as a func-

tion of the above defined strain measures and obtain Figures

3–6. So, Figures 3–6 render how carbon–carbon distances

are denoted by nos. 1–4 in Figure 1 changes with applied

loading when one can do calculations at the molecular level.

Figure 3 relates the applied stress with the increment of the

FIG. 2. The radial distribution diagram at ease (above) and at strain level

6% (below). The horizontal axis measures carbon–carbon distances in

Angstrom.

FIG. 3. Applied stress vs the strain defined by the left peak which initially

was at 0.140 nm. The slope of the fitted line is 1.534.
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left peak when initially the peak is at 0.140 nm; we call this

left peak strain measure as the reduced shift vector PR.

Figure 4 plots the increment in the right peak when initially

the peak is at 0.140 nm with applied stress; we call the strain

measure calculated from the right peak as reduced shift vec-

tor PL. Figures 5 and 6 are analogous for the peak which ini-

tially was at 0.240 nm; the corresponding strain measures are

denoted as reduced vectors jRj and jLj, respectively.

One remark is in order here regarding the definition of

the applied stress Pxx. The whole process is deformation con-

trolled. Nevertheless, one may convert the applied strain to

stress using the manual conversion of the LAMMPS pro-

grams, which is based on the use of the virial theorem. This

renders a three dimensional definition of applied stress. To

project this quantity to the graphene’s sheet, one has to

divide this three dimensional stress by graphene’s thickness,

taken to be approximately 0.335 nm.

We now define the material parameters c1; c2; c5; c9 as

the slope of diagrams 3–6. The outcome regarding the corre-

sponding slopes renders values 3:117; 1:534; 1:102;�12:07 in

TPa. Inspecting these diagrams, one can see the different

behaviour of Figure 6 from the rest figures. The slope of Fig.

6 is negative, while for the rest figures renders a positive

slope. This is physically reasonable since we expect length

no. 1 in Figure 2 to shorten. Also, it has a parabolic character,

nevertheless, not taking into account a small region near zero

strain, the behaviour is near linear, as is seen in Figure 6.

Now, what it remains to be done is to juxtapose lengths

nos. 1–4 to material parameters c1; c2; c5; c9. At a first look,

it seems reasonable to associate c1, c2 with 1 and 2 and c5, c9

with 3 and 4, namely, to have the fourtuple ðc1; c2; c5; c9Þ
¼ ð�12:07; 1; 102; 3:117; 1:534Þ in TPa. This is mainly due

to the fact that diagrams of Figures 3 and 4 plot the peaks

produced by the initial 0.140 nm peak, namely, terms related

with the shift vector at the unit cell. Similarly, Figures 5 and

6 plot the peaks produced by the initially 0.242 nm peak,

namely, terms related with the lattice vectors at the unit cell.

But this expectation is not necessarily true due to the follow-

ing reason. At the discrete level, one views the unit cell and

distinguishes between distances 1, 2, 3, and 4. When one

passes to the continuum, the continuum analogue of the unit

cell “patches” at only one continuum point. Thus, informa-

tion regarding the atomic level “patches” to only one mate-

rial point and its four material parameters. This is at the very

root of the multiscale method and certainly some information

is lost.

So, when one “scales up” (see Figure 7) to the contin-

uum level loses the ability to distinguish which distance in

the unit cell corresponds to the material parameters

c1; c2; c5; c9 pertain. Further discussion on the subject is pre-

sented in Sec. IV where validation comparing with standard

measurement is presented. There we see that the expectation

of corresponding lengths nos. 1, 2, 3, and 4 of Figure 1 to

c1; c2; c5; c9 is not borne out, when we take as a minimum

FIG. 4. Applied stress vs the strain defined by the right peak which initially

was at 0.140 nm. The slope of the fitted line is 3.117.

FIG. 5. Applied stress vs strain defined by the right peak which initially was

at 0.240 nm. The slope of the fitted line is 1.102.

FIG. 6. Applied stress vs strain defined by the left peak which initially was

at 0.240 nm. The dependence exhibits a parabolic form, nevertheless, not

taking into account a small region near zero strain, the behavior is near lin-

ear with a slope of �12.7.

FIG. 7. On the left, we see the discrete view within the unit cell of graphene.

On the right, we have the continuum analog, which is a continuum point

with material parameters c1; c2; c5; and c9.
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requirement to have values for ðE; �Þ comparable to the

one’s from the literature.

To sum up, we define material parameters ðc1; c2; c5; c9Þ
as the slope in the diagrams of applied stress versus the four

newly defined strain measures. These new strain measures

pertain to length changes denoted as numbers 1–4 in Figure

1. The values are then �12:07; 1:102; 3:117; 1:534 in TPa.

IV. CORRELATION WITH WELL-ACCEPTED
MEASUREMENTS

As a method of validation/calibration of our theory, we

compare our calculated values with some of the most well-

accepted measurements from the vast literature on the topic

(see the Introduction section for relevant citations). This can

also help as a guideline for making the correct association

between material parameters c1; c2; c5; c9 and the evaluated

slopes. To obtain the relation between ðE; �Þ and

ðc1; c2; c5; c9Þ, we start by solving the equations ruling the

shift vector: these are Eq. (11). From Eq. (8), setting the right

hand side equal to zero, we obtain

2c5p1 ¼
4c2

5e12

c9

: (13)

Eq. (9), with a zero on the right hand, solves to give

c5p2 ¼
c2

5 e11 � e22ð Þ
c9

: (14)

Substituting these expressions to Eqs. (3)–(5), we obtain the

matrix form

r11

r22

r12

0
@

1
A¼

c1�
c2

5

c9

c2þ
c2

5

c9

0

c2þ
c2

5

c9

c1�
c2

5

c9

0

0 0
c9 c1� c2ð Þ� 8c2

5

2c9

0
BBBBBBBBB@

1
CCCCCCCCCA

e11

e22

e12

0
@

1
A:

(15)

Inversion of the above relations render in matrix form

e11

e22

e12

0
@

1
A ¼

a

a2 � b2
� b

a2 � b2
0

� b

a2 � b2

a

a2 � b2
0

0 0
1

c

0
BBBBBBBB@

1
CCCCCCCCA

r11

r22

r12

0
@

1
A; (16)

where a ¼ c1 � c2
5

c9
; b ¼ c2 þ c2

5

c9
and c ¼ c9ðc1�c2Þ�8c2

5

2c9
. Setting

all stress tensor components equal to zero except r11 we

obtain that

e11 ¼
a

a2 � b2
r11: (17)

Since for the linear case Young’s modulus is defined as

e11 ¼ 1
E r11, we obtain for our case

E ¼ a2 � b2

a
¼

c1 � c2
5

c9

h i2

� c2 þ c2
5

c9

h i2

c1 �
c2

5

c9

: (18)

Poisson ration is defined for our framework as

� ¼ � e22

e11

¼ �
� b

a2�b2

a
a2�b2

¼ b
a
¼

c2 þ c2
5

c9

c1 �
c2

5

c9

: (19)

The last two equations are the connection between our me-

chanical approach and the standard material parameters of

the linear modeling of graphene, at small strains. It is

obvious that material parameters c1; c2; c3; c4 work syner-

getically to produce the Young modulus and the Poisson ra-

tio. One cannot attribute changes of length to the direction of

loading to only one of the material parameters c1; c2; c5; c9.

The same holds true for changes in length along the direction

perpendicular to loading. Also, it is obvious that one cannot

invert Eqs. (18) and (19) to solve in a unique way for

c1; c2; c5; c9 as functions of ðE; �Þ. This is expected since the

present framework has four material parameters while classi-

cal linear elasticity has only two.

This should not be confused with the inversion proce-

dure for the passage from Eq. (15) to Eq. (16). There, we

solve the equation ruling the shift vector, Eq. (11), to obtain

the shift vector as a function of the strain components (see

Eqs. (13) and (14)). Due to the fact that we use a linear

theory, the relation between the shift vector components and

the strain components is linear. Having the shift vector com-

ponents as linear functions of the strain components, we sub-

stitute them to the constitutive law (Eqs. (3)–(5)). This way

we obtain Eq. (15), which is a non-standard constitutive law

(since it contains c1; c2; c5; c9) relating stresses to strains.

Even though it is a non-standard it is linear. Thus, it can be

inverted giving Eq. (16).

To find the appropriate values of c1; c2; c5; c9, we choose

from the pool of values �12:07; 1:102; 3:117; 1:534 in TPa

and substitute them to Eqs. (18) and (19). The choice

ðc1; c2; c5; c9Þ ¼ ð1:102; 1:534; 3:117;�12:07Þ is the opti-

mum, in the sense of having the values of ðE; �Þ, calculated

from Eqs. (18) and (19), as close to the one reported in the

literature as possible. It is clear that the outcome values of

ðE; �Þ ¼ ð1:37 TPa; 0:41Þ overestimate both measures, but

nevertheless, remain within the range of reasonable values

for these measures.

On the other hand, for the calculation of the Poisson’s

ratio and Young modulus from the molecular dynamics sim-

ulations solely (namely, without the need of introducing

c1; c2; c5; c9), atomic configurations are extracted from the

simulation trajectory at regular time step intervals that corre-

spond to regular increases in applied strain. The calculated

values are ðE; �Þ¼ (0.95 TPa, 0.20). Care is taken so that the

structure has sufficient time to equilibriate following the lat-

est deformation (strain increase). The Poisson’s ratio is cal-

culated by measuring the changes of both the lateral and

transverse dimensions of the computational cell. Using the

same information, the corresponding strain levels are

recorded as well. For the Young modulus, in addition to the
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previous, the corresponding applied pressures Pxx at the gra-

phene edges are also needed, of course suitably scaled to

account for the difference between height of the computa-

tional cell and thickness of graphene. The Young modulus is

then calculated as the slope of the pressure–strain diagram at

small strains (<6%).

Values for E and � from the reported literature (see the

first four paragraphs of this section) range as E¼ 0.67–1.91

TPa and �¼ 0.14–0.45 depending on the methodology used.

The central tendency of these values for E is the value

1 6 0.15 TPa. Compared to this value, our outcome of

ðE; �Þ¼ (1.37 TPa, 0.41) overestimates these quantities but

still remains within the range of acceptable values. From the

literature cited, the continuum methods (i.e., the finite ele-

ment approaches of Refs. 2, 22, and 24) tend to have greater

discrepancy from the value 1 6 0.15 TPa. Thus, our theory

being ultimately a continuous theory is expected to follow

this trend.

On the other hand, our pure molecular mechanics mod-

eling render values ðE; �Þ¼ (0.95 TPa, 0.20). These values

are obtained using the definition of the AIREBO manual. On

the other hand, the values ðE; �Þ¼ (1.37 TPa, 0.41) are based

on a different definition of ðE; �Þ: they are based on a genu-

inely continuous definition which is a non-standard since it

uses c1; c2; c5; c9. Certainly, the two definitions (the discrete

and the continuous one) measure the same quantities in a dif-

ferent way. So, the discrepancy in their reported values is

based on the different definition but still remains in the range

of an admissible difference.

So, all in all, from molecular calculations, we deter-

mine/define the following values for the material parameters

ðc1; c2; c5; c9Þ ¼ ð1:102; 1:534; 3:117;�12:07Þ in TPa. These

are the material parameters needed when graphene is mod-

eled as a hexagonal 2-lattice at the continuum level. They

appear to the non-standard constitutive law (Eqs. (3)–(5))

and characterize the stress-strain response in this case.

Ultimately, they lead to values ðE; �Þ ¼ ð1:37 TPa; 0:41Þ
through Eqs. (18) and (19); these are slightly overestimated

values which, nevertheless, remain in the range of reason-

ably accepted values.

V. CONCLUSION AND FUTURE DIRECTIONS

The present work involves a molecular study with the

purpose of measuring in-plane material moduli for graphene

at the continuum level. The theoretical framework adopted is

restricted to material and geometrical linearities. Graphene is

modeled as a hexagonal 2-lattice, so for the linear regime

there are four material parameters for in-plane motions. We

evaluate these material parameters using molecular mechan-

ics and the AIREBO potential. The material parameters are

defined as the slopes of stress–strain diagrams of suitably

defined strain measures from graphene’s unit cell at the dis-

crete level. The final values evaluated are ðc1; c2; c5; c9Þ ¼
ð1:102; 1:534; 3:117;�12:07Þ in TPa and correspond to

Young modulus and Poisson ratio ðE; �Þ ¼ ð1:37 TPa; 0:41Þ.
The future direction of the authors regarding this prob-

lem is further exploration of the nonlinear counterpart of the

present theoretical framework, with the purpose of capturing

the effects of large strains on free-standing graphene mono-

layers. In that case, even though the approach will be similar

with the one presented, several difficulties arise. First, the

complexity of the model for the genuinely nonlinear is much

greater, since that model involves nine material parameters

for in-plane motions only. Second, the strains and stresses

will be much higher than the small strains used here; this

requires a much more demanding set of molecular mechanics

calculations for loadings up to 24%. Third, simple shear as

well as pressure computational experiments should be used

in addition to the axial extension program utilized here. As

in the linear case studied here, for the nonlinear case as well

we distinguish between the shift vector components and the

lattice vector components and define the nonlinear material

parameters as changes of these components against suitable

loading.

All in all, we believe that our strict theoretical modeling

can capture all the interesting phenomena that occur during

the loading of monolayer-thick graphene sheets. Properly

designed molecular mechanics simulations, with the

AIREBO potential, can provide the material moduli intro-

duced by the theoretical modeling, and enable verification of

the results with experimental values. For the case of small

strains presented here, we are able to reproduce with reason-

able good agreement many of the experimental/computa-

tional results, and generalization of the method for large

strains will follow in future works.
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