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The anisotropic hexagonal honeycomb is one of the common honeycombs. To increase its in-plane stiff-
ness greatly, in this paper the anisotropic multifunctional hierarchical honeycomb (AMHH) is proposed. It
is constructed by replacing the solid cell walls of the original anisotropic hexagonal honeycomb (OAHH)
with the equal mass isotropic substructures, triangular or Kagome honeycombs. Two kinds of AMHH
structures are proposed. One corresponds to the OAHH with 120� angles between the jointed cell walls,
the other one corresponds to the OAHH with angles between the jointed cell walls different from 120�.
Through Euler beam theory, the in-plane stiffness of these two kinds of AMHH is analyzed. Results show
that the triangular honeycomb substructures could greatly increase the in-plane stiffness of the AMHH by
1.5 times or even more than 100 times, depending on the thickness-to-length ratio of the oblique cell wall
of the OAHH. And the validation of the range for the thickness-to-length ratio of the oblique cell wall,
which is related to the density of the OAHH, could reach to 0.1. The present theory could be used for
designing new tailorable anisotropic hierarchical honeycomb materials for multifunctional applications.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their specific in-plane and out-of-plane mechanical
properties and their potential multifunctional applications such
as heat dissipation, thermal isolation, energy absorption, sound
and vibration control etc., the low density two-dimensional hexag-
onal honeycomb structures, which are generally used as the core of
the sandwich panels, are very attractive candidates for a variety of
applications in many diverse fields. For example, the paper honey-
combs can be used to make structural and cushioning components
[1]; the metal honeycombs can be designed as the core of the heat
sink for electronic devices where the combined heat dissipation
and structural load capacity are necessary [2,3]. For applications
in aerospace engineering, the pressure adaptive honeycomb could
be a novel concept for smart morphing aircraft structures [4,5] and
the superalloy honeycomb sandwich thermal protection systems
have good heat shielding characteristics and thermostructural per-
formances for hypersonic flight vehicles [6]. Regarding the
applications in civil engineering, the honeycomb wave impeding
barrier for pile foundations of the high-speed train viaduct can
effectively mitigate the field vibration resulted from the passing
trains [7]; the multi-layer energy dissipating panel, consisting of
the polymer honeycomb and the viscoelastic solid material, could
increase greatly both the shear resistance and the energy dissipa-
tion at contact surfaces for retrofitting semi-rigidly connected steel
frames [8]. Besides, the hexagonal honeycomb sandwich panels
also show desirable abilities for tailoring impact resistance for rac-
ing cars [9], low floor bus [10] and train application [11], for miti-
gating blast wave to protect structures from the high intensity
dynamic loads created by explosions in air or water [12] and so on.

However, one disadvantage about the hexagonal honeycombs is
that they have very lower in-plane stiffness, which hinders their
multifunctional applications severely. One common way to
increase the in-plane stiffness of the hexagonal honeycombs is to
introduce the concept of hierarchy, whose crucial role playing on
stiffness, strength and toughness of the natural and bio-inspired
materials has received considerable attention in the past years
[13–27]. To the authors’ knowledge, Lakes [13] is the earliest scien-
tist who analyzed the strength and stiffness of the hierarchical
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honeycombs and showed that marked improvement in compres-
sive strength can be realized in hierarchical structures for
low-density honeycombs. In recent years, by tailoring the geomet-
rical layouts of the original regular hexagonal honeycombs, some
new kinds of hierarchical honeycomb structures are proposed.
Taylor et al. [28] introduced the functionally graded hierarchical
honeycombs and numerically proved that with careful design of
functionally graded unit cells it is possible to exceed, by up to
75%, the density specific modulus of conventional versions. By
repeatedly replacing each three-edge vertex of a base hexagonal
network with a similar but smaller hexagon of the same orienta-
tion, the group of Vaziri constructed the low-density isotropic
[29] and anisotropic [30] hierarchical honeycombs, respectively.
Combining analytical analysis and numerical simulation, their
results show that the isotropic hierarchical honeycombs of first
and second order can be up to 2.0 and 3.5 times stiffer than regular
honeycomb at the same mass [29] and the anisotropic hierarchical
honeycombs of first to fourth order can be 2.0–8.0 times stiffer and
at the same time up to 2.0 times stronger than regular honeycomb
at the same wall angle and the same overall average density [30].

To greatly increase the in-plane stiffness of the regular hexago-
nal honeycombs at both low density and intermediate relative
density, the group of Pugno [31,32] proposed the multifunctional
hierarchical honeycombs (MHH) by replacing the cell wall of the
original regular hexagonal honeycombs (ORHH) with three kinds
of equal-mass isotropic substructures, including triangular,
Kagome and chiral honeycombs, respectively. Analytical results
show that the triangular and Kagome substructures result in sub-
stantial improvements by one order or even three orders of magni-
tude on Young’s and shear moduli of the MHH structure,
depending on the cell-wall thickness-to-length ratio of the ORHH
[32]. And the chiral honeycomb could also greatly (more than 10
times) improve the in-plane stiffness of the MHH by appropriately
designing its geometry [31].

Majority of the above mentioned works on hierarchical honey-
combs are focusing on the mechanical properties of the isotropic
ones, and relatively little attention is paid on the anisotropic ones.
To greatly increase the in-plane stiffness of the anisotropic hexag-
onal honeycombs (with uniform cell wall thickness), in this paper,
analog to the isotropic MHH, the anisotropic multifunctional hier-
archical honeycombs (AMHH) are proposed. They are constructed
by replacing the cell walls of the original anisotropic hexagonal
honeycombs (OAHH) with the equal-mass isotropic triangular or
Kagome honeycomb substructures. Through Euler beam theory
the relative in-plane Young’s modulus of the AMHH are analyzed.
Two kinds of AMHH structures are studied. One corresponds to
the OAHH with 120� angles between the jointed cell walls, the
other one corresponds to the OAHH with angles between the
jointed cell walls different from 120�.

One point to note is that only in-plane stiffness of the anisotro-
pic multifunctional hierarchical honeycombs (AMHH) is studied in
this paper and the reason we employ the definition ‘‘multifunc-
tional’’ here is to be analogous to the isotropic multifunctional
hierarchical honeycombs (MHH) we proposed in Refs. [31,32]. In
fact, the heat transfer and vibro-acoustic properties of the MHH
and AMHH are being studied by us and the related results will
be given in other two papers in the near future.
2. AMHH corresponding to the OAHH with 120� angles between
the jointed cell walls

In this section, we study the AMHH corresponding to the OAHH
with 120� angles between the jointed cell walls, i.e., the angles
between the oblique walls and the horizontal line (the principal
direction 1) are 30� (see Fig. 1a). In this case, the layouts of the
AMHH structures are geometrically compatible, i.e., the connection
between the honeycomb substructure cell walls is geometrical
occlusive naturally (Fig. 1b).

2.1. AMHH with triangular honeycomb substructures

2.1.1. Basic theory
First of all, we consider the AMHH with isotropic triangular hon-

eycomb substructures (Fig. 1). Fig. 1a is the OAHH with the cell wall
thickness, the vertical cell wall length and the oblique cell wall
length denoted by t0; h0 and l0 (h0 – l0Þ, respectively. Fig. 1b is the
AMHH with the cell wall thickness, the vertical cell wall length
and the oblique cell wall length denoted by t1; h0 and l0, respec-
tively. It is easy to see that both the vertical cell wall lengths and
the oblique cell wall lengths of the OAHH and the AMHH are identi-
cal. Amplifications of the oblique and the vertical AMHH cell walls in
Fig. 1b are shown in Fig. 1c and d respectively, in which the triangu-
lar cell wall length and thickness are denoted by tt and lt . The
out-of-plane depth is a constant and is identical for both structures.

In this paper, we suppose that both the cell walls of the AMHH
and the triangular honeycomb substructures are Euler beams. That
is to say, under small deformations only bending of the cell walls of
the AMHH structure and the triangular honeycomb substructures
is considered, which requires that t1=h0 < 0:2; t1=l0 < 0:2 and
tt=lt < 0:2 [33].

The geometries of Fig. 1c and d imply that

l0 ¼ n1lt

h0 ¼ n2lt

�
ð1Þ

where n1 and n2 are the numbers of the solid triangular lattice cell
walls lying on the middle line of the oblique (with length l0Þ and
vertical (with length h0Þ AMHH cell walls, respectively.
Rearranging Eq. (1) gives

lt ¼ l0
n1
¼ h0

n2

n2
n1
¼ h0

l0

8<
: ð2Þ

To make sure the validation of the assumptions t1=h0 < 0:2 and
t1=l0 < 0:2, we define the hierarchical length ratio, i.e., the ratio
between lt and min½h0; l0� , as

k ¼ 1
n
¼ lt

l
ð3Þ

in which

n ¼
n1 h0=l0 > 1
n2 h0=l0 < 1

�
ð4Þ

l ¼
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�
ð5Þ

Then, from Fig. 1c or d, according to the equal-mass principle, we

can find t0l� 1
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where

t0

l
¼

t0
l0

h0
l0
> 1

t0
l0

1
h0=l0

h0
l0
< 1

8<
: ð7Þ

and M is the total number of half thickness triangular lattice cells in
one AMHH cell wall with length l and it relates to n and N by (See
Appendix A)



Fig. 1. Schematics of (a) the original anisotropic hexagonal honeycomb (OAHH) with 120� angles between the jointed cell walls; (b) the tailorable anisotropic multifunctional
hierarchical honeycomb (AMHH) with triangular honeycomb substructures; (c) amplification of the oblique triangular lattice cell wall with length l0 in (b); and (d)
amplification of the vertical triangular lattice cell wall with length h0 in (b).
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M ¼ 2N 2n� Nð Þ þ 2
3

n� Nð Þ ð1 6 N 6 nÞ ð8Þ

in which N is the number of triangular lattice cells away from the
middle line of the AMHH cell walls (e.g., in Fig. 1b N ¼ 1Þ. After this,
from the precondition tt=lt < 0:2, we obtain Nmin, the lower bound
of N:

Nmin ¼ ce
6n� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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775
ð9Þ

where ‘ce[ ]’ is the ceiling function, which denotes the smallest inte-
ger not less than the term in the bracket. Note that Eq. (9) may give
Nmin ¼ 0, in this case Nmin ¼ 1.

On the other hand, from the geometrical analysis of Fig. 1c or d
we get the cell wall thickness of the AMHH structure

t1 ¼ 2N

ffiffiffi
3
p

2
lt

 !
þ tt ð10Þ

that is

t1

l
¼

ffiffiffi
3
p

N þ tt

lt

� �
k ð11Þ

Then from the precondition t1=l < 0:2, we obtain Nmax, the upper
bound of N:

Nmax ¼ fl
1

5
ffiffiffi
3
p

k

� 	
¼ fl

n

5
ffiffiffi
3
p

� 	
ð12Þ
where ‘fl[ ]’ is the floor function, which denotes the largest integer
not greater than the term in the bracket.

Defining Es as the Young’s modulus of the solids of which the
OAHH and the AMHH are made, Et as the Young’s modulus of the
triangular honeycomb substructures, EO1; EO2 as the Young’s mod-
uli of the OAHH in the principal directions 1 and 2, EM1; EM2 as the
Young’s moduli of the AMHH in the principal directions 1 and 2,
and by treating the substructure cell wall as a continuum, we find
[33]:
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Combining Eqs. (13)–(15) and Eqs. (13), (16), (17) gives the rela-
tive Young’s moduli of the AMHH in the principal directions 1 and 2:

EM1

EO1
¼ EM2

EO2
¼ 2ffiffiffi

3
p tt

lt

t1

l0

� �3 t0

l0

� �3
,

ð19Þ

t1=l0 in Eq. (19) has the form shown in Eq. (18).
One thing noteworthy is that the theory used in this paper,

which treats the honeycomb substructures as a continuum, is
related to the asymptotic homogenization of honeycomb struc-
tures, which are strictly valid for periodic cells in an infinite med-
ium. In fact, for simplicity of the analysis of the elastic properties
for periodic honeycomb structures, usually only one unit cell or
even one quarter unit cell is chosen, whose elastic parameters
are approximately treated as those for the whole periodic honey-
comb structures [28,33]. From this point, the homogenized values
of the in-plane stiffness of the honeycomb substructure, i.e., by
treating the honeycomb substructures as a continuum, could be
approximately valid, if only the cell sizes of the honeycomb sub-
structures are small enough [13]. In this paper, the maximum value
of the hierarchical length ratio k is suggested to be 1=100, which
for sure could guarantee the validation of the homogenization of
the honeycomb substructures.

2.1.2. Effects of N and t0=l0 on the relative Young’s moduli
To explicitly show how to design the AMHH structure with tri-

angular honeycomb substructure under given parameters h0=l0

and t0=l0 of the OAHH structure and to investigate the effects of
N and t0=l0 on the relative Young’s moduli EM1=EO1 and EM2=EO2,
we consider the following examples with parameters
h0=l0 ¼ 1:5; t0=l0 ¼ 0:01; 0:02; 0:03; 0:04; 0:06; 0:08; 0:1.

Since h0=l0 ¼ 1:5 > 1, we could define n1 ¼ 100; n2 ¼ h0=l0n1 ¼
150 (See Eq. (2)). Then Eqs. (4), (5) and (3) give n ¼ n1 ¼ 100; l ¼ l0

and k ¼ 1=n ¼ lt=l0 ¼ 1=100, respectively. Through these parame-
ters we could obtain Nmax ¼ 11 by Eq. (12) and the lower bound
Nmin for each t0=l0 by Eq. (9). The relative Young’s moduli EM1=EO1

and EM2=EO2 vs. N for all the t0=l0 considered here are reported in
Fig. 2.

From Fig. 2 we can see that the relative Young’s moduli EM1=EO1

and EM2=EO2 generally increase with the increase of N and they are
greatly influenced by the thickness-to-length ratio t0=l0. Compared
with its corresponding equal-mass OAHH, the enhancements of the
relative in-plane stiffness of the AMHH could be 1.5 times (for
t0=l0 ¼ 0:1 in Fig. 2c) or even more than 100 times (for
t0=l0 ¼ 0:01 in Fig. 2a). For t0=l0 ¼ 0:1; Nmin ¼ Nmax ¼ 11 (Fig. 2c).
When t0=l0 is larger than 0.1, Nmin will be larger than Nmax, the the-
ory given in this section will be not valid anymore. So for the exam-
ples given in this section, the validation of the range for the
thickness-to-length ratio is t0=l0 6 0:1.
Fig. 2. The relative Young’s modulus EM1=EO1 or EM2=EO2 vs. N for different t0=
2.2. AMHH with Kagome honeycomb substructure

2.2.1. Basic theory
In this section, we study another kind of AMHH, namely, by

replacing the cell walls of the OAHH with their equal mass isotro-
pic Kagome honeycomb substructures (Fig. 3). Like that defined in
Section 3.1, here the hierarchical length ratio, i.e., the ratio
between lk and min½h0; l0�, is expressed as

k ¼ 1
n
¼ lk

l
ð20Þ

in which

lk ¼ l0
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¼ h0

n2

n2
n1
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l0
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n ¼
n1 h0=l0 > 1
n2 h0=l0 < 1

�
ð22Þ

l ¼
l0 h0=l0 > 1
h0 h0=l0 < 1

�
ð23Þ

lk is the side length of triangles in Kagome cells, and n1 and n2 are
respectively the numbers of length lk lying on the middle line of
the oblique (with length l0Þ and vertical (with length h0Þ AMHH cell
walls. From Fig. 3c and d it is easy to see that n1 and n2 are even
numbers. According to the equal-mass principle, we can find
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where
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l
¼
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l0

h0
l0
> 1

t0
l0

1
h0=l0

h0
l0
< 1

8<
: ð25Þ

and M is the total number of triangles in one AMHH cell wall with
length l and it relates to n and N by (See Appendix B)

M ¼ 2N n� Nð Þ 1 6 N 6
n
2

� �
ð26Þ

in which N is the number of the Kagome representative cells (e.g., in
Fig. 3b, N ¼ 1Þ away from the middle line of the AMHH cell walls.

Also, here we suppose that both the cell walls of the AMHH and
the Kagome honeycomb substructures are Euler beams. Then, the
precondition tk=lk < 0:2 holds, which gives Nmin, the lower bound
of N:
l0: (a) t0=l0 ¼ 0:01; (b) t0=l0 ¼ 0:02; 0:03; (c) t0=l0 ¼ 0:04; 0:06; 0:08; 0:1.



Fig. 3. Schematics of (a) the OAHH with 120� angles between the jointed cell walls; (b) the tailorable AMHH with Kagome honeycomb substructures; (c) amplification of the
oblique Kagome lattice cell wall with length l0 in (b); (d) amplification of the vertical Kagome lattice cell wall with length h0 in (b); (e) the representative cells for the Kagome
honeycomb.
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Nmin ¼ ce
n� n
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Note that Eq. (27) may give Nmin ¼ 0, in this case Nmin ¼ 1.
On the other hand, from the geometrical analysis of Fig. 3c or d

we get the cell wall thickness of the AMHH with Kagome honey-
comb substructures

t1 ¼ 2N
ffiffiffi
3
p

lk

� �
þ 2tk ð28Þ

that is

t1

l
¼ 2

ffiffiffi
3
p

N þ tk

lk

� �
k ð29Þ

Then from the Euler beam assumption t1=l < 0:2, we obtain Nmax,
the upper bound of N:

Nmax ¼ fl
1

10
ffiffiffi
3
p

k

� 	
¼ fl

n

10
ffiffiffi
3
p

� 	
ð30Þ

Using the same definitions of Es; EO1; EO2; EM1; EM2 given in
Section 2.1.1 and defining Ek as the Young’s modulus of the
Kagome honeycomb substructures, we find [34]:

Ek

Es
¼ 1ffiffiffi

3
p tk

lk
ð31Þ

The expressions for Es; EO1; EO2; EM1; EM2 are the same to those
given in Section 2.1.1, here we don’t repeat them anymore.
Combining Eq. (31) with Eqs. (14)–(17) gives the relative Young’s
moduli of the AMHH with Kagome honeycomb substructures in
the principal directions 1 and 2:
EM1

EO1
¼ EM2

EO2
¼ 1ffiffiffi

3
p tk

lk

t1

l0

� �3 t0

l0

� �3
,

ð32Þ

in which t1=l0 in Eq. (32) still has the form shown in Eq. (18).

2.2.2. Effects of N and t0=l0 on the relative Young’s moduli
To explicitly show how to design the AMHH structure with

Kagome honeycomb substructure under given parameters h0=l0

and t0=l0 of the OAHH structure and to investigate the effects of N
and t0=l0 on the relative Young’s moduli EM1=EO1 and EM2=EO2, we
try to consider the same examples for the AMHH with triangular
honeycomb substructure given in Section 2.1.2, i.e., the parameters
are still h0=l0 ¼ 1:5; t0=l0 ¼ 0:01; 0:02; 0:03; 0:04; 0:06; 0:08; 0:1.

Since h0=l0 ¼ 1:5 > 1, here we could also define n1 ¼ 100;
n2 ¼ h0=l0n1 ¼ 150 (See Eqs. (21) and (22)). Then Eqs. (22), (23)
and (20) give n ¼ n1 ¼ 100; l ¼ l0 and k ¼ 1=n ¼ lk=l0 ¼ 1=100,
respectively. Through these parameters we obtain Nmax ¼ 5 by
Eq. (30) and the lower bound Nmin for each t0=l0 could be obtained
by Eq. (27).

Through Eq. (27) we find that Nmin ¼ Nmax ¼ 5 when
t0=l0 ¼ 0:04 and Nmin will be larger than Nmax when t0=l0 > 0:04.
This means that the validation of the range of the thickness-to-
length ratio for the example considered here is t0=l0 6 0:04. Then,
the relative Young’s moduli EM1=EO1 and EM2=EO2 vs. N for
t0=l0 ¼ 0:01; 0:02; 0:03; 0:04 are calculated and they are reported
in Fig. 4.

Comparing Fig. 4 with Fig. 2, it is apparent that the Kagome
honeycomb substructures could also greatly improve the
in-plane stiffness of the AMHH structure, 10 times (for
t0=l0 ¼ 0:04 in Fig. 4b) or even more than 100 times (for
t0=l0 ¼ 0:01 in Fig. 4a). It is also apparent that the applicability of



Fig. 4. The relative Young’s modulus EM1=EO1 or EM2=EO2 vs. N for different t0=l0: (a) t0=l0 ¼ 0:01; (b) t0=l0 ¼ 0:02; 0:03; 0:04.
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the range of the thickness-to-length ratio t0=l0 for the triangular
honeycomb substructures (t0=l0 6 0:1Þ could be much larger than
that for the Kagome honeycomb substructures (t0=l0 6 0:04Þ. In
fact, comparing the geometrical layouts of the triangular and
Kagome honeycomb substructures, it is not difficult to imagine
that under the same given parameters of the OAHH the applicabil-
ity of the range of the thickness-to-length ratio t0=l0 for the trian-
gular honeycomb substructures is about 2 times larger than that
for the Kagome honeycomb substructures.

3. AMHH corresponding to the OAHH with angles between the
jointed cell walls different from 120�

In this section, we study the AMHH corresponding to the OAHH
with angles between the jointed cell walls different from 120�, i.e.,
Fig. 5. Schematics of (a) the OAHH with angles between the jointed cell walls diff
substructures; (c) amplification of the right oblique (the vertical direction is taken as the r
left oblique triangular lattice cell wall with length l0 in (b); and (e) amplification of the
the angles between the oblique cell walls and the horizontal line
(the principal direction 1) are not equal to 30� (see Fig. 5a). In this
case, the layouts of the AMHH structures are not geometrically
compatible, i.e., the connection between the honeycomb substruc-
ture cell walls is not geometrical occlusive naturally (Fig. 5b). The
substructure cell walls need to be tailored to connect each other.

3.1. Basic theory

Since in Section 2 it is shown that the applicability of the range
of the thickness-to-length ratio t0=l0 for the triangular honeycomb
substructures is larger than that for the Kagome honeycomb sub-
structures, here we only consider the AMHH with isotropic trian-
gular honeycomb substructures (Fig. 5). Defining the angles
between the oblique walls and the horizontal line (the principal
erent from 120�; (b) the tailorable AMHH with isotropic triangular honeycomb
eference line) triangular lattice cell wall with length l0 in (b); (d) amplification of the
vertical triangular lattice cell wall with length h0 in (b).
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direction 1) as hðh – 30
�
Þ and taking the vertical direction as the

reference line, the right oblique, the left oblique and the vertical
triangular lattice cell walls of the AMHH are constructed by cutting
the four corners through h and u(u ¼ ð90

�
� hÞ=2Þ shown in

Fig. 5c–e, respectively. From Fig. 5c–e it is easy to see that the tai-
lored right oblique, left oblique and vertical triangular lattice cell
walls are geometrically occlusive.

For the AMHH corresponding to the OAHH with angles between
the jointed cell walls different from 120�, the design of n1; n2; k
and l is the same as that given in Section 2.1 but we appropriately
use the equal-mass principle by (See Appendix C)

t0l ¼ 3� 1
2

ttlt �
ffiffiffi
3
p

2
t2

t

 !
M þ 2� tt

2
l ð33Þ

in which M ¼ 4Nn. Rearranging Eq. (33) gives

tt

lt
¼ 2

3
ffiffiffi
3
p 3

2
þ 1

4N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
þ 1

4N

� �2

� 3
ffiffiffi
3
p

n
4N

t0

l

s2
4

3
5 ð34Þ

Then, the precondition tt=lt < 0:2 gives Nmin, the lower bound
of N:

Nmin ¼ ce
5 5nt0=l� 1ð Þ

30� 3
ffiffiffi
3
p

� 	
ð35Þ

The cell wall thickness of the AMHH structure, t1, and the upper
bound of N; Nmax, are also the same as Eqs. (10) and (12).

Again, using the same definitions for Es; Et ; EO1; EO2; EM1 and
EM2 given in Section 2.1.1, here we find [33]:

Et

Es
¼ 2ffiffiffi

3
p tt

lt
ð36Þ

EO1

Es
¼ cos h

h0=l0 þ sin hð Þ sin2 h

t0

l0

� �3

ð37Þ

EM1

Et
¼ cos h

h0=l0 þ sin hð Þ sin2 h

t1

l0

� �3

ð38Þ

EO2

Es
¼ h0=l0 þ sin h

cos3 h
t0

l0

� �3

ð39Þ

EM2

Et
¼ h0=l0 þ sin h

cos3 h
t1

l0

� �3

ð40Þ

where t1=l0 has the form of Eq. (18).
Combining Eqs. (36)–(38) and Eqs. (36), (39), (40) gives the rel-

ative Young’s moduli in the principal directions 1 and 2 of the
Fig. 6. The relative Young’s modulus EM1=EO1 or EM2=EO2 vs. N for different t0=
AMHH corresponding to the OAHH with angles between the
jointed cell walls different from 120�:

EM1

EO1
¼ EM2

EO2
¼ 2ffiffiffi

3
p tt

lt

t1

l0

� �3 t0

l0

� �3
,

ð41Þ

Apparently, Eq. (41) is the same as Eqs. (19) and (32) and is
independent of h.

3.1.1. Effects of N and t0=l0 on the relative Young’s moduli
The same as Section 2.1, here we still consider the following

examples with parameters h0=l0 ¼ 1:5; t0=l0 ¼ 0:01; 0:02; 0:03;
0:04; 0:06; 0:08; 0:1 to investigate the effects of N and t0=l0 on
the relative Young’s moduli EM1=EO1 and EM2=EO2. And still the
following parameters, n1 ¼ 100; n2 ¼ h0=l0n1 ¼ 150; n ¼ n1 ¼ 100;
l ¼ l0 and k ¼ 1=n ¼ lt=l0 ¼ 1=100, are used since h0=l0 ¼ 1:5 > 1.
Calculating the lower bound Nmin and Nmax for each t0=l0 by Eqs.
(35) and (12), the relative Young’s moduli EM1=EO1 and EM2=EO2

vs. N for all the t0=l0 considered here are shown in Fig. 6.
Similar to Fig. 2, in Fig. 6 it is also obvious that the triangular

honeycomb substructures could greatly increase the in-plane stiff-
ness of the AMHH corresponding to the OAHH with angles
between the jointed cell walls different from 120�, by 1.5 times
(for t0=l0 ¼ 0:1 in Fig. 6c) or even more than 100 times (for
t0=l0 ¼ 0:01 in Fig. 6a). The validation of the range for the
thickness-to-length ratio could also reach to t0=l0 ¼ 0:1.
4. Conclusions

In this paper, the anisotropic multifunctional hierarchical hon-
eycomb (AMHH) is proposed by replacing the solid cell walls of
the original anisotropic hexagonal honeycomb (OAHH) with the
equal mass isotropic substructures, triangular or Kagome honey-
combs. Two kinds of AMHH structures are constructed. One corre-
sponds to the OAHH with 120� angles between the jointed cell
walls and the other one corresponds to those with angles between
the jointed cell walls different from 120�. The in-plane stiffness of
these two kinds of AMHH is analytically studied with the help of
Euler beam theory. Results show that the triangular honeycomb
substructures could greatly increase the in-plane stiffness of the
AMHH by 1.5 times or even more than 100 times, depending on
the thickness-to-length ratio t0=l0 of the oblique cell wall, which
is related to the relative density, of the OAHH. And the applicability
of the range of the thickness-to-length ratio t0=l0 for the triangular
honeycomb substructures is larger than that for the Kagome hon-
eycomb substructures. For the former one, the validation of the
range for the thickness-to-length ratio t0=l0 could reach to 0.1.
The theory present in this paper could provide new strategy for
l0: (a) t0=l0 ¼ 0:01; (b) t0=l0 ¼ 0:02; 0:03; (c) t0=l0 ¼ 0:04; 0:06; 0:08; 0:1.



Fig. A.1. Schematics of the AMHH cell walls with length l (l ¼ l0 if h0=l0 > 1; l ¼ h0

if h0=l0 < 1Þ in Fig. 1b: (a) N ¼ 1; (b) N ¼ 2.
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the design of the new tailorable anisotropic hierarchical honey-
comb materials for multifunctional applications, e.g., the metallic
AMHH could be used as the core of the light weight sandwich pan-
els for thermal isolation, heat dissipation or vibration control in
civil engineering, mechanical engineering, aerospace engineering
and so on.
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Appendix A. AMHH cell wall with triangular honeycomb
substructures corresponding to the OAHH with 120� angles
between the jointed cell walls

Fig. A.1 schematically shows the cell wall (with length
l ¼min½h0; l0�Þ of the AMHH with triangular honeycomb substruc-
tures corresponding to the OAHH with 120� angles between the
jointed cell walls. Different from the isotropic MHH with triangular
honeycomb substructures proposed in reference [32], here the cell
wall with length lðl ¼min½h0; l0�Þ is chosen as the base cell wall for
the design of tt and lt , which will assure the Euler beam assump-
tions for both the AMHH cell walls with length h0 and l0. Once
the cell wall length l is confirmed, the relation between M; n and
N will be the same as that given in Appendix B of reference [32]:

M ¼ 2N 2n� Nð Þ þ 2
3

n� Nð Þ ð1 6 N 6 nÞ ðA:1Þ
Fig. B.1. Schematics of the AMHH cell walls with length l (l ¼ l0 if h0=l0 > 1; l ¼ h0 if
h0=l0 < 1Þ in Fig. 3b: (a) N ¼ 1; (b) N ¼ 2.
Appendix B. AMHH cell wall with Kagome honeycomb
substructures corresponding to the OAHH with 120� angles
between the jointed cell walls

Fig. B.1 schematically shows the cell wall (with length
l ¼min½h0; l0�Þ of the AMHH with Kagome honeycomb substruc-
tures corresponding to the OAHH with 120� angles between the
jointed cell walls. Different from the isotropic MHH with Kagome
honeycomb substructures proposed in reference [32], here the cell
wall with length lðl ¼min½h0; l0�Þ is chosen as the base cell wall for
the design of tk and lk, which will assure the Euler beam assump-
tions for both the AMHH cell walls with length h0 and l0. Once
the cell wall length l is confirmed, the relation between M; n and
N will be the same as that given in Appendix C of reference [32]:

M ¼ 2N n� Nð Þ ðB:1Þ
Appendix C. AMHH cell wall with triangular honeycomb
substructures corresponding to the OAHH with angles between
the jointed cell walls different 120�

Fig. C.1 schematically shows the cell wall (with length
l ¼min½h0; l0�Þ of the AMHH with triangular honeycomb substruc-
tures corresponding to the OAHH with angles between the jointed
cell walls different from 120�. Different from the design of the
AMHH with triangular honeycomb substructures corresponding
to the OAHH with 120�angles between the jointed cell walls given
in Appendix A, here the equal mass principle directly equals the
mass of the cell walls with length l and thickness t0 in OAHH
(Fig. C.1a) to that of the AMHH cell walls with length l and thick-
ness t1 (Fig. C.1b or c). After tt ; lt and t1 are calculated, according
to the Euler beam assumption the topology of both the AMHH cell
walls with length h0 and l0 will be confirmed. Then, tailoring the
right oblique, left oblique and vertical AMHH cell walls through h
and u shown in Fig. 5b–e and connecting them gives the AMHH
structure with triangular honeycomb substructures corresponding
to the OAHH with angles between the jointed cell walls different
from 120� (Fig. 5a).

The hierarchical length ratio is k ¼ 1=n. M is the total number of
the half-thickness triangular cells in one sub-structure cell wall. N
is the number of triangular lattice cells away from the middle line
of the AMHH cell walls. From Fig. C.1b and c, it is very simple to
recursively get the relationship between M; n and N:

M ¼ 4Nn ðC:1Þ



Fig. C.1. Schematics of the AMHH cell walls with length l (l ¼ l0 if h0=l0 > 1; l ¼ h0 if
h0=l0 < 1Þ in Fig. 5b: (a) N ¼ 1; (b) N ¼ 2.
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