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Impact behavior of materials and struc-
tures is of crucial interest. Indeed, every
solid may experience collisions in its
“mechanical” life. The topic involves a
wide range of engineering applications,
even in our everyday life: sports protectors
[e.g., helmets, Milne et al. (2014)], sensi-
tive portable electronics (Tempelman et al.,
2012), bulletproof body armors (Cuniff,
1999), protection systems for buildings and
machineries in the civil or defense sectors
(NIST, 2005), improvement of crashwor-
thiness in automotive (Schweizerhof et al.,
1992), protection of spacecraft and satellite
structures from high-velocity micromete-
orite or orbital debris impact (NASA, 2015)
are some of the most representative.

Parallel to the primary requirement of
an effective protection, straightforwardly
achievable with a massive armor, research
efforts are aimed at weight saving due to
essential and binding needs, such us better
ergonomics and flexibility (body armors),
transportability (vehicles), and in general
a more judicious use of materials. Thus,
the real goal is the high specific tough-
ness. For some decades, the answer to
these tasks has been the adoption of mul-
tilayer of textile and composite materi-
als, (Abrate, 1998; Hoog, 2006) based on
synthetic fibers (e.g., Kevlar®, Dyneema®)
that have allowed to reach protection lev-
els previously unimaginable with metallic
targets. Nowadays, in the era of nanoma-
terials, we are raising the bar to atomistic
2D materials, like graphene, coupling high
resistance (Lee et al., 2008) and flaw toler-
ance (Zhang et al., 2012) at the nanoscale,
even for possible application to nanoar-
mours (Pugno et al., 2007; Lee et al., 2012,
2014). Alternatively, the same goal may
be pursued through smart structural solu-
tions to be employed even with traditional

materials, with all the benefits that this
option implies. Nature, having worked over
the ages for optimizing defense mecha-
nisms against predators attacks or shock
loads, is one of the most inspiring sources:
as most remarkable examples we men-
tion the coupled hard-soft layers in the
Arapaima gigas fish’s dermis (Yang et al.,
2014), the internal undulated walls of the
Bombardier Beetle’s (Carabidae, Brachi-
nus) explosion chamber (Lai and Ortiz,
2010), the cross-scale toughening mecha-
nisms in the foam-like structure of drop-
ping fruits (Thielen et al., 2013), dermal
armors with scales (Ghosh et al., 2014),
and the extreme robustness provided by
the spider silk constitutive law (Cranford
et al., 2012). On the other side, we could be
interested in gaining an efficient strike, like
the deadly underwater punch mechanism
of the mantis-shrimp (Patek et al., 2005).

Upon impact, several complex physi-
cal phenomena take place: elastic–plastic
deformation and wave propagation, frac-
ture and fragmentation, heat generation
(by yielding and friction), changing of
material properties due to strain-rate
effects up to phase change. Their occur-
rence and magnitude depend on the impact
velocity that may be very low or up to
extreme values (>3 km/s for hyperveloc-
ity impact), with increasing challenges for
armor resistance as well as for its accu-
rate modeling. The theoretical description
of the basic aspects of impact mechanics
(Stronge, 2000; Goldsmith, 1999, 2001) has
reached a level of advanced maturity but it
is in a sort of stalemate due to the severe
mathematical complexity in representing
the above mentioned phenomena, which
also mutually interact. With high speed
calculators and the development of com-
putational methods (e.g., finite element

method, FEM), simulation has become the
favorite design tool, allowing optimization
studies. Nonetheless, the advent of nano-
materials and bio-inspiration is further
questioning the capabilities of these tools
and pushing modeling research.

The traditional stand-alone experimen-
tal approach for armor design according to
the philosophy “add material until it stops”
it is not viable any more. First, multilayer
panels can show crosscurrent behavior in
relation to material coupling and inter-
face strength, being even non-optimized
for increasing areal density (Signetti and
Pugno, 2014, Figure 1). Technological and
economic limits in large scale produc-
tion of nanomaterials, the difficulties in
their manipulation or in their structural
arrangement into complex bio-inspired
structures require a systematic and reli-
able design process able to provide a ten-
tative target optimum. With mere experi-
ments is nearly impossible to investigate the
whole design space for understanding still
unexplained mechanism in order to mimic
nature and, why not, do even better.

Going down to nanoarmours at atomic
scale, we enter in a new world with com-
pletely unexplored scenarios. Deformation,
fracture, contact forces are matter of poten-
tials, electronic interactions, affinity, and
reactivity of particles of colliding bodies in
relation also to their atomic arrangement.
Can we still call it only impact mechan-
ics? Probably not. Some studies have been
published about the protection capabili-
ties of graphene nanoarmours via molec-
ular dynamics [see Ozden et al. (2014) and
Shang and Wang (2014)]: many consider-
ations can be done with these simulations,
which allow the modeling of systems up
to 1 M atoms. However, the uncertainty
and insensitivity of the behavior at this
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FIGURE 1 | Scalings of the absorbed energy K abs in perforated

multilayer panels with the number of layers N
( Kabs

N
∝ N α

)
for

different values of adhesive interface normal (σ⊥) and shear (σ||) limit

stresses, normalized with the plate omogenized tensile strength σ,

Signetti and Pugno (2014). Results of impact FEM simulations show

the existence of optimal interface parameters that increase and

maximize the scaling of specific energy absorption (exponent α),

influencing the interaction of layers and the failure behavior. This explains
controversial (positive or negative value of α) experimental observations
that can be found in literature (Jacobs and van Dingenen, 2001) for plates
with different compaction pressure during the production process. Each
point of the graph is the result of 6 configurations with different layer
number N overall resulting 726 simulations: the same number of cases
would be extremely difficult to be performed and analyzed with ballistic
experimental tests.

scale would suggest the use ab initio meth-
ods, inspite of their limitation to a few
thousands atoms (e.g., modeling of few-
layer graphite): epitaxy simulations (Veruc-
chi et al., 2012; Taioli et al., 2013) repre-
sent a starting knowledge base as well as a
collateral application.

Moving up the mesoscale level, one of
the main challenges is the modeling of
multiple crack nucleation and propaga-
tion. Presently, merging more than 3 levels
of hierarchy is computationally unfeasi-
ble. Some methods have been developed
to overcome the problems of the FEM
method (erosion mesh-sensitive approach)
even if each of them shows known lim-
itations, like the cohesive zone elements
(mesh sensitiveness, remeshing required)
and the extended finite element method
(not applicable for multiple crack interac-
tion). Silling (2000) has proposed a non-
local reformulation of the standard con-
tinuum theory of solid mechanics, called
peridynamics. Unlike the partial differ-
ential equations of the standard theory,
the integral equations of peridynamics are

applicable even when cracks and other
singularities appear in the deformation
field. Thus, continuous and discontinu-
ous media can be modeled with a sin-
gle set of equations. This theory naturally
yields into a meshless method (Silling and
Askari, 2005): this has been implemented,
for instance, in the acknowledged mole-
cular dynamics code LAMMPS (Sandia,
2015). We believe that this is a promis-
ing step toward a real multiscale approach
(atomistic to continuum or within the
continuum) in the same simulation.

Another advance we believe to be very
interesting in the field is the isogeomet-
ric formulation (Hughes et al., 2005; Cot-
trell et al., 2009; Temizer et al., 2011),
that offers the possibility of integrat-
ing finite element analysis with conven-
tional Non-Uniform Rational B-Splines-
based CAD design tools. NURBS work
both as geometry descriptors and element
basis functions, following the same phi-
losophy of isoparametric elements. Using
NURBS it is easy to construct surfaces
with C1 or higher order of continuity and

compared to C0 finite element geometry.
Thus, isogeometric analysis is especially
attractive to contact analysis of complex
geometries (e.g., undulation, even hierar-
chical). This should not be limited just to
impacts on complex surfaces, let us also
think of modeling any problem in which
adaptive and tunable wrinkling, e.g., few-
layer graphene as emblematic case (Zang
et al., 2013), is exploited to provide super-
hydrophobicity and self-cleaning proper-
ties to surfaces. The integration with CAD
would let models to be designed, tested,
and adjusted on the go, with a relevant gain
in time.

Being still in a relatively primordial
phase in the development of these methods
it is a gamble to forecast a breakthrough in
simulation of bio-inspired and hierarchi-
cal nanomaterials for armors; however, it
is worth keeping an eye on them since we
believe them to be very promising. For sure,
a synergistic combination of different and
complementary research tools and mul-
tidisciplinary expertise (materials science,
solid and fluid mechanics, physics) will be
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essential to lead in the next years to predic-
tive models and optimization tools. It will
be the task of simulation to support good
ideas, even futuristic, pushing technology
to actually switch ideas to tangible innova-
tion for a new generation of advanced bio-
inspired (nano)armors with significantly
improved specific penetration resistance
and energy absorption capability.
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