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We investigate the nonlinear responses of graphene-matrix composite to harmonic and subharmonic
resonances. Assuming anisotropic mechanical properties of graphene, we derive size-dependent
governing equations of motion for graphene resting on a matrix based on the von Karman hypotheses
and nonlocal elasticity theory. Response of graphene oscillation under a uniform pressure is obtained
using the averaging method. We study the effects of length scale as well as the presence of the elastic
matrix on harmonic and subharmonic oscillations of graphene. Our results reveal that subharmonic
oscillation of order 1/3 can occur when the ratio of excitation to natural frequencies exceeds three. Also,
the subharmonic oscillation of the system is triggered in an appropriate initial condition.
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1. Introduction

Graphene is a one-atom-thick sheet of carbon atoms with
outstanding electrical [1], mechanical [2], thermal [3] and optical
[4] properties. Indeed, graphene has mobility of charge carriers
up to 106 cm2 V�1 s�1 (in suspended samples) [5], Young modulus
of 1100 GPa [2], fracture strength of 125 GPa [2], thermal conduc-
tivity of 5 � 103 W m�1 K�1 [3] and specific surface area of
2630 m2 g�1 [6]. Due to high stiffness to density ratio [2], graphene
has fundamental resonant frequencies at microscale in the Mega-
hertz range 1–170 MHz [7]. This property combined with recent
advances in scaling up production techniques [8] by bottom up
[9–12] or top down [13–17] approaches have generated consider-
able interest in utilizing graphene as nanoscale electromechanical
resonators [7,18]. In this context, studying the dynamic response of
graphene under various loading conditions is fundamental in
understanding and explaining the behavior of such nanoscale
resonators, key to achieve smart design.

Since experimental and molecular analyses [19,20] of nano-
structures are expensive and time-consuming, there is a great
interest [21] in exploiting continuum mechanics for analysis of
nanostructures [22]. Continuum mechanics has been widely
exploited [23,24] in literature for the linear vibration analysis of
graphene and single or multi-wall carbon nanotubes, made by roll-
ing up graphene layer(s), mainly exploiting the nonlocal elasticity
theory [25–27]. However, interesting physical phenomena such as
jumps, subharmonic, super-harmonic and combination resonances
as well as chaos occur also in nanostructures in the presence of
nonlinearities. Such physical phenomena cannot be taken into
account, and thus explained, by linear models [28]. Indeed, no
physical system has linear behavior under external perturbations
and hence linear models developed for the understanding of phys-
ical systems have intrinsic limitations, i.e. if the oscillations of an
elastic system result in amplitudes which are not very small with
respect to its thickness, then the use of linear model may produce
inaccurate results. In general, linear models are applicable only in a
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Notation

A Modal coefficient
E Young modulus
F external pressure
k stiffness coefficient of the elastic substrate
l1, l2 length of graphene in x1 and x2 directions
l3 graphene thickness
M resultant moment
N resultant force
p external load
p0 magnitude of the external excitation
P Modal force coefficient
u displacement of graphene
U non-dimensional transverse amplitude of oscillation

US strain energy
UT kinetic energy
UW potential energy
U1 amplitude of the harmonic oscillation
U1/3 amplitude of the subharmonic oscillation
e strain tensor
l length scale parameter (nonlocal parameter)
h chiral angle
m Poisson’s ratio
q density
r nonlocal stress tensor
x frequency of the external excitation
xnl nonlinear natural frequency of graphene

E. Jomehzadeh et al. / Computational Materials Science 99 (2015) 164–172 165
few cases [28], i.e. when the vibration amplitude is smaller than
the thickness of the tested material. Thus, to accurately understand
the dynamic behavior of a nanostructure under general, especially
in magnitude, loading conditions, it is essential to take into account
the nonlinear contributions.

In this context, several works have been conducted. In particu-
lar, the vibrational responses of a cantilever beam with cracks of
different size and location to a harmonic force have been investi-
gated [29], demonstrating how the presence of breathing cracks
in a beam results in nonlinear dynamic behavior. Such nonlinear
dynamic gives rise to super-harmonics in the response signals
spectrum [29]. Molecular dynamics (MD), closed-form elasticity
solution and finite element method have been exploited by Xue
and Liao [21] to understand the elastic response of a circularly
shaped graphene layer under a transverse central load. The authors
demonstrated that continuum mechanics can yield predictions
close to the ones estimated by molecular mechanics under large
deformation for certain loading configurations when modes of
deformation are similar [21]. Mismatch in deformation profiles is
about 8–9% at a central deflection of graphene [21]. The mismatch
reduces to less than 5% when the central deflection increased to a
10-layer thickness [21], for the case of a few-layer graphene (FLG)
sample. Quinn et al. [30] studied the dynamic buckling of nano-
structure subject to compressive edge loading whose transverse
displacements are coupled through nonlinear interactions. It was
shown that the buckling instability is significantly affected by the
presence of the interaction force as well as the separation of the
graphene layers at the boundaries [30]. A theoretical framework
of nonlinear continuum mechanics was developed by Lu and
Huang [31] for graphene under both in-plane and bending defor-
mation. Graphene shows highly nonlinear deformation and aniso-
tropic properties under finite-strain uniaxial stretch [31]. Duan and
Wang [32] studied the deformation of a circularly shaped graphene
layer under a central point load by carrying out molecular mechan-
ics and nonlinear plate theory. By properly selecting parameters
such as Young’s modulus, the von Karman plate theory can provide
a remarkably accurate prediction of the graphene behavior under
linear and nonlinear bending and stretching [32].

Considering the small scale effect by nonlocal elasticity
theory, post-buckling, nonlinear bending and nonlinear vibration
analyses were presented for simply supported stiff thin films in
thermal environments [33,34]. Moreover, Jomehzadeh et al.
[35,36] determined how the van der Waals interaction in FLGs
has considerable effects on out of phase frequencies. This result
was achieved studying the large amplitude free vibrations of FLGs
on an elastic substrate using the nonlocal elasticity theory
[35,36].
The nonlinear vibrational properties of graphene were studied
using a membrane model [37] demonstrating how the nonlinear
fundamental frequency of graphene increases with both the
in-plane pretension and initial velocity. The nonlinear equation
of motion was considered for graphene by including the stretching
effects due to large amplitudes [37]. A nonlinear continuum model
for the nonlinear vibration analysis of isotropic FLG was developed
in [38], without considering the small scale effect. These authors
demonstrated that FLGs are promising high-frequency resonators
[38].

Forced vibration analysis of nanotubes has been studied
[39–41], while more recent works [42,43] considered the vibration
behaviors of bi-dimensional systems under applied load. Aksencer
and Aydogdu [42] investigated the forced vibration of nanoplates
using the nonlocal elasticity theory for all edges simply supported
boundary conditions. They have shown that the non-locality
effects should be considered for nanoplates under forced vibration
[42]. He at al. [43] studied the forced vibration of graphene sheet
under a tip force without considering the small scale effects.
Exciting a bilayer graphene in proximity of natural frequencies,
its first and second layers vibrate in-phase and anti-phase modes,
respectively [43].

Since graphene sheets can undergo large displacements within
the elastic limit [44], the nonlinear analysis is clearly essential.
Here, we theoretically investigate harmonic and subharmonic
oscillations of a graphene sheet subjected to harmonic excitation.
Large amplitude displacements based on the von Karman theory
is assumed. Considering the small scale effect based on the non-
local elasticity theory [45], the nonlinear governing equations of
motion are derived for graphene resting on an elastic foundation.
Modal equation is derived exploiting the Galerkin approach.
Finally, the response curves of graphene resting on an elastic
substrate are presented for both harmonic and subharmonic
oscillations. This study could help the dynamical design of graph-
ene-based advanced nonlinear systems.

2. Governing equations

We consider a graphene sheet of dimensions l1 and l2 in x1 and
x2 directions with thickness l3 [46] rested on an elastic founda-
tion (Fig. 1). The Cartesian coordinate system is fixed at the cen-
ter of the graphene sheet in its undeformed state. Regarding
lateral dimension of graphene sheets, the Kirchhoff hypotheses
[47] are applicable. Thus, the displacement components can be
represented as

ua ¼ u0
a � x3u0

3;a; u3 ¼ u0
3 ð1Þ



Fig. 1. Schematic representation of graphene sheet resting on an elastic substrate
forming a 2D composite.
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where u0
i ¼ u0

i ðxa; tÞ are the displacement components at the mid-
dle-plane. A comma stands for differentiation with respect to the
suffix index that represents the direction; the Greek subscript (a)
can take the numerical value 1 and 2 while the Roman subscript
(i) varies from 1 to 3. As the transverse displacement of the graph-
ene sheet u0

3 becomes comparable to its thickness l3, the relation
between displacement and strain becomes nonlinear. In these
conditions, the results obtained by using linear theories are not
accurate to describe the strain components. Therefore, a theory of
large deflection such as von Karman theory [48] should be used.
Indeed, the von Karman theory retains only nonlinear terms that
depend on u0

3. The Green strain components of this theory are
expressed as:

eab ¼ e0
ab � x3u0

3;ab; ð2Þ

where e0
ab ¼ ðu0

a;b þ u0
b;a þ u0

3;au0
3;bÞ=2 is the strain component at the

center of graphene sheet. The equations of motion can be derived
according to the Hamilton’s principle as:

dP ¼ dðUT þ UW � USÞ ¼ 0 ð3Þ

where d is the variational operator and UT, US and UW are kinetic
energy, elastic strain energy of graphene and potential energy of
the external loads, respectively. UT, US and UW are defined by the
following relations:

UT ¼
1
2

Z
V
q€u2

i dV ð4aÞ

US ¼
1
2

Z
V
rabeabdV ð4bÞ

UW ¼
Z

A
Fu3dA ð4cÞ

where q is the density of graphene, r is the stress component and
F = F(xa, t) is the external pressure, having contribution from both
the elastic substrate and applied external forces (p). Substituting
Eqs. (1), (2) and (4) into Eq. (3), the equations of motion of graphene
are obtained as:

Nab;b ¼ I1€u0
a � I2€u0

3;a ð5aÞ

Mab;ab þ ðNabu0
3;aÞ;b þ F ¼ I1€u0

3 þ I2€u0
a;a � I3€u0

3;aa ð5bÞ

where Ii ¼
R l3=2
�l3=2 qxi�1

3 dx3 denote the inertia parameters, Nab and Mab

are the force and moment resultants which are defined as:

Nab ¼
Z l3=2

�l3=2
rabdx3; Mab ¼

Z l3=2

�l3=2
rabx3dx3 ð6Þ

In order to describe the long range inter-atomic interactions in
nanoscale materials and express the results in term of physical
parameters, i.e. dimensions, the theory of nonlocal elasticity [45]
can be used. This theory was first extensively developed since
the seventies especially for crack analysis [49]. The theory states
that the stress at a certain point in a body depends not only on
the classical local strain at that particular location, but also on
the spatial integrals with weighted averages of the local strain
contribution over all other positions in the body [49]. Therefore,
the nonlocal constitutive equations have the following form:

rabðxÞ ¼ Cabckeck þ
Z

cabckðx;x0 Þ
eckðx0Þdx0 ð7Þ

Since the nonlocal stress components rab are related to Green
strain components by an integral form, the governing equations
are expressed in integro-differential equations. Since its develop-
ment, the nonlocal elasticity theory received relatively less atten-
tion [24]. This scarce interest in the exploitation of the nonlocal
elasticity theory can be attributed to the complexity of the non-
local stress expression, reported as an integral function of the clas-
sical stress over the entire volume of the body. Indeed, the exact or
approximate solution for the nonlocal integral function can be
determined in very special circumstances using the Green function
and hence its use is rather limited. Ref. [45] presented an equiva-
lent differential expression, instead of the integral form, for the
nonlocal stress components as:

½1� ðe0aÞ2r2�rabðxÞ ¼ CabckeckðxÞ ð8Þ

where l = (e0a)2 is the nonlocal parameter and accounts for the
small scale effect, e0 is a constant to adjust the present model to
the experimental results [24], a is an internal characteristic length
such as C–C bond length or wave length, Cabck is the stiffness matrix
and r2 is the Laplacian operator. The nonlocal effect is presented
through the introduction of a nonlocal length scale (l) which
depends on the material and internal characteristic length [45].
The ratio between nonlocal length scale to structural size goes to
zero at macro-scale and hence the nonlocal effect vanishes in the
limit of large structures recovering the classical mechanics [24].

It is worth to note that the equations of motion (Eq. (5)) have
similar format of the classical thin plate theory [50] that considers
membrane forces, with the only difference relying on the force and
moments resultants. Indeed, in Eq. (5) force and moment resul-
tants are the nonlocal resultant parameters containing small scale
effect, while in the classical thin plate theory [49] they are defined
by classical parameters considering l = 0.

The mechanical properties of graphene sheets in a defined
direction depend on the chiral angle thus they are considered
orthotropic [51]. If a structure executes predominantly transverse
nonlinear vibrations, it undergoes a considerable amount of
in-plane deformation with negligible in-plane inertial forces [52].
Hence, it is assumed that the in-plane inertia contributions are
negligible [50]. Obtaining the force and moments resultants for
an anisotropic graphene sheet, introducing the stress function u as:

N11 ¼ u;22; N22 ¼ u;11; N12 ¼ �u;12; ð9Þ

and considering the small scale effect, the nonlocal nonlinear
governing equations of motion for an orthotropic (having different
material properties or strengths in diverse orthogonal directions)
graphene sheet on an elastic substrate can be obtained as:

D11u0
3;1111 þ 2ðD12 þ 2D33Þu0

3;1122 þ D22u0
3;2222

þ ðI1 � I3Þ 1� ðe0aÞ2r2
h i

ð€u0
3 þr2€u0

3Þ

¼ 1� ðe0aÞ2r2
h i

½�ku0
3 þ p�

þ 1� ðe0aÞ2r2
h i

u0
3;11u22 � 2u0

3;12u12 þ u0
3;22u11

� �
ð10aÞ
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A11u;1111þ2ðA12þ2A33Þu;1122þA22u;2222 ¼u0
3;12u0

3;12�u0
3;11u0

3;22 ð10bÞ

where the parameters Aij and Dij are the material constants of the
graphene sheet, see Appendix A for their definitions, k is the stiff-
ness coefficient of the elastic substrate, which can be considered
as the van de Waals pressure coefficient, while p is the external load
on the graphene surface.

The governing equations (Eq. (10)) are two nonlinear partial
differential equations expressed in terms of the transverse
deflection and stress function. Mathematically, the contribution
of the elastic substrate is considered by assuming that the reaction
of the foundation or substrate can be described by mutually
independent spring elements, i.e. ku0

3 is the reaction pressure
exerted by an elastic substrate such as a polymer medium.
3. Forced vibration analysis

Let us consider the large amplitude forced vibration analysis of
graphene with all four edges simply supported (SSSS) or clamped
(CCCC) boundary conditions. In these cases, both harmonic
oscillation and subharmonic oscillation of order one third (1/3)
are studied. The conditions for simply supported and clamped
boundaries can be written as:

SSSS : u0
3 ¼ M11 ¼ u;12 ¼

Z l2=2

�l2=2
u;22 dx2 ¼ 0 CCCC : u0

3 ¼ u0
3;1

¼ u;12 ¼
Z l2=2

�l2=2
u;22 dx2 ¼ 0 at x1 ¼ �

l1
2

x2
nl ¼ A1 þ 3=4A2U2

¼
16p4Q 11Q 22ðQ 11 þ Q 22 þ 2Q12 þ 4Q 33Þ þ 192Q 11Q 22

l4

l33
ð1þ 2p2l=l2Þkþ 9p4ðQ 11 þ Q 22ÞðQ11Q22 � Q 2

12Þð1þ 2p2l=l2ÞU2

qQ 11Q 22l2ðp2 þ 6l2
=l2

3Þð1þ 2p2l=l2Þ
ð15Þ
SSSS : u0
3 ¼ M22 ¼ u;12 ¼

Z l1=2

�l1=2
u;11 dx1 ¼ 0 CCCC : u0

3

¼ u0
3;2 ¼ u;12 ¼

Z l1=2

�l1=2
u;11 dx1 ¼ 0 at x2 ¼ �

l2

2
ð11Þ

It is assumed that a periodic external pressure p = p0 cos (xt)
is applied to the top side of the graphene surface. The param-
eters x and p0 represent the frequency and magnitude of the
external excitation load, respectively. The possible solutions of
the transverse displacement can be searched in the following
form:

u0
3 ¼ l3UðtÞwðxaÞ ð12Þ

where U is the non-dimensional transverse amplitude of oscillation.
The space function of the transverse displacement can be assumed

as w ¼ cos npx1
l1

� �
cos mpx2

l2

� �
for all edges simply supported and

w ¼ cos2 npx1
l1

� �
cos2 mpx2

l2

� �
for all edges clamped of the graphene

sheet. Here, n and m represent mode shape number in x1 and x2

directions, respectively. Substituting Eq. (12) into Eq. (10b), the gen-
eral solutions of stress function u can be obtained as:

SSSS case
u ¼
l2
3 Q 11Q 22 � Q2

12

� �
32n2m2l2

1l2
2

� m4l4
1 cosð2npx1=l1Þ

Q 11
þ n4b4 cosð2mpx2=l2Þ

Q 22

 !
U2ðtÞ ð13aÞ

CCCC case

u¼ l2
3ðQ 11Q 22�Q 2

12Þ
32n2m2 l2

1 l2
2

� m4 l4
1 cosð2npx1=l1Þ

16Q 11
þm4 l4

1 cosð4npx1=l1Þ
16Q 11

þn4 l4
2 cosð2mpx2=l2Þ

16Q 22
þn4 l4

2 cosð4mpx2=l2Þ
16Q 22

 !
U2ðtÞ

þ l2
3ðQ 11Q 22�Q 2

12Þ
64

2Q33ðcosð2npx1=l1þ2mpx2=l2Þþcosð�2npx1=l1þ2mpx2=l2ÞÞ
�2Q 12Q 33þm2 l2

1Q 11Q 33=n2 l2
2þn2 l2

2Q 22Q 33=m2 l2
1�Q 2

12þQ11Q22

 !
U2ðtÞ

þ l2
3

64
Q 33ðcosð2npx1=l1þ4mpx2=l2Þþcosð�2npx1=l1þ4mpx2=l2ÞÞ

�8Q 12Q 33þm2 l2
1Q 11Q 33=n2 l2

2þ16n2 l2
2Q 22Q 33=m2 l2

1�4Q 2
12þ4Q 11Q 22

 !
U2ðtÞ

� l2
3

64
A33 cosð4npx1=l1þ2mpx2=l2Þþcosð�4npx1=l1þ2mpx2=l2Þð Þ

�8Q 12Q 33þ16m2 l2
1Q 11Q 33=n2 l2

2þn2 l2
2Q 22Q 33=m2 l2

1�4Q 2
12þ4Q 11Q22

 !
U2ðtÞ

ð13bÞ

where Qij are the coefficients in terms of the material properties
(e.g. Young’s modulus, Poisson’s ratio and chiral angle) of the graph-
ene sheets and are defined in Appendix A. Eqs. (13a) and (13b) sat-
isfy in-plane boundary conditions of Eq. (11). Using Eqs. (12) and
Eq. (13) and applying Galerkin’s technique [53] to Eq. (10a), one
can obtain a single, nonlinear, second order differential equation
in the form of:

d2UðtÞ
dt2 þ A1UðtÞ þ A2U3ðtÞ ¼ P cosðxtÞ ð14Þ

where A1 and A2 are modal coefficients, while P is the modal force
coefficient which are expressed in Appendix B.

Putting the external load equal to zero, the nonlinear natural
frequency of a square graphene (l1 = l2 = l) can be expressed as
It can be seen that how the length scale parameter affects the

nonlinear frequency of graphene. Eq. (14) is the well-known sec-
ond order Duffing equation and in general, most of the papers
[54] have only considered its harmonic solutions. Permanent oscil-
lations whose frequency is a fraction 1/n of that of the applied force
can also occur in nonlinear systems [28].

Now we study in detail the harmonic and subharmonic oscilla-
tions of graphene sheets resting on an elastic substrate. We do not
attempt to present a general solution of the problem for subhar-
monic response because in this condition there is not a constant
term in the excitation and consequently the subharmonic oscilla-
tions of order 1/2 do not occur [28]. Rather, one special case which
is the first subharmonic oscillation, i.e. the subharmonic oscillation
of order 1/3, is treated. An approximate solution is obtained by the
procedure known as the averaging method [53]. It is assumed that
the transverse amplitude of the graphene layer can be developed in
the following form:

UðtÞ ¼ U1ðtÞ cosðxtÞ þ U1=3ðtÞ cos
xt
3

� �
ð16Þ

where U1 and U1/3 are the amplitude of the harmonic and subhar-
monic oscillations, respectively. Substituting the proposed form of



Table 1
Material properties of graphene.

l1 (nm) l2 (nm) l3 (nm) E11 (TPa) E22 (TPa) G12 (TPa) m12 q (Kg/m3)

Zigzag 4.855 4.888 0.154 1.987 1.974 0.857 0.205 5363
Armchair 4.888 4.855 0.156 1.949 1.962 0.846 0.201 5295

Table 2
Comparison of natural frequencies (GHz) of a clamped zigzag monolayer graphene.

Dimensions

10 � 10 nm 10 � 20 nm 20 � 10 nm 20 � 20 nm

MD [55] 27.28 18.47 18.86 6.94
Present (U = 0) 27.65 17.21 17.25 6.91

Α1
1/2t
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Fig. 2. Comparison of the left and right sides of Eq. (14) for zigzag graphene
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transverse amplitude (16) into the Duffing Eq. (14) leads to the fol-
lowing relations:

36A1 � 4x2� �
U1=3 þ A2 27U2

1=3 þ 27U1U1=3 þ 54U2
1

� �
U1=3 ¼ 0

ð17aÞ

A1 þ
3A2U2

1=3

2
�x2

 !
U1 þ

A2 3U3
1 þ U3

1=3

� �
4

¼ P ð17bÞ

The above relations are the fundamental equations for har-
monic and subharmonic (order 1/3) oscillations of graphene. By
setting A2 = 0, i.e. the linear oscillation, it can be observed that
the coefficient of subharmonic oscillation U1/3 must be taken zero
unless x assumes the value x ¼ 3

ffiffiffiffiffiffi
A1
p

, where
ffiffiffiffiffiffi
A1
p

is the linear nat-
ural frequency of the graphene sheet on an elastic substrate. In
these conditions, no subharmonic oscillations will occur. However,
if x assumes the value 3

ffiffiffiffiffiffi
A1
p

, then U1/3 can take an arbitrary value.
Eq. (17) have solutions with U1/3 = 0 or U1/3 – 0. The former

solution represents the occurrence of only harmonic oscillations,
while the latter represents the combination of subharmonic oscil-
lations of order 1/3 and harmonic oscillations. Solving Eq. (17a),
the nontrivial solutions of U1/3 can be written as

U1=3 ¼ �
�9A2U1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�567A2

2U2
1 � 432A1A2 þ 48A2x2

q
18A2

ð18Þ

Depending on the sign of A2, relation (18) represents an ellipse
or a hyperbola in a U1/3, x-plane. Due to real solutions of this rela-
tion, it can be concluded that the subharmonic oscillation of order
1/3 occurs in nonlinear forced vibration of a graphene sheet in a
specific region of frequencies, i.e.

x > 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21
16

A2U2
1 þ A1

r
for A2 > 0 and

x < 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21
16

A2U2
1 þ A1

r
for A2 < 0 ð19Þ

Since the graphene sheet basically shows hardening behavior
(A2 > 0) [21], the subharmonic oscillation of order 1/3 occurs
when the frequency of the applied force is higher than a
specific value as can be seen in Eq. (19). In order to specify
the occurrence of subharmonic oscillation with respect to
length scale, the first relation of Eq. (19) for an isotropic square
graphene can be defined as

x >
3
8
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 128þ 63ð1� m2Þ 1þ 2p2l=l2

� �� �
ql2ð1� m2Þð1þ 2p2l=l2Þ p2 þ 6l2

=l23
� �

vuuut ð20Þ
where E and m are Young modulus and Poisson ‘s ratio of the isotro-
pic graphene. It can be found that the amplitude of subharmonic
oscillation increases by increasing the length scale parameter.

Also, when U1/3 = 0, relation (17a) is identically satisfied while
relation (17b) reduces to the harmonic oscillation of the graphene
sheet. Therefore, the subharmonic vibration may result through a
bifurcation from the harmonic vibration.

Exploiting Eqs. (17b) and (18), the following relation can be
obtained between the applied frequency x and harmonic ampli-
tude U1

x2 ¼ 4A1U1 þ 3A2U3
1 � 4P

4U1
ð21Þ

Also, eliminating U1 from Eq. (17a) and using Eq. (17b) leads a
relation between applied frequency x and subharmonic amplitude
U1/3 as

A1þ
3A2U2

1=3
2 �x2

� �
�9U1=3A2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96A2x2�567U2

1=3A2
2�864A1A2

q� �
36A2

þ
�9U1=3A2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96A2x2�567U2

1=3A2
2�864A1A2

q� �3

62208A3
2

þ
A2U3

1=3

4
¼ P

ð22Þ

This equation is simplified in terms of length scale parameter in
Appendix C.
4. Numerical results

In order to perform the numerical calculations, two types of
graphene sheet with geometric and material properties presented
ðp0 ¼ 2 MpaÞ.
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in Table 1 are considered [33]. Also, the nonlocal parameter and
substrate stiffness coefficient are assumed to be e0a ¼ 1:5 nm
and k ¼ 28:49 GPa=nm, respectively [36].

The obtained natural frequencies for a clamped zigzag mono-
layer graphene are compared with molecular dynamics (MD) sim-
ulation using the REBO potential [55] in Table 2. Since the
amplitude of vibration is not mentioned in Ref. [55], we consider
the linear case for this comparison.

To ensure the occurrence of the subharmonic oscillation of
order 1/3 and the accuracy of its results, the time variation of left
side of Eq. (14), in which relation (16) is used for U(t), are com-
pared with the excitation function on the right side of Eq. (14) in
which the frequency of the excitation is x ¼ 3

ffiffiffiffiffiffi
A1
p

. The numerical
values of left (output results) and right (input data) sides of Eq. (14)
are compared in Fig. 2 and it can be found that both sides are in
agreement with each other. Based on the results presented in
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Fig. 2, it can be seen that the response frequency of the graphene
sheet is one third of the excitation frequency.

The harmonic and subharmonic response curves of a zigzag
graphene sheet are depicted in Fig. 3 for both simply and clamped
boundary conditions. The parameter P is related to magnitude of
excitation as P ¼ p0l4

1=E11l4
3 where E11 is the Young’s modulus in

the direction of chiral vector. The amplitude in figures is U1 or
U1/3 for harmonic and subharmonic, respectively which is non-
dimensional with respect to the thickness. To better understand
the regions of harmonic and subharmonic, the value of amplitude
is shown for frequency ratio of 3.2. It can be seen that for this fre-
quency both harmonic and subharmonic oscillation can occur with
dimensionless amplitude of nearly 0.2 and 1.44, respectively.

It can be seen that the subharmonic response for both boundary
conditions starts from the value x=

ffiffiffiffiffiffi
A1
p

¼ 3. Moreover, it can be
found that since the graphene sheet with simply supported edges
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has considerable nonlinear behavior, due to its low stiffness with
respect to the clamped one, the occurrence of subharmonic
response is here more pronounced. Also, it can be found that the
harmonic oscillations can also occur in the region of the excitation
frequency where the subharmonic oscillations take place and this
effect is more considerable for simply supported graphene. Results
show that the nonlinear behavior of graphene sheets is of harden-
ing type, i.e., the frequency increases with the amplitude, as
expected due to stretching. Since the external force is harmonic,
its magnitude does not affect the subharmonic response.

In order to study the effect of elastic substrate on vibrational
behavior of graphene sheets, response curves are shown in Fig. 4
for different values of the elastic foundation as a matrix in the
2D composites. It can be found that as the elasticity of the matrix
increases, the nonlinear vibrational behavior of graphene sheet
decreases and curves shift to left. Therefore, for high stiff elastic
substrate, the linear analysis may have acceptable results. Also, it
can be seen that the elastic substrate has considerable effect on
simply supported graphene than clamped one. Moreover, the
effects of substrate are more significant in higher frequencies for
both harmonic and subharmonic oscillations. Similar to single
layer graphene, it can be seen that the subharmonic response for
a graphene-matrix composite also starts from frequency ratio
around 3. However, the elastic substrate causes decreasing of
subharmonic amplitude.

The response curves of a zigzag graphene sheet are depicted for
different values of nonlocal parameter in Fig. 5 for both simply
supported and clamped edges. Consequently, there is a strong
increase in the nonlinear vibrational behavior and therefore, the
nonlinear effects are more considerable for higher values of small
length scale. It can be concluded that for nanostructures the use
of nonlinear and nonlocal effects are essential for obtaining accu-
rate results. Also, the length scale effect decreases not only the
harmonic amplitude but also subharmonic amplitude of graphene.

The response curves of a simply supported armchair graphene
sheet are shown in Fig. 6 for some values of nonlocal parameter.
By comparing Fig. 6 with Fig. 5a it can be found that the nonlocality
has the same effect for both zigzag and armchair graphene, i.e., a
length scale effect increment decreases the amplitude of
oscillation.
5. Conclusions

Nonlinear forced vibration of a graphene sheet resting on an
elastic substrate has been presented by considering the small scale
effect. Harmonic as well as subharmonic oscillations have been
developed to study the vibrational behavior of an orthotropic
graphene sheet. The governing equations of motion have been
derived using the von Karman hypotheses. The Galerkin’s proce-
dure and method of averaging have been used to reduce the formu-
lations into a modal equation. The responses of the problem have
been obtained for two different boundary conditions.

It is concluded that the subharmonic oscillation of order 1/3 can
occur in graphene sheets with harmonic excitation. The transition
between the state in which the subharmonic oscillation of order
1/3 occurs and the state in which the harmonic oscillation occurs
cannot be continuous and only when an appropriate initial condi-
tion is given to the system, the subharmonic oscillation is triggered.
Our calculations demonstrate that subharmonic oscillations of 1/3
can occur only when the ratio of excitation frequency is more than
3. In this frequency region, harmonic oscillations can also take place
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as well. In addition, our results demonstrate that the small length
scale has considerable effect on the vibrational behavior of graph-
ene sheets, increasing the nonlinearity of the system.
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Appendix A

The coefficients of the governing equations of motion are
obtained in terms of mechanical properties of graphene sheets as

A11 ¼ Q22

l3ðQ11Q22�Q2
12Þ
; A12 ¼ � Q12

l3ðQ11Q22�Q2
12Þ
;

A22 ¼ Q11

l3ðQ11Q22�Q2
12Þ
; A33 ¼ 1

l3Q33
;

D11 ¼ l33Q11
12 ; D12 ¼ l33Q12

12 ;D22 ¼ l33Q22
12 ; D33 ¼ l33Q33

12

ðA:1Þ

where

Q 11 ¼
E11 cos4 hþ2m21 sin2 h cos2 hð ÞþE22 sin4 h

1�m12m21
þ 4G12 sin2 h cos2 h

Q 12 ¼
E11 sin2 h cos2 hþm21 sin4 hþm21 cos4 hð ÞþE22 sin2 h cos2 h

1�m12m21
� 4G12 sin2 h cos2 h

Q 22 ¼
E11 sin4 hþ2m21 sin2 h cos2 hð ÞþE22 cos4 h

1�m12m21
þ 4G12 sin2 h cos2 h

Q 33 ¼
E11 sin2 h cos2 h�2m21 sin2 h cos2 hð ÞþE22 sin2 h cos2 h

1�m12m21
þ G12ðcos2 h� sin2 hÞ

ðA:2Þ

where h denotes the chiral angle [33], E11 and E22 are Young’s mod-
ulus in the direction and perpendicular to the chiral vector, respec-
tively. Also, G12 and m are the shear modulus and Poisson’s ratio of
the graphene sheet, respectively.

Appendix B

The modal coefficients for a simply supported graphene sheet
can be obtained as:

A1 ¼
12l2

1l2
2ð1þp2ll2

1þp2ll2
2Þk�p4l3

3ð2Q12l2
1l22þ4Q 33l2

1l2
2þQ 22l4

1þQ 11l4
2Þ

ð12l2
1l2

2þ l2
1l2

3p2þ l2
2l2

3p2Þðl2
1l2

2þ l2
1lp2þ l2

2lp2Þql3

ðB:1Þ
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3p4l23ðl

4
1Q 22 þ l42Q 11ÞðQ 11Q 22 � Q 2

12Þ
4qQ 11Q 22l2

1l2
2ð12l2

1l2
2 þ l2

1l23p2 þ l22l2
3p2Þ

ðB:2Þ

P ¼ 192l4
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where Qij is defined in Appendix A.
Appendix C

The relation between applied frequency x and subharmonic
amplitude U1/3 in term of length scale parameter for a square
graphene is
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