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INTRODUCTION

Carbon nanotubes (CNTs) are attracting significant
attention because of their unique mechanical and elec-
tronic properties. Consequently, CNTs are considered
to be ideal building blocks for nanoelectromechanical
systems (NEMS) devices. By exploiting nanoscale
effects, NEMS also present interesting and unique
characteristics. For instance, CNT-based NEMS
devices can have an extremely high fundamental fre-
quency [1–4] and preserve very high mechanical
responsivity [5]. Several NEMS devices have been
reported, such as mass sensors and radiofrequency (RF)
resonators [6], field-effect transistors (FET) [7], and
electrometers [8]. CNT-based NEMS devices reported
in the literature include nanotweezers [9, 10], nonvola-
tile random access memory (RAM) [11], nanorelays
[12], and rotational actuators [13].

NEMS seem to have the capability to revolutionize
the electronic components of the future. Their tremen-
dously miniaturized size and high fundamental fre-
quency would result in a density of the order of
10

 

12

 

 elements over a square centimeter and an opera-
tion frequency in the EHF band (extrahigh frequency,
30–300 GHz).

Regarding the prediction of the mechanical strength
of nanostructures, a new theory, namely, quantized
fracture mechanics (QFM), has recently been devel-
oped [14]. QFM seems to be have been confirmed by
experimental results and atomic–quantum mechanical
numerical analyses on nanostructures, e.g., on defec-
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tive nanotubes. Fracture of tiny systems with a given
geometry and type of loading occurs at “quantized”
stress levels that are predicted well by QFM. Such
investigations confirm that nanotubes and nanowires
remain the key elements for designing innovative
NEMS, due to their tremendous mechanical properties.

Assuming a sufficient mechanical strength, the
dynamics, switch, and controls of NEMS, always oscil-
lating (at least as a consequence of the thermal vibra-
tions), represent still open and fundamental issues in an
optimal design. Such vibrations are usually studied
assuming a linear behavior and without considering the
effect of the electric and van der Waals fields imposed
to control the device. In spite of this, the presence of
electrostatic charges implies that the nanotube/nanow-
ire cannot be considered as free, as is usually assumed.
Moreover, linear behavior, implicitly corresponding to
the assumption of small displacements, seems to be in
contrast with the observed high flexibility of nanotubes
(and nanowires), which are capable of undergoing large
displacements while remaining in the elastic regime. In
this paper, we try to remove these assumptions. The
static equilibrium configuration of the NEMS is derived
by minimizing its free energy. The oscillations around
such a configuration are studied, and the equipartition
theorem is applied to study the thermal vibrations. An
experimental comparison is discussed. Moreover, the
amplitude of the intrinsic oscillations at a temperature
of 0 K, as imposed by the uncertainty principle, is also
estimated. The intensity of the electric field corre-
sponding to a vanishing oscillating frequency (i.e., to a
structural instability) is predicted for nanotube- and
nanowire-based NEMS and compared with numerical
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simulations. Such a prediction of the pull-in voltage is
shown to be fundamental, since it represents the key
design parameter describing the on–off transition of the
device [15, 16].

Moreover, the control of a CNT-based cantilever
NEMS device is extensively investigated. Similar con-
siderations could be proposed for nanowires. The
device, i.e., the clamped nanotube suspended over the
electrode, is assumed to be in series with an impedance

 

Z

 

. In the analysis, we will focus our attention on a pure
resistance, as was numerically investigated in [17, 18].
The system can be controlled by imposing a current 

 

I

 

 or
a voltage 

 

U

 

 from an electrical power supply that we
assume to be ideal. A current between the nanotube tip
and the ground electrode (from which a difference 

 

V

 

 in
the potential exists) will take place in the circuit for
small gaps (on the order of 1 nm) as a consequence of
the tunneling effect (with associated tunneling resis-
tance 

 

R

 

T

 

) [19–21]. The device is depicted in Fig. 1. If
the power supply imposes a current (pA range), the
nanotube will be deflected towards the electrode, even-
tually reaching a given tip position corresponding to a
tunneling current between the tip and the electrode as
imposed by the power supply; thus, an ideal current
control results in an analogic device. The impedance 

 

Z

 

in this case does not possess any particular role and can
be neglected. Assuming a zero impedance, in the circuit
(Fig. 1) 

 

U

 

 = 

 

V

 

, the nanotube will collapse onto the elec-
trode at a given pull-in voltage 

 

U

 

 = 

 

U

 

PI

 

 [22]. When the
applied voltage 

 

U

 

 < 

 

U

 

PI

 

, the elastic force of the CNT is
balanced by the electrostatic force. The cantilever CNT
remains in the upper equilibrium position. Here, the
deflection is controlled by the applied voltage. When
the pull-in voltage is exceeded, the system becomes
unstable, and, without any increase in the applied volt-
age 

 

U

 

, the electrostatic force becomes larger than the
elastic force and the CNT collapses onto the bottom
electrode. After the pull-in, due to the van der Waals
forces, the sticking of the device, also removing the
applied voltage, in general remains (if the elastic forces
are larger than the van der Waals forces, the nanotube
recovers its undeformed configuration). Thus, a pure
voltage control results in a onetime switchable device;
note that, for some applications, this could be a desired
effect. The impedance 

 

Z

 

 in the circuit allows this (in

general, negative) effect to be avoided, as numerically
investigated for the case of pure resistive impedance in
[17, 18]. When the tip of the CNT is very close to the
electrode, as shown in Fig. 1 (i.e., a distance of around
1 nm), a substantial tunneling current takes place
between the tip of the CNT and the bottom electrode.
Due to the existence of the resistive impedance 

 

Z

 

 in the
circuit, the postcritical (after the pull-in) behavior
changes radically with respect to the case of zero
impedance. The voltage 

 

V

 

 applied to the CNT drops as
a consequence of the tunneling current, weakening the
electric field. Consequently, the nanotube moves
towards a second equilibrium position due to the pres-
ence of damping in the real system. At this point, if the
applied voltage 

 

U

 

 decreases, the CNT cantilever starts
retracting. When 

 

U

 

 decreases to a certain value, the so-
called pull-out voltage 

 

U

 

PO

 

, the CNT cantilever is
released from its lower equilibrium position and returns
to its upper equilibrium position [17, 18]. Thus, this
voltage control, with a feedback resistive impedance,
corresponds to a switchable bistable device. However,
in this case, the system needs a power consumption to
maintain the on position, in contrast to the nondissipa-
tive solution proposed in [11].

In this paper, we try to quantify the qualitatively
described NEMS behaviors.

NEMS OSCILLATIONS AND INSTABILITY

Let us focus our attention on a cantilever clamped
nanotube (cylindrical cross section) or nanowire (rect-
angular cross section) suspended over an electrode at a
distance 

 

H

 

 from which a difference 

 

V

 

 in the electro-
static potential is imposed by a voltage 

 

U

 

 or a current 

 

I

 

supply; the system is vibrating at a given temperature 

 

T

 

(Fig. 1). Let us start by considering a vanishing imped-
ance 

 

Z

 

 in the circuit and voltage control, so that 

 

U

 

 = 

 

V

 

.

The electrostatic 

 

ε

 

elec

 

 and van der Waals 

 

ε

 

vdW

 

 ener-
gies per unit length can be evaluated by the following
relationships [22]:
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Fig. 1.

 

 Current and voltage controlled nanotube/nanowire
cantilever vibrating NEMS.
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, (4)

where 

 

s

 

 is the natural axial coordinate along the
deflected configuration (coincident with the horizontal
coordinate 

 

z

 

 only for small displacements), 

 

r

 

int

 

 and 

 

r

 

 

 

≡

 

r

 

ext

 

 are the inner and outer radius of a (multiwalled)
nanotube, 

 

N

 

G

 

 is the number of layers in the substrate
(usually graphite), 

 

d

 

 is the interlayer distance (for
graphite, 

 

d

 

 = 0.335 nm). In addition, 

 

a

 

 

 

≡

 

 

 

a

 

int

 

 is the gap
between the nanotube (external wall) and the surface
layer of the substrate, where 

 

n

 

 is the atomic density (for
graphite, it is equal to 

 

n

 

 = 1.14

 

 × 

 

10

 

29

 

 m

 

–3

 

); 

 

ε0 = 8.85 ×
10–12 C2/(N m2) is the vacuum permittivity, and C6 is a
material constant (for graphite, it is equal to C6 = 2.43 ×
10–78 Nm7); for nanowires, B denotes the width (paral-
lel to the substrate) and t is the thickness of the cross-
sectional area; w(z) = H – a(z) is the system deflection,
and E and J are the Young modulus and the moment of

inertia (equal to π(  – )/4 for nanotube or to
Bt3/12 for nanowire), respectively. We have assumed a
rectangular cross section for the nanowire, but this
hypothesis can be easily relaxed.

Let us consider a deformed static configuration wS
assumed as a given arbitrary function satisfying the
boundary conditions, with one (or more) unknown free
parameter(s) cS (e.g., wS ≈ cSs2/L2, with cS correspond-
ing to the tip displacement). The oscillations around
this configuration can be described by

(5)

For the fundamental frequency ω, the function wD(s, t)
will be

(6)

where cD represents the maximum amplitude of the har-
monic oscillations around the equilibrium position
described by cS (that minimizes the free energy of the
system). Accordingly, the kinetic energy of the NEMS
will be

(7)

Here, M is the mass of the nanotube/nanowire and µ =
ρmS, where S is the cross-sectional area and ρm is the
density (for carbon, ρm = 2260 kg/m3). Equation (7) can
be rewritten as

(8)

where α is dependent on the chosen form for wS (e.g.,
rough forms of wS give estimations for the cantilever

dεvdW
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of α ≈ 1/5) and can be derived by comparing Eqs. (7)
and (8).

Indicating the free energy of the NEMS by W(c),
where c = cS + cDsin(ωt), and fixing its reference by
imposing W(cS) = 0, by equating the maximum value of
the free energy and the maximum kinetic energy, we
obtain an estimate of the fundamental (operating) fre-
quency ω as

(9)

If the kinetic energy (e.g., its mean value) is a given
quantity, from Eqs. (8) and (9), the frequency and the
amplitude of the oscillations can be derived. Note that,
in general (if the oscillations are large), the frequency ω
will be a function also of the amplitude cD, as described
by Eq. (9), showing a nonlinear behavior. For small
oscillations, the frequency becomes amplitude-inde-
pendent, as emphasized in the next section.

Small oscillations. If the oscillations are small (also
around a large deflected configuration), we can develop
the free energy in series, considering just the two first
terms. Since, at the static equilibrium, the free energy

must present a minimum, i.e.,  = 0, as well

as W(cS) ≡ 0 (according to the chosen reference sys-
tem), we have

(10)

so that, applying Eq. (9), it follows that

(11)

Note that, under these assumptions, ω does not depend
on the amplitude cD but only on the external fields
included in the free energy term.

Free oscillations. Focusing our attention on free
oscillations, the free energy becomes coincident with
the elastic energy stored in the nanotube; i.e., W(c) =
εelast(c), where

(12)

where θ defines the slope of the elastic line of the nan-
otube, i.e., θ = dw/dz, and β is a known coefficient
dependent on the chosen form for wS (e.g., a rough esti-
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mation for the cantilever is β ≈ 1). Thus, from Eq. (11),

(13)

Thermal vibrations. For thermal vibrations at an
absolute temperature T, the equipartition theorem
implies a known mean value kBT/2 (kB is Boltzmann’s
constant) of the kinetic energy associated with each
degree of freedom; hence,

(14)

where P = 2π/ω is the period of the oscillation. Com-
parison of Eq. (14) with the mean value of Eq. (8), in
light of Eq. (11), gives

(15)

from which we can obtain the amplitude cD of the ther-
mal vibrations around the position described by cS. The
frequency is given by Eq. (11).

The equipartition theorem applied to the higher
modes m fixes their relative amplitudes, which fall off
as ~1/m2. Thus, the first mode m = 1 (that we are inves-
tigating) is clearly the predominant one.

Free thermal vibrations. Considering the thermal
vibrations around the relaxed configuration W(c) =
εelast(c) and introducing Eq. (12) into Eq. (15) yields

(16)

with ω given by Eq. (13).
Instability. The instability of the system arising at

the so-called pull-in voltage, is achieved when the glo-
bal stiffness of the NEMS becomes negligible, i.e.,
when the frequency of the oscillations formally goes to
zero:

(17)

According to Eqs. (11) and (15), the thermal vibrations
are predicted to be infinitely large at zero frequency.
Practically, when they become large enough, the
approximation of small vibrations is no longer valid
and the amplitude will be limited. Thus, from the con-
dition of Eq. (17), the pull-in voltage can be easily esti-
mated, as shown below.

The kinetic energy released after the pull-in can be
evaluated as

(18)

ω2 2βEJ
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where WPI is the free energy at the pull-in and Wcontact is
the free energy after the impact of the nanotube on the
electrode, i.e., in the collapsed configuration.

The oscillations imposed by the Heisenberg prin-
ciple. The Hamiltonian (�) of the NEMS must have the
form of (W(cS) = 0)

(19)

The Schrödinger equation of the continuum system
can be correspondingly written in a simple manner as a
consequence of the reduction of the system to one
degree of freedom:

(20)

where εn are the energy eigenvalues and ψn are the
eigenfunctions describing the fundamental vibrational
states. Equation (20) can be solved numerically. For
small dynamic displacements around a (similarly large)
deflected configuration, we can substitute the condi-
tions of Eqs. (10) and (11), thus finding the well-known
discrete quantized energy levels of the harmonic oscil-
lator:

(21)

Note that, here, ω is not the fundamental frequency of
the cantilever nanotube/nanowire but, according to
Eq. (11), takes into account the external fields, included
in the free energy. Obviously, the lowest energy level is
predicted to be different from zero also at zero temper-
ature

, (22)

as imposed by the Heisenberg principle (the total
energy is the sum of the potential and kinetic energies,
both positively defined; considering ε0 ≈ 0 would imply
that both the position and velocity of the system are
known (and equal to zero), which contradicts the uncer-
tainty principle). Between two adjacent levels, the
energy gap is, as well-known, ∆ε = εn + 1 – εn = �ω.

The condition for which Eq. (22) equals Eq. (14)
corresponds to the temperature for which the “vibra-
tions” (corresponding to the borderline with the quan-
tum accessibility) at the zero point become larger than
the thermal vibrations:

(23)

Substituting Eq. (23) into Eq. (15) implies considering
the energy of Eq. (22) as the mean value of the kinetic
energy at 0 K; thus, the amplitude of the “vibrations” at
a temperature of 0 K must be of the order of

(24)

� c t,( ) K c t,( ) W c( ).+=

�
2

2meq
----------- d2

dc2
--------– W c( )+ 

  ψn c( ) εnψn c( ),=

εn
1
2
--- n+ 

  �ω.≈

ε0
�ω
2

-------≈

kBT �ω.≈

cD
2 L3

�ω
βEJ

------------- �
2L3

βEJmeq
-------------------= =



GLASS PHYSICS AND CHEMISTRY      Vol. 31      No. 4      2005

TUNNELING CURRENT–VOLTAGE CONTROLS, OSCILLATIONS 539

with a frequency given by Eq. (13).

Free energy of the NEMS. To quantify the
approach proposed in the previous sections, it is suffi-
cient to derive an expression for the free energy of the
NEMS. This step represents the aim of the present sec-
tion.

The free energy of the NEMS has to be written as

(25)

If the gaps are smaller than a critical value (around
1 nm), the Pauli energy εPauli(c) (with a minus sign)
plays a significant role and has to be added to the right-
hand side of Eq. (25). Otherwise, it can be neglected.
The elastic energy is given by Eq. (12).

For computing the electrostatic energy, we assume a
uniform charge distribution [22].

The total electrostatic and van der Waals energies
stored in the NEMS are

(26)

(27)

Thus, the free energy of Eq. (25) is now quantified by
Eqs. (1)–(4) and (12), (26), (27); the amplitude and fre-
quency of the oscillations can consequently be evalu-
ated as previously described. Note that, before applying
the relationships previously derived, the free energy of
Eq. (25) must be rewritten according to our choice of

W(cS) = 0, where cS:  = 0. For example,

applying Eq. (17), we find the NEMS instability arising
at the so-called pull-in voltage for

(28)

(29)

where k ≈ 0.85, ζ ≈ 1. Note that, for a clamped–clamped
configuration, we estimate β ≈ 48 (even if, for such a
configuration, the stretching of the nanotube could play
a significant role [23]). Here, we have neglected the van
der Waals forces that have to be considered only for
gaps (technologically still unrealistic) lower than
~10 nm. However, considering the first corrective term
accounting for the van der Waals forces, we find the

W c( ) εelast c( ) εelec c( )– εvdW c( ).–=
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εelecd
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VPI ζ βEt3H3

ε0L4
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instability at , with a shift with respect to VPI given
(for example, for a nanotube having NW walls) by

(30)

Comparison with experimental and numerical
results. Let us focus on nanotubes. Usually, free and
thermal vibrations of nanotube-based NEMS are stud-
ied around the relaxed configuration, due to the higher
complexity in treating the effect of the electric field and
van der Waals forces in the dynamics of the system.
Neglecting such effects, the classical continuum
approach to the study of the free vibrations (even ther-
mal, by virtue of the equipartition theorem) of the
beams holds; on the other hand, the proposed approach
allows one to estimate the effect of the external fields as
well as the “vibrations” at a temperature of 0 K of
NEMS. Another important result is the prediction of the
pull-in instability, corresponding to the on–off transi-
tion of the device, a key design parameter for NEMS.

Some interesting experimental observations of free
thermal vibrations for singly and doubly clamped nan-
otubes were reported, respectively, by Chopra and Zettl
[24] and Babic et al. [25]. For the cantilever nanotube,
E ≈ 1.2 TPa, L ≈ 154 nm, r = rext ≈ 1.75 nm, rint ≈ 1.1 nm

(M = ρAL, J = π(  – )/4), and, according to
Eq. (16), the amplitude of the thermal vibrations at
300 K of the free end is estimated to be on the order of
~1.4 nm; the root-mean-square amplitude (obtained by

dividing for ) is consequently on the order of 1 nm,
close to the observed value of ~0.8 nm. On the other
hand, the frequency (P–1 = ω/(2π)), according to
Eq. (13), is estimated to be on the order of ~0.4 GHz.
Finally, the vibrations at a temperature of 0 K, accord-
ing to Eq. (24), are estimated to have an amplitude on
the order of ~0.05 Å.

For the clamped–clamped nanotube, E ≈ 1 TPa, L ≈
6.25 µm, r = rext ≈ 1 nm, rint ≈ 0.665 nm, and, according
to Eq. (16), the amplitude of the thermal vibrations at
300 K of the free end is estimated to be on the order of
~0.13 µm (rms), close to the observed value of
~0.08 µm. The frequency, according to Eq. (13), is esti-
mated to be on the order of ~0.7 MHz. Finally, the
vibrations at a temperature of 0 K, according to
Eq. (24), should have an amplitude on the order of
~0.2 Å (note that these comparisons simply assume the
reported rough estimations for the parameters α, β, and
ρm = 2260 kg/m3; better estimations could be obtained
considering more realistic forms for wS(s); in addition,
strictly speaking, the parameters k, ζ should be consid-
ered experimental or numerical quantities).

VPI
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Since no extensive investigations on the dynamics
of NEMS under external fields are present in the litera-
ture, an additional possible check of the analysis can be
achieved by comparing the prediction of the instability
with a linear numerical analysis [23], for which E =
1.2 TPa, rint = 0 nm, L = 50 nm, r = 1 nm, H = 4 nm. The
comparison is reported in Table 1 by varying the length
and the gap of the NEMS and, thus, its characteristic
horizontal and vertical sizes. We conclude that the the-
ory and numerical results agree satisfactorily, confirm-
ing the value of k ≈ 0.85 for nanotubes.

ACTIVE CURRENT AND VOLTAGE CONTROLS

Voltage and current control. According to the pre-
vious analysis, we assume here Z = 0. As a consequence
of the applied voltage, the nanotube will be deformed
and its tip will have a vertical displacement c towards
the electrode, as was previously discussed. The tunnel-
ing current arises between the nanotube tip and the
electrode for a small gap a = H – c (with a, we simply
denote here the gap tip). A similar effect could arise as
a consequence of the field emission also for larger gaps.
Let us focus on nanotubes, even if a similar analysis
could be applied to nanowires.

The resistance of the tunneling contact can be
described as a function of the tip gap a as [3]

(31)

where R0 is the contact resistance between the nanotube
and the electrode (valuable experimentally [19]) and λ
is a material constant defined as λ–1 = σ , where σ is

a constant (σ ≈  [20]) and Φ is the work func-

tion of the nanotube. For multiwalled nanotubes, Φ ≅
5 eV [21]; thus, λ–1 ≅ 2.28 Å–1 ≅ 22.8 nm–1. Accord-

ingly, the tunneling current is given by I(a) = .

The function V(a) describes the equilibrium positions
of the nanotube tip under the voltage V, as previously

RT a( ) R0e
a
λ
---

,=

Φ
1

Å eV
-----------------

V a( )
RT a( )
--------------

discussed. In particular, by minimizing the free energy
of the NEMS (Eq. (25)), we obtain

(32)

where VPI is given by Eq. (28) and (c/H)PI ≈ 2/3. Since
a = H – c, it is clear that Eq. (32) represents an estimate
for the function V(a), i.e., the voltage–displacement
electromechanical characteristic curve. Note that the
curve of Eq. (32), like the pull-in voltage given by
Eq. (28), agrees very well with numerical [22] and
experimental [9] results.

For ease of representation of the electromechanical
characteristic curves, the main parameters of the model
are expressed as dimensionless functions or variables
by the following normalization:

(33)

Since Eq. (32) represents the voltage–displacement
characteristic curve and Eq. (33) represents the volt-
age–current characteristic curve, the current–displace-
ment electromechanical characteristic curve is easily
derived by combining them.

The displacement–voltage characteristic curve of
the device is reported in Fig. 2. If the voltage is con-
trolled (by introducing an ideal voltage source in series
with the nanotube; see Fig. 1 with Z = 0), the pull-in
instability will arise at the maximum of the curve, since
the voltage does not increase monotonically with the
displacement. On the other hand, the displacement–
current characteristic curve of the device is reported in
Fig. 3, plotted as an example for the case of H = 10 nm
(H is the only parameter that has to be specified in such
a dimensionless curve). If the current is controlled (by
introducing an ideal current source in series with the
nanotube; see Fig. 1 with Z = 0), the pull-in instability
disappears, since the current monotonically increases
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Table 1.  Comparison between theoretical and numerical predictions for pull-in voltages of nanotube-based NEMS

Case H, nm L, nm r = rext , nm rint , nm E, TPa VPI , V (theor.) VPI , V (calcd.)

1 100 2000 9.015 6 1 1.44 1.42

2 600 2000 9.015 6 1 13.56 13.40

3 1200 2000 9.015 6 1 30.89 30.52

4 100 4000 9.015 6 1 0.37 0.37

5 600 4000 9.015 6 1 3.39 3.35

6 1200 4000 9.015 6 1 7.72 7.63
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by increasing the displacement; this characteristic
shows that imposing a current results in fixing the tip
position, so that active control is achieved. Finally, in
Fig. 4, the voltage–current characteristic of the device
(H = 10 nm) is depicted.

In summary, if the device is directly voltage-con-
trolled, according to our analysis, the pull-in will arise
at a given value of the applied voltage as predicted by
Eq. (28), namely, at the maximum of the curve reported
in Fig. 2. The descending branch is unstable, since the
voltage does not increase monotonically with an
increase in the tip displacement. If we control the
device in current, the entire curve reported in Fig. 2 rep-
resents stable configurations, as suggested by Fig. 3;
this shows that a given tip position c corresponds to a
given current I(c) and vice versa. This is the main rea-
son that the current control is stable everywhere. Con-
sequently, the ideal current control results in an active
analogical NEMS device. This nontrivial result shows
that, by “simply” controlling the current in the picoam-
pere regime (by an ideal current source), the displace-
ment of the tip of the nanotube is actively controlled.

The role of the impedance Z. As previously dis-
cussed, the current control can be considered “active”
even for negligible impedance Z. In contrast, due to the
instability in the descending branch of Fig. 2, the volt-
age control has to be optimized. Here, we show that an
active voltage control can be achieved considering an
impedance Z in the circuit. If Z = 0, the pull-in of the
device will take place by increasing the voltage; in this
case, to reach the pull-out of the device, we have to con-
sider a third ground element to impose charges of the
same sign in both the nanotube and the electrode [11].
Recently, Kinaret et al. [12] have demonstrated that, for
the voltage control case, tunneling between the tip of
the nanotube and the electrode may cause the pull-out
of the device. In [17, 18], a feedback control NEMS by
employing a resistor RF in series with the resistance of
the tunneling contact is proposed. We discuss here ana-
lytically their numerical study. The control is achieved
by imposing an input voltage U different from the volt-
age drop V on the nanotube, as discussed in the Intro-
duction. For an active voltage control, U has to increase
monotonically when the nanotube approaches the con-
tact. This is the role of the impedance Z. This additional
element is demonstrated to be sufficient to reach a new
stable position just before the contact.

Let us consider the NEMS device described in
Fig. 1, in which we have a voltage source delivering a
voltage U, a resistance Z = RF in series with the cantile-
ver nanotube, and the tunneling resistance RT. Without
current in the circuit, the voltage drop on the nanotube-
bottom electrode gap is V = U. Once established, the
tunneling current will reduce the voltage V between the
nanotube and electrode, according to the partition of
voltage, in the dimensionless form

(34)V** a( ) V a( )
U

------------
R** a( )

1 R** a( )+
---------------------------, R**

RT

RF

------,= = =
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Fig. 2. Displacement–voltage electromechanical character-
istic curve (voltage control: the pull-in instability arises at
the maximum of the curve).
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Fig. 3. Displacement–current electromechanical character-
istic curve (current control: the pull-in instability disap-
pears; H = 10 nm).
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Fig. 4. Voltage–current characteristic curve (H = 10 nm).
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where RT is given by Eq. (31). The decrease in the volt-
age V with the gap a via RT(a) causes a reduction in the
deflection of the nanotube, and practically a new stable
second position will be reached after the pull-in voltage
and before the contact. The phenomenon is qualita-
tively illustrated in Fig. 5. For a “moderate,” e.g.,
around 10 nm, distance between the nanotube and the
electrode, this curve coincides with the characteristic
curve reported in Fig. 2. For very small electrode–nan-
otube tip distances (~1 nm), the tunneling current will
be established, decreasing the voltage V, so that the nan-
otube will reach a second stable equilibrium position.
As a consequence, an ascending branch will be present
in the characteristic curve. Assuming an increase in the
voltage U, the device will follow the marked ascending
path, reaching the pull-in at the point PI and, just before
the contact, a stable position at the point S. From here,
when the source voltage U is increased, the nanotube
will approach the electrode. On the other hand, if U is
decreased, the device will follow the marked descend-
ing path to reach the pull-out in PO. The areas denoted
by 1 and 2 are proportional to the square root of the
kinetic energies released in the corresponding two
instabilities that will be dissipated as a consequence of
the damping of the system.

A mechanical analogy could be represented by the
snap-through in the system reported in Fig. 6 (opposite
elastic beams of length l inclined by an angle α and
with stiffness Q). Controlling the force F (analogous to
controlling U) causes an increase in the angular dis-
placement ϕ and a collapse (snap-through, analog to the
pull-in) before reaching the horizontal configuration.
The elastic energy thus released is converted into
kinetic energy. If a dissipative element exists, the sys-
tem will reach a new stable equilibrium condition,
thanks to the presence of the internal hinge (playing the
role of the two resistances). Controlling the displace-
ment (analogous to controlling the current), all of the
configurations are stable. Obviously, the analogy is not
complete, as emphasized by the qualitative equilibrium
force versus displacement curve reported in Fig. 6. As

in the previous treatment, such a characteristic can be
obtained with respect to the angle ϕ, the free energy of

the system here given by W = Q  –  –

Fl(tanα – tan(α – ϕ)), assuming small angles.

Second equilibrium position. To estimate the sec-
ond equilibrium position of the NEMS, we present here
a simplified approach; a corresponding numerical
investigation was performed in [17, 18]. Approaching
the contact, the predominant contributions in the forces
are the singular terms, i.e., the electrostatic, the van der
Waals, and the Pauli forces. Accordingly, the equilib-
rium, as a first approximation, can be written consider-
ing the forces per unit length q evaluated at the tip (sin-
gular contributions):

(35)

The derivation of the first term in Eq. (35) generates
two terms: the first one, qelec, is present as a conse-
quence of the variability of the capacitance per unit
length of the nanotube with respect to the gap a; the
second one, (a), represents a new (tunneling) term,

as a consequence of the fact that, here, the voltage V is
not imposed but is itself a function of the gap a; i.e.,
V(a). Note that Eq. (35) represents a balance of singular
forces (per unit length, evaluated around the tip); i.e.,
qelec(a) + (a), + qvdW(a) + qPauli(a) = 0.

To obtain a simple estimation, we model the van der
Waals and Pauli forces as a mechanical contact [12] at
a = amin ≈ 0.35 nm. Correspondingly, before the
mechanical contact qvdW ≈ 0 and qPauli ≈ 0, so that

l
αcos

------------
 l

α ϕ–( )cos
---------------------------


2

d
da
------

∂εelec

∂z
------------ a( )

∂εvdW

∂z
------------- a( )

∂εPauli

∂z
--------------- a( )+ +

 
 
 

0.=

qelec
tun

qelec
tun

1

2

1

PO

S
PI

1 c/H

U/VPI

Fig. 5. Displacement–voltage characteristic (qualitative)
curve with an impedance Z in the circuit.
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trol corresponds to voltage control; displacement control
corresponds to current control. 
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Eq. (35) reduces to (a) + qelec(a) ≅ 0. Noting that

 = , we obtain the two terms as

(36)

Considering the asymptotic behavior of Eq. (36) for
a/r  0 yields

(37)

and, consequently, the equilibrium qelec(a) + (a) ≅

0 gives

(38)

Note that a/λ is of the order of 20, and, consequently,
ea/λ cannot be approximated considering small values
of a/λ. The solution of Eq. (38) defines the value of a
corresponding to the second stable equilibrium position
after the pull-in due to the tunneling effect. Analysis
shows that it is only slightly dependent on R0/RF; the
dependence on this parameter is clear: as expected, the
lower the ratio R0/RF, the larger the tip gap correspond-
ing to the tunneling equilibrium. Approximate Eq. (38)
suggests also that the equilibrium position is practically
independent of the applied voltage U. Accordingly,
such an equilibrium position is theoretically expected
to be very stable. The corresponding tunneling current

is given by I(a) = .

Solving Eq. (38), the equilibrium positions corre-
sponding to gaps of the order of 0.5–1 nm have been
found by varying R0/RF within four orders of magnitude
(see Table 2). The corresponding tunneling currents are
also estimated (Table 2). Note that the large variation in
the tunneling current for a small variation of the tip
position suggests that the current control previously
proposed (if close to “ideal”) could result in a high
positioning accuracy. Decreasing the voltage U, the
pull-out of the device will arise for a small value of
UPO/VPI. According to simplified hypotheses, the equi-
librium positions reported in Table 2 can be considered
to be only estimates. Numerical investigations per-
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formed as described in [17, 18], including van der
Waals forces and charge tip concentration (but still
neglecting the Pauli principle), basically confirm this
trend (Table 2).

CONCLUSIONS

In this paper, nanotube- and nanowire-based NEMS
have been investigated. The frequency and amplitude of
the vibrations (free, thermal, and as imposed by the
uncertainty principle, including the electric field and
van der Waals forces), as well as the instability corre-
sponding to the switch of the device are quantified by
the proposed free-energy-based approach. Two differ-
ent types of control, thanks to the tunneling current,
have been demonstrated to allow the realization of dig-
ital (voltage control) as well as analogic (current con-
trol) devices. The electromechanical characteristics of
the NEMS have been deduced.
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