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Adhesion of spider web anchorages has been studied in recent years, including

the specific functionalities achieved through different architectures. To better

understand the delamination mechanisms of these and other biological or

artificial fibrillar adhesives, and how their adhesion can be optimized, we

develop a novel numerical model to simulate the multiple peeling of structures

with arbitrary branching and adhesion angles, including complex architectures.

The numerical model is based on a recently developed multiple peeling theory,

which extends the energy-based single peeling theory of Kendall, and can be

applied to arbitrarily complex structures. In particular, we numerically show

that a multiple peeling problem can be treated as the superposition of single

peeling configurations even for complex structures. Finally, we apply the devel-

oped numerical approach to study spider web anchorages, showing how their

function is achieved through optimal geometrical configurations.
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1. Introduction
Natural adhesives have captured considerable interest in recent years owing to

their outstanding mechanical properties [1]. Well-known examples are gecko or

insect adhesion [2,3], or spider web attachments [4], in which geometry, struc-

ture and material properties are essential in defining functionality. Gecko

adhesion, which is based on van der Waals forces, achieves strengths of up

to 1 MPa through the contact of billions of spatulae for each foot pad [5,6].

As in other cases of natural adhesives, the key to strong adhesion seems to

lie in their hierarchical structure, which allows good adaptation to the surface

and repeated contact splitting to increase the total peeling line without self-

bunching [7,8]. The observation of these natural structures has inspired the

design and realization of artificial dry adhesives (i.e. based on van der Waals

forces) that guarantee simultaneous strong adhesion and smart, easy release,

usually realized in polymers by means of ‘mushroom-shaped’ terminal

elements tens of micrometres in size [9–13]. These structures, like gecko or

insect terminal elements (spatulae), are tapered in shape [7], so that their

detachment from the surface is reminiscent of the peeling of a tape from a sub-

strate. Multiple peeling theory (MPT) [14] has recently been introduced by

Pugno, and applied to cases of interest such as the delamination of a

V-shaped elastic tape from a substrate, or to spider web anchorages [14,15].

The theory is a generalization of the well-known single peeling theory by

Kendall [16] and predicts a critical value of the pull-off force corresponding to a

limiting peeling angle which is reached as the delamination advances. Both the

pull-off force and limiting angle only depend on the geometry of the tape, its elas-

tic modulus and the interfacial energy. In [14], an assumption (‘ansatz’) is
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Figure 1. (a) Schematic geometry of an asymmetrical double peeling con-
figuration. (b) Comparison between initial, deformed and delaminated
configurations. For simplicity, delamination is shown on only one of the
two branches.
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formulated relating multiple to single peeling theory, as theor-

etically demonstrated for the symmetric double peeling case,

stating that any multiple peeling problem can be treated as

the superposition of single peeling ones, using Kendall’s

theory or its extensions. In this paper, we numerically

implement this hypothesis.

The MPT is particularly useful to study the geometries of

cases of interest found in Nature, where evolution has

encouraged the optimization of structure and material prop-

erties for specific functions [17]. Spider web anchorages are

one relevant case. For example, Sahni et al. [18] recently dis-

cussed the case of different attachment discs for cobweb-

weaving spiders, showing that the attachment strengths of

the different configurations (‘scaffolding’ and ‘gumfoot’

silk) are related to their specific function, namely locomotion

and prey capture. In addition, Pugno et al. [19] compared

MPT with atomistic modelling to demonstrate a synergy

between material constitutive law and structural geometry,

similarly to their previous findings on spider webs [20]. In

this paper, we introduce a novel energy-based numerical

model to address complex multiple peeling problems, includ-

ing asymmetrical geometries or loading configurations.

Results complement those obtained in previous studies and

further clarify optimization mechanisms, analysing specific

attachment disc configurations and adding further elements

to interpret their particular structure.

The paper is structured as follows: in §2, the numerical

model is outlined; in §3.1, the model is implemented by com-

paring its predictions with known MPT results and further

simulations regarding a symmetric double peeling configur-

ation are presented; in §3.2 and §3.3, results relative to

asymmetrical double peeling geometries are discussed;

finally, in §4, the results from previous sections are used to

analyse two of the most common types of spider web

anchorages and interpret their structure on the basis of

their function.
2. Numerical model
We consider a model anchorage constituted by multiple tapes

converging to a single point (or line), undergoing detachment

by simultaneous or sequential peeling of the various tapes,

and evaluate the adhesive properties of the system as a func-

tion of the specific configuration. To do this, we adopt a two-

dimensional numerical-analytical model based on discrete

nodal displacements: each tape is considered as a truss

element of variable length, depending on the delaminated

length, and each node has 2 degrees of freedom. As a first

approximation, the material constitutive law is considered

to be linear elastic and isotropic.

The simplest case is a V-shaped double peeling configur-

ation, shown in figure 1, in which three nodes are necessary.

An imposed displacement is incrementally applied on the

structure vertex. For each increment, the balance between

elastic energy and adhesive energy is computed between

the deformed state and the delaminated state, assuming a

discrete delamination length ldel. The external work term is

absent as the simulation is in displacement control, so that,

when delamination occurs, the position of the application

of the force remains constant. Using the indices I, II and III

for initial, deformed and delaminated states, respectively,

delamination of the tapes i ¼ 1, 2 takes place when the
stored elastic energy exceeds the energy needed to create a

new area of surface b . ldel [14]

1

2
YA

(lII,i � lI,i)
2

lI,i
� (lIII,i � lI,i � ldel)

2

lI,i þ ldel

" #
¼ bRldel, (2:1)

where Y is the tape Young’s modulus, A is its cross section,

b is its width, l is its length and R is the adhesive energy

per unit area. Tape tensions ( fi), and, therefore, the total exter-

nal load F corresponding to the imposed displacement, can

be calculated from tape deformations Dli using Hooke’s law

fi ¼ YA
Dli
li
: (2:2)

The iterative process continues after delamination, considering

the modified system configuration, i.e. attachment node displace-

ments and tape length increments (as shown in figure 1).
3. Model results: double peeling
3.1. Symmetrical loading and symmetrical configuration
We first discuss a symmetrical peeling geometry with purely

vertical loading (referring to figure 1: l1 ¼ l2 ¼ l, u1 ¼ u2 ¼ u,

a ¼ 908). The chosen geometrical and mechanical properties

of the tape are t ¼ 0.125 mm, b ¼ 15 mm, Y ¼ 3 MPa and l ¼
100 mm. To begin with, we study the deformation of the struc-

ture only up to the onset of delamination. For different values

of adhesive energy R, figure 2 shows the numerical predictions

of the normalized force F(u)/F(p/2) necessary to obtain dela-

mination of the tapes as a function of the peeling angle u (i.e.

the angle of the deformed tape with respect to the surface at

which delamination occurs).

These numerical results can be compared with analytical

predictions using MPT [14], which in turn extends Kendall’s

single peeling theory [16]. Accordingly, the energy balance

(as described in §2) for the peeling of a single tape is

f2

2btY
þ f(1� cos (u))� bR ¼ 0: (3:1)
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Figure 2. Analytically (MPT) and numerically calculated results for normal-
ized delamination load F(u)/F(p/2) versus peeling angle u in a symmetrical
double peeling configuration for various adhesive energies R (in J mm22).
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The analytical expression for the single peeling force is,

therefore,

f ¼ btY cos (u)� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cos (u))2 þ 2R

tY

r" #
: (3:2)

In this symmetrical case, it was demonstrated through

energy balance considerations [14] that the total delamination

force can also be obtained as the composition of two single

peeling forces [16]

F ¼ 2 sin (u)f : (3:3)

Analytical values using equations (3.2) and (3.3) are also

plotted in figure 2 together with numerical predictions for

different values, showing a perfect overlap. These results

show that an optimal peeling angle is reached before delami-

nation, in correspondence with which the peeling force is

maximum, which depends on the adhesive energy of the

tape–substrate and tape elasticity. Numerical solutions do

not appear on the descending branch of the analytic curves

for peeling angles smaller than this optimal angle. This is

because, as we show below, optimal peeling angles (curve

maxima) correspond to zero non-deformed (initial) angles,

and thus smaller peeling angles would correspond to nega-

tive initial angles, which is physically meaningless [15].

Referring to figure 1, if deformation starts from an initial

angle u0, after deformation the strain in each of the two tapes

is 1 ¼ DL=L ¼ cos u0= cos (u)� 1. Therefore, the tape tension

can be expressed as

f ¼ btY
cos u0

cos u
� 1

� �
, (3:4)

while the vertical external load at the vertex of the two tapes

is expressed by equation (3.3). It is clear then that the optimal

peeling force is obtained for u0 ¼ 0, as shown in figure 3a: the

corresponding curve intersects the peeling force curve at its

maximum value (the same mechanical properties as pre-

viously are used). We thus plot, in figure 3b, the external

load F for u0 ¼ 0 as a function of the peeling angle u as

derived from equations (3.3) and (3.4), together with the peel-

ing forces previously shown in figure 2 for various R values.

The intersections between the curves, which correspond to the

F values for which tapes with different R values delaminate,

occur in all cases at the maximum of the peeling force curves,

i.e. for optimal peeling angle values. This result confirms the

fact that peeling cannot occur for the angle values below the
optimal angle, as the tape tension for these angles is smaller

than that necessary to delaminate.

The optimal peeling angle is a function of the global deform-

ability of the system, i.e. the deformation that the system can

sustain before delamination occurs. This property can be

quantified by the non-dimensional parameter l ¼ 2R/(tY),

representing the ratio between adhesion energy and elasticity

[14]. We thus wish to derive the optimal peeling angle as a

function of l. To analytically obtain the value of the optimal

peeling angle and force for a given l value, given by the inter-

section of the curves in figure 3, we must equate equations

(3.2) and (3.4). With simple algebraic manipulation, we obtain

2 cos (uopt)
3 � (3þ l) cos (uopt)

2 þ 1 ¼ 0: (3:5)

This equation can be solved for the non-dimensional

parameter l as a function of the optimal peeling angle

uopt. Inverting the relation, we obtain the curve shown in

figure 4 for uopt versus l, showing a monotonically increasing

nonlinear behaviour.
3.2. Asymmetrical loading and asymmetrical
configuration

Next, we consider an asymmetric structure loaded asymmetri-

cally, i.e. with a non-vertical load. As an example, the following

parameters are chosen for the structure: l1 þ l2 ¼ l ¼ 100 mm,

u1 ¼ 408 u2 ¼ 608 (initial angles) and R ¼ 0.001 J mm22, while

the tape’s mechanical properties are the same as in the previous

section. The parameter l is of the order of 1023, so defor-

mations at delamination are in this case very small. The

delamination force calculated numerically as a function of

the force application angle a is shown in figure 5 (only the

first delamination is considered). Here, the range considered

for a corresponds to the cases where both tapes are in tension.

The observed behaviour can be explained by the fact that the

two tapes no longer delaminate simultaneously: starting

from small angles, tape 1 delaminates while tape 2 does not,

and for large angles the opposite happens. In correspondence

with the maximum of the curve, the symmetrical structure

considered in the previous section is obtained.

To better understand these results, we can consider the

case when tape deformations are negligible (i.e. the limit

case of tapes with small l). Considering the force equilibrium

on the tips of the tapes with this hypothesis, from figure 1

we have

F cos (a)� f1 cos (u1)þ f2 cos (u2) ¼ 0

and F sin (a)� f1 sin (u1)� f2 sin (u2) ¼ 0,

)
(3:6)

where f1 and f2 are the reaction forces from tapes 1 and 2,

respectively. It is now possible to write the relation between

the two tape tensions

f1 sin (a� u1) ¼ f2 sin (aþ u2): (3:7)

Considering that only one of the tapes is delaminating, the cor-

responding delamination force is calculated using MPT. Using

equation (3.7), it is possible to calculate the tension in the other

tape, and using equation (3.6), the force applied to the system.

Figure 5 shows that the simulation results (triangles) and the

MPT solution (lines) coincide when the deformations are

negligible.

The issue that remains to be clarified now is whether the

calculation of multiple peeling forces from a superposition of

http://rsfs.royalsocietypublishing.org/
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Kendall single peeling forces remains valid in the case of

moderate deformations of the system. To verify this, simu-

lations are performed with R ¼ 0.1 J mm22, so that l is of

the order of magnitude of 1021. Mechanical properties,

total tape length and tape sections are the same as reported
in the previous section. For various randomly chosen con-

figurations, deformed angles and tensions in both tapes are

numerically determined and compared with analytically cal-

culated (using MPT) peeling forces. Table 1 shows typical

results. The simulated peeling force of the delaminated tape

can be obtained analytically if the deformed state (with

http://rsfs.royalsocietypublishing.org/


Table 1. Tape tensions and corresponding angles compared with peeling
forces calculated using MPT. The values in bold/italics highlight the
agreement between numerical and MPT-calculated values at delamination
for the three systems considered as examples.

system 1 system 2 system 3

a (8) 75 100 60

u1 initial (8) 40 40 45

u2 initial (8) 60 60 45

u1 deformed (8) 43.80 50.20 46.42

u2 deformed (8) 76.44 63.60 65.84

tape 1 tension (N) 2.10 0.85 2.96

tape 2 tension (N) 1.71 2.15 0.80

external load (N) 3.21 2.62 3.33

MPT peeling force

tape 1 (N)

3.10 2.76 2.96

MPT peeling force

tape 2 (N)

1.71 2.15 2.06

initial structure 3.21 N

a = 75˚

q2II = 74.44˚
q1II = 43.80˚

q1I = 40˚ q2I = 60˚

1.71 N1.71 N2.10 N3.10 N

deformed structure
external load
tape tension
analytical peeling force

Figure 6. Graphical representation of system 1 in table 1, showing that
numerically calculated peeling forces coincide with MPT-calculated ones
where delamination occurs, if the deformed configuration is considered.
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corresponding angle modifications) is considered. For each

considered configuration, and at each iterative simulation

step, we find that the tension in the tape that delaminates is

always coincident to the peeling force obtained by analytical

single peeling theory considering the deformed system, thus

confirming the hypothesis of MPT.

To better illustrate this, forces and deformations relative to

system 1 in table 1 are illustrated schematically in figure 6.

Here, delamination occurs for one of the tapes (on the right),

and the tape tension is therefore equal to the peeling force cal-

culated using the single peeling theory as demonstrated by

MPT. In this state, the tension in the other tape is smaller

than the peeling force, and delamination does not take place.

The same happens for systems 2 and 3 in table 1, where dela-

mination occurs for tapes 2 and 1, respectively.

3.3. Simulations of delamination evolution
We now consider the same structures considered previously,

simulating the peeling phase beyond the first delamination, i.e.

the entire detachment process. The same mechanical properties

as in the previous sections are used, with R ¼ 0.01 J mm22. The

structure is symmetric and the total tape length is l¼ 20 mm at

the onset of the simulation. Figure 7a shows the force and

the peeling angle as a function of the delamination length. Start-

ing from u¼ 908, simulations show that the peeling force grows

and tends to a limit value, and simultaneously the peeling

angle decreases and also tends to a limit value. The structure

becomes optimal for this peeling angle value, as the delamination

force is maximal. The behaviour obtained simulating the entire

process is equivalent to that obtained calculating single delamina-

tions at various peeling angles. On the other hand, if we start from

u¼ 0 (figure 7b), it can be seen that an abrupt slope change occurs

for both force and peeling angle after the first delamination, after

which both remain constant in the subsequent delamination

phase, as the optimal force and angle have already been reached.

In the asymmetric case, we have verified that there is an

optimal force direction at the tip of the tapes, depending on

the geometry of the structure. If we now simulate the entire

detachment process starting from the previous geometry,
adopting a non-optimal force direction, the progressive de-

lamination leads to a modification of the geometry in order

to reach the equilibrium with both tapes under critical tension.

Figure 8 shows the force as a function of the peeling angle for

the two tapes. These curves are divided into two parts: the

first (A–B) corresponds to a single-tape delamination phase

necessary for the system to reach equilibrium, at which both

tapes start delaminating together, and the second (B–C) to a

phase in which the system reaches optimal angles.

All results in the previous sections are relative to two-

dimensional geometries. However, this two-dimensional

model is applicable to three-dimensional geometries in

which the delamination force lies in a plane perpendicular to

the surface. To extend the approach to more general three-

dimensional cases, an additional angle would be necessary to

describe the direction in space of the applied load, and in

http://rsfs.royalsocietypublishing.org/
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some cases a further angle describing the direction of the non-

delaminated tapes with respect to delaminated ones (the two

directions do not necessarily coincide). The problem can be

treated, analytically and numerically, in a similar way to that

illustrated above, and peeling force surfaces (instead of

curves) can be obtained, e.g. as a function of the multiple

angles mentioned above. Work is underway to study this

problem, but the topic is beyond the scope of this paper.

4. Spider web anchorages
Spiders attach their silk draglines to substrates using so-called

‘attachment discs’ [4]. These structures involve pyriform silk
coated with a fluid that favours adhesion [21]. Recent studies

have discussed the mechanics of different spider anchorages

[18,20]: two main structures can be observed, with different

functions. The first is a so-called ‘staple-pin’ structure (‘scaf-

folding’ silk; figure 9a), where branches are aligned and

initially fully attached to the substrate, resulting in a plane

morphology, which is used as a structural anchorage.

Figure 9b shows a detail of a fluid-coated silk fibre: note the

similarity with the adhesive tape considered in the previous

section. The other possible architecture is a so-called ‘dendri-

tic’ structure (‘gumfoot’ silk), which can be described as a

radial branching structure where the pyriform silk fibres con-

verge to a single point at a distance from the substrate,

http://rsfs.royalsocietypublishing.org/


7
(a)

(b)

6

N = 2

N = 4

N = 8
N = 16

li = 1 mm

li = 5 mm

li = 10 mm

li = 20 mm

li = 40 mm

5

4

3fo
rc

e 
(N

)
fo

rc
e 

(N
)

2

1

100 20 30
displacement (mm)

40 50 60

0.2

0.4

0.6

0.8

1.0

100 20 30

displacement (mm)

40 6050 70

Figure 10. Force-diplacement curves for a dendritic anchorage, for (a) varying number N of fibres in the anchorage (li ¼ 10 mm) and (b) varying detached length li

of the anchorage (N ¼ 2).

rsfs.royalsocietypublishing.org
Interface

Focus
5:20140051

7

 on January 7, 2015http://rsfs.royalsocietypublishing.org/Downloaded from 
resulting in a cone-like morphology (figure 9c) which is

involved in spider prey capture. It has been shown [18,20]

that, although they are based on the same pyriform silk, the

two structures exhibit very different mechanical behaviour,

which is functional to their role. To perform its function,

the staple-pin anchorage must display high detachment

strength, while the dendritic anchorage must exhibit a reduced

pull-off force.

The first element that can explain the different pull-off

forces observed for the two structures is the different extent

of contact splitting occurring in the two morphologies. It is

well known [7,8] that a larger number of contacts occurring

in the pyriform silk implies a greater peeling line, and, there-

fore, a higher delamination strength. However, we will show

in this section that other mechanisms related to the architec-

ture of the anchorages can explain the differences between

their different behaviour and maximal pull-off force.

The simulations reported here use the same mechanical

properties as in the previous section, with an adhesive

energy of R ¼ 0.01 J mm22. Since the approach is qualitative

and only means to evaluate the role of geometry, results

can be extended to any system with equivalent morphology

and rigidity.
First, we will consider the dendritic anchorage. Owing to its

conical symmetry, the relationship between force and displace-

ment can be directly obtained from the symmetric double

peeling configuration described in §3.1, modified by multiply-

ing results by the appropriate number of tapes. As observed

previously, in order to obtain a smaller delamination force, the

initial tape angle must be close to u ¼ 908. Figure 10a shows

simulation results for various dendritic attachments with avary-

ing number of tapes N, for the same initial tape angles (u ¼ 908)
and for a distance between substrate and the anchorage tip

(i.e. detached tape length) of li ¼ 10 mm. Clearly, the pull-off

force is proportional to the number of contacts. The system is

firstly deformed without delamination, with a linear force–

displacement relationship (Hooke’s law). Then, the tapes

begin to delaminate and the peeling angle starts to vary,

which results in an increase in the peeling force. This explains

the elasto-plastic-like behaviour obtained in experimental [18]

and numerical (figure 10) results. The peeling force saturates

when the peeling angle is optimal. Exploiting this fact, it is

clear that it is possible to maintain a small peeling force by

increasing the initially detached tape lengths, since the displace-

ment (and delamination length) necessary to reach the optimal

configuration is greater. This is shown in figure 10b, where
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force–displacement curves are compared for the same number

of tapes but varying detached length. Thus, for a given delami-

nation length, increasing the anchorage length (i.e. detached

tape length) and using small initial angles are structural strat-

egies that allow the pull-off force to be limited and ‘weak’

anchorages to be obtained. Notice from figure 10 how the

choice of the specific type of attachment can lead to a consistent

variation in the toughness of the structure (the area below the

force–displacement curve), as well as in its strength.

The staple-pin anchorage, on the other hand, can be

approximated by a succession of parallel symmetric double

tapes (figure 11). The first observation regarding this system

is that the displacement or force application point is adjacent

to the substrate. Therefore, the initial angle of all double

tapes is close to zero. This provides a configuration which

requires a greater pull-off force than the dendritic system, as

it is close to the optimal configuration, as explained in §3 (opti-

mal deformed peeling angles correspond to zero initial angles).

To simulate the anchorage during the delamination process,

we assume that a displacement is imposed on the first

double tape, and that the following double-tape displacement

depends on the first one. Considering a quasi-rigid dragline,

successive displacements linearly decrease with respect to the

first one, as shown in figure 11 (side views).

If we indicate with dy1 the displacement of the first

double-tape tip, the successive displacements are given by

dyj ¼ dy1 � Czj, (4:1)

where dyj are the imposed displacements of the jth
double tapes, zj are the positions of the jth double tapes

along the z-axis in figure 11 and C is a constant that can be

derived from equation (4.1) from the imposed displacements.

In the simulation, each tape edge is coincident with the pre-

vious and the succeeding one, and tape centres are separated

by b ¼ 15 mm. The total number of double tapes in the

system is N ¼ 6, the initial tape length is 1 mm and the initial

tape angle is 0. Figure 12 shows the delamination force as a

function of the imposed displacement, with C ¼ 1/15. It is

apparent that the curve is the superposition of the delamina-

tion forces of the double tapes involved in the deformation of

the system. Because C is relatively small, the first tape deforms

and begins to delaminate; when it reaches a certain displace-

ment value, the successive double tape begins to deform and

delaminate, and so on. The reaction force is thus the sum of

optimal peeling forces of the single delaminating tapes,

which explains the step-like behaviour. The number of plateaus
in the curve is equal to the number of double tapes in the struc-

ture. When all six double tapes are delaminating, the force is

maximal and remains constant.

A further example of a geometrical feature which contrib-

utes to the optimization of the adhesive strength of this type

of anchorage can be observed by considering the high density

of pyriform silk fibres in the staple-pin morphology (figure 9e),

and the fact that the coating fluid contact area with the sub-

strate is considerably larger than the dimension of the fibre

(figure 9d). Thus, we can assume that the contact between

the structure and the substrate is continuous in the z direction,

i.e. there are no gaps between the contact areas of the different

double tapes. The structure with gaps (above) and without

(below) is shown schematically in figure 12. In the latter case,

the peeling line is not parallel to the z direction, and is thus

not equal for all detached tapes at a given delamination

length of the dragline silk. The peeling length increases with

the angle between the two peeling lines and the z axis, which

in turn increases with the delaminated length of the dragline

silk. Hence, the total peeling length and peeling force increase

with the delamination length (figure 13).
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Thus, we have shown that, using geometry only, the

spider can tune and optimize the shape of the force–

displacement curves of web anchorages, and thus generate

different optimized constitutive laws for achieving speci-

fic functionalities (e.g. from stable/strong anchorages for

attachment to instable/weak anchorages for capturing).
publishing.org
Interface

Focus
5:201
5. Conclusion
We have developed a new numerical approach to simulate the

peeling behaviour of multiple fibrillar adhesives. We have

implemented the model using MPT [14] for asymmetrical com-

plex configurations. In particular, the model has been used to

implement a previously postulated ‘ansatz’, namely that all

multiple peeling problems can be solved as a superposition

of Kendall single peeling configurations, provided they are

applied to the appropriate deformed state of the system, as
stated by MPT and already analytically demonstrated for sym-

metric double peeling [14]. Finally, we have applied the new

numerical model to study the specific adhesive properties of

two distinct spider web anchorage types, showing how their

structural features are instrumental in defining their constitu-

tive law and overall adhesive strength and toughness, and,

therefore, their effectiveness in accomplishing their function.
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