
Int J Fract (2014) 187:277–283
DOI 10.1007/s10704-014-9939-3

ORIGINAL PAPER

The unacknowledged risk of Himalayan avalanches
triggering

Nicola M. Pugno

Received: 15 February 2013 / Accepted: 21 December 2013 / Published online: 28 March 2014
© Springer Science+Business Media Dordrecht 2014

Abstract A “universal” model for avalanche trigger-
ing, as well as for collapse of suspended seracs, is pre-
sented based on Quantized Fracture Mechanics, con-
sidering fracture, friction, adhesion and cohesion. It
unifies and extends the classical previous approaches
reported in the literature, including the role of the slope
curvature. A new size-effect, that on mountain height
rather than the classical one on snow slab thickness,
is also discussed and demonstrated thanks to glaciers
data analysis from the World Glacier Inventory (http://
nsidc.org/data/glacier_inventory/browse.html, 2014).
The related most noteworthy result is that snow precip-
itation needed to trigger avalanches at 8,000 m could be
up to 4 times, with a realistic value of 1.7 times, smaller
than at 4,000 m. This super-strong size-effect may sug-
gest that the risk of Himalayan avalanches is today still
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1 Introduction

On September 23, 2012 a massive avalanche hit Camp
(C) 3, at 7,000 m, on the Manaslu mountain, see Fig. 1.
It completely destroyed C3 and even wiped out tents
in C2, much further down the slope. At the time, there
were approximately 25 people in C3, 11 of which died.
C3 was previously considered to be in an acceptably
safe position. Professional mountaineers are well aware
of risks associated with climbing, but one risk has never
been discussed and is probably still unacknowledged
(Pugno et al. 2013). We are referring to the difference
between avalanche triggering at 4,000 and 8,000 m.
Size-effects, not those classical related to slab thick-
ness (McClung 1979) but rather connected to moun-
tain height and never discussed in the literature, might
have been responsible for the underestimated risk in the
position of C3, perhaps due to the much greater expe-
rience cumulated by alpinists on 4,000 m mountains
rather than at 8,000 m. This tragedy has prompted the
following analysis, already discussed with Himalayan
Alpinists in the Alpine Journal for its 150-year anniver-
sary (Pugno et al. 2013). The related most noteworthy
result of the new “universal” model presented here, is
that snow precipitation needed to trigger avalanches at

123

http://nsidc.org/data/glacier_inventory/browse.html
http://nsidc.org/data/glacier_inventory/browse.html


278 N. M. Pugno

Fig. 1 Manaslu tragedy:
the zone of avalanche
triggering, (photograph
courtesy of Christian Gobbi)

8,000 m could be up to 4 times smaller than at 4,000 m.
Our model is an extension of the classical approaches
proposed by McClung (1979), previously introduced
for over-consolidated clay by Palmer and Rice (1973),
used by Bazant and McClung (2003) for predicting
the size-effects on slab thickness, and subsequently
extended -for considering non rigid interfaces- by Chi-
aia et al. (2008). The role of the slope curvature and
tensile fracture, previously ignored in the literature, of
the snow slab are also demonstrated to be not negligi-
ble.

2 The “universal” model for avalanche triggering
and serac collapse

The avalanche triggering and serac collapse can be
predicted according to Quantized Fracture Mechan-
ics (QFM) (Pugno 2006), generalizing the classical
approach including friction, adhesion and, for remov-
ing the paradox of an infinite shear strength at vanishing
crack length, a quantized crack advancement. If a defect
of length 2a is present in the weak layer, the so called
super-weak zone, see Fig. 2, an axial force N (x) will
occur in the debonded portion of the snow slab/serac;
for arguments of symmetry the normal force must van-

ϑ

h

2aH

Fig. 2 Scheme of the Quantized Fracture Mechanics model of
avalanche triggering or serac collapse

ish at the centre of the crack (McClung 1979; Palmer
and Rice 1973; Bazant and McClung 2003; Chiaia et
al. 2008; Pugno and Carpinteri 2003), and can be calcu-
lated according to the following force equilibrium, see
Fig. 2, of an infinitesimal element of length dx (Chiaia
et al. 2008; Pugno and Carpinteri 2003; Kostantinidis
et al. 2009; Pugno et al. 2011):

τ (x) + (
τ f + τa

) + dN

wdx
− τN = 0 (1)
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where

τN = ρgH sin ϑ cos ϑ (2)

is the applied shear stress imposed by the weight of
the snowfall of (vertical) height H or of the serac of
(perpendicular) thickness (see Fig. 2):

h = H cos ϑ (3)

and snow/ice density ρ, on a slope ϑ , where g is the
acceleration of gravity, and:

τ f = fρgH cos2 ϑ (4)

is the resistant shear stress of friction, with f friction
coefficient of the sliding interface, τa is the resistant
shear stress of adhesion [thus τ f + τa represents the
residual shear strength after fracture and this is the rea-
son of its appearance in Eq. (1)], τ (x) is the shear
stress exchanged between substrate and slab and w is
the snow slab/serac width.

In the debonded region τ (x) = 0 and thus we derive:

N (x) = w

x∫

0

[
τN − (

τ f + τa
)]

dx

= [
τN − (

τ f + τa
)]

wx (5)

Note that in the debonded zone the upper part of the
snow slab/serac is in tension, whereas the lower one is
compressed, Fig. 2.

In the bonded region, the compatibility implies:

N = E ′hw
du

dx
(6a)

and

τ = −G
u

t
(6b)

where E ′ is the effective Young modulus for plane
strain conditions, i.e.,

E ′ = E
/(

1 − v2
)

(7)

with E Young modulus and v Poisson coefficient of the
snow/ice, G is the shear elastic modulus of the inter-
face, of thickness t and u is the axial displacement.
Inserting Eqs. (6) into (1) yields (Chiaia et al. 2008;
Pugno and Carpinteri 2003; Kostantinidis et al. 2009;
Pugno et al. 2011):

d2u

dx2 − u

c2 = τN − (
τ f + τa

)

E ′h
(8a)

where

c =
√

E ′ht

G
(8b)

Solving Eqs. (8) with the imposed boundary conditions
for the derivative of the displacement (i.e. for the axial
force, known at the crack tips and negligible at the ends
of the slab, here assumed to be sufficiently long with
respect to its depth h) yields (Chiaia et al. 2008; Pugno
and Carpinteri 2003; Kostantinidis et al. 2009; Pugno
et al. 2011):

u (x)= − c2

E ′h
[
τN − (

τ f +τa
)]

[
1 + a

c
e− |x−a|

c

]
, |x |>a

(9a)

and thus

τ (x) = [
τN − (

τ f + τa
)] [

1 + a

c
e− |x−a|

c

]
, |x | > a

(9b)

N (x) = aw
[
τN − (

τ f + τa
)]

e− |x−a|
c , |x | > a (9c)

Note that the axial force is zero in the bonded region for
vanishing crack length, whereas tends to the constant
N = aw

[
τN − (

τ f + τa
)]

for vanishing thickness t, c
thus represents the length of the zone influenced by the
presence of the crack.

The strain energy stored in the debonded part of
snow slab/serac is (Chiaia et al. 2008; Pugno and
Carpinteri 2003; Kostantinidis et al. 2009; Pugno et
al. 2011):

�d (x) = 2

a∫

0

N2

2E ′hw
dx = wa3

3E ′h
[
τN − (

τ f + τa
)]2

(10)

whereas that in the bonded region is:

�b (x) = 2

∞∫

a

N2

2E ′hw
dx = wa2c

2E ′h
[
τN − (

τ f + τa
)]2

(11)

and finally that stored in the interface is:

�i (x) = 2

∞∫

0

τ (x)2

2G
twdx

= tw

G

[
τN − (

τ f + τa
)]2

(
a + a2

2c

)
(12)
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According to QFM (Pugno 2006) the avalanche trig-
gering or serac collapse will take place when:

G∗ = ��

�S
= GC (13)

where �S = 2w�a is the quantized increment of crack
surface area, �a is the “fracture quantum”, GC is the
fracture energy per unit area of the sliding interface (for
mode II crack propagation) and:

� = �d + �b + �i

= w

E ′h
[
τN − (

τ f + τa
)]2

(
a3

3
+ a2c + ac2

)
(14)

is the total strain energy. Accordingly, we find the crit-
ical condition (13) for:

τN = τ f + τa + τF (15)

with:

τF =
√

E/
(
1 − v2

)
GC H cos ϑ

(
3a2 + 3a�a + �a2

)/
6 + c(2a + �a)/2 + c2/2

(16)

that is the resistant shear stress of fracture. Note that
Eq. (15) with Eqs. (16), (2) and (4) recovers the classi-
cal models by McClung 1979; Palmer and Rice 1973;
Bazant and McClung 2003 for �a = τ f = τa =
c = 0, by Kostantinidis et al. (2009), Pugno et al.
(2011) for τ f = τa = c = 0 and by Chiaia et al.
(2008) for τ f = τa = �a = 0. Thus our “univer-
sal” model represents a generalization of the classical
approaches reported in McClung (1979), Palmer and
Rice (1973), Bazant and McClung (2003), Chiaia et al.
(2008), Kostantinidis et al. (2009), Pugno et al. (2011).
Assuming �a �= �a (H) (e.g. �a = 0, as assumed
in classical and thus continuum fracture mechanics
or �a = const as considered in Kostantinidis et al.
(2009), Pugno et al. (2011)) would allow us to solve
the quadratic equation of the model in closed form and
thus derive the critical snowfall height H = HC (ϑ) or
serac size h = hC (ϑ) as a function of the slope.

In the present model we further consider:

�a =
−3c +

√
9c2 − 24

{
c2 − EGC cos ϑ H

/[(
1 − v2

)
τ2

C

]}

2
(17a)

physically derived imposing:

τC = τF (a = 0) (17b)

that is the resistant shear stress of cohesion, i.e. the
ideal material strength in absence of defects. Also in
this more complex case, equation (15) can be easily
solved, e.g. iteratively even analytically or numerically.

3 Size-effects on mountain height

According to the classical hypothesis of self-similarity,
commonly used in fracture mechanics and that assumes
the larger the structure the larger the largest crack, we
expect:

a ≈ ε1lk1 (18a)

where l is the size of the slope and strictly speaking (if
pure self-similarity is valid) k1 = 1. The corresponding
strength scaling law is predicted according to Griffith to
be σ ∝ a−1/2 ∝ l−k1/2; according to a fractal scaling
Carpinteri and Pugno (2005) one would instead pre-
dict σ ∝ l−(3−D)/2, where 2 ≤ D ≤ 3 is the fractal
dimension of the domain in which the energy is dissi-
pated during fracture; comparing the two scaling laws
we derive 0 ≤ k1 = 3 − D ≤ 1; since for most materi-
als D ≈ 2.5 (Carpinteri and Pugno 2005) we roughly
estimate k1 ≈ 1/2, that is the intermediate case.

Since geometrically Himalayan avalanches can be
much larger than those on the Alps, e.g. that on Man-
aslu, we statistically expect that the higher the mountain
the larger the slope and thus:

l ≈ ε2 Ak2 (18b)

where A is the mountain size/height and 0 ≤ k2 ≤ 1,
whereas for pure self-similarity k2 = 1. Note that
the highest mountain face in the Alps is the Est Face
(vertical length of 2,600 m) of Monte Rosa (altitude
of 4,638 m) whereas in Himalayas is the Rupal Face
(vertical length of 4,600 m) of Nanga Parbat (altitude
of 8,126 m) and the ratios between the corresponding
altitude of the mountain and length of the face are very
similar and, respectively equal to 1.78 and 1.77, thus
suggesting k2 ≈ 1. In order to better derive an esti-
mation for k2 we consider the lengths and altitudes of
mountain glaciers from the World Glacier Inventory:
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on Alps 1097 glaciers are reported for which we cal-
culate a mean altitude of 2,936 m and a mean length of
1.3 km, whereas for Himalaya (India River and Gange
River Zones) 10,799 glaciers are reported with a mean
altitude of 5,588 m and a mean length of 2.0 km; accord-
ingly we fit k2 = 0.75 and thus we estimate k2 ≈ 3/4.

Combining Eqs. (18a,b) we thus find:

a ≈ ε1ε2 Ak1k2 = εAk (18c)

where 0 ≤ k ≤ 1 and a realistic estimation, accord-
ing to the previous ones, is k ≈ 3/8. Obviously this
numerical estimation has to be considered with cau-
tion and the limiting case of k = 1 is more cautelative
even if less realistic. The important point here is that k
is different from 0 and thus the common perception of
k = 0 and thus absence of size-effects is not physical.
Accordingly, the critical condition or scaling law is pre-
dicted inserting Eqs. (17a) and (18c) into Eq. (16) and
then Eqs. (2), (4) and (16) into Eq. (15). For example,
in the limiting case of c = 0, we find:

ρgh sin ϑ = fρgh cos ϑ + τa

+
√√√
√

bh

3ε2 A2k + 3εAk
√

bh
τC

+ bh
τ 2

C

(19)

with b = 6EGC/
(
1 − v2

)
.

Equation (19) asymptotically predicts h ∝ H ∝
A−2k̃ with a vanishing slope k̃ = 0 for both limit-
ing conditions of A → 0,∞ (in contrast to classical
scaling laws that alternatively predict a vanishing slope
only for A → 0 or A → ∞ but in perfect agree-
ment with the general scaling law proposed in Pugno
(2007) and an asymptotic matching with a maximal
slope k̃ = k. This limiting size-effects are not affected
by the presence of a non zero value of c (that only
implies a different scaling for A → 0):

h ∝ H ∝ A−2k (20)

Accordingly, comparing 8,000 versus 4,000 peaks, we
expect a limiting size-effect of:

H (8000)
C = H (4000)

C

/
4k (21a)

h(8000)
C = h(4000)

C

/
4k (21b)

The common perception would naively assume k = 0,

thus no size-effect, whereas for k = 3/8:

H (8000)
C = H (4000)

C

/
1.7 (22a)

h(8000)
C = h(4000)

C

/
1.7 (22b)

and for the limiting case of pure self-similarity:

H (8000)
C = H (4000)

C

/
4 (22c)

h(8000)
C = h(4000)

C

/
4 (22d)

i.e. a super-strong size-effect, by force in contrast to the
common perception (k = 0). Of course this represents a
limiting condition. This has a remarkable implication,
see Fig. 3a, b (τN = τF (�a, c = 0, k = 1)). Below
the lower curve the conditions are safe even on a 8,000
peak whereas above the upper curve the conditions are
unsafe even on a 4,000 peak. The most dangerous zone
is that between the two curves: presence of “abnormal”
conditions that dangerous at 8,000 m, but that experi-

Fig. 3 Limiting size-effects (τN = τF (�a, c = 0, k = 1)) on a
the dimensionless critical height of snowfall necessary to cause
the detachment of an avalanche (HC) or b on the dimensionless
width of the critical part of suspended serac necessary to cause
it to collapse (hC): 4,000 versus 8,000 m predictions. Below the
lower curve the conditions are safe even on a 8,000 peak. Above
the upper curve the conditions are unsafe even on a 4,000 peak.
The most dangerous zone is that between the two curves: pres-
ence of “abnormal” conditions that dangerous at 8,000 m, but
that experience would rightly lead to considering safe at 4,000 m
experience on Alps
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ence would rightly lead to considering safe at 4,000 m
experience on Alps.

4 The role of the curvature of the slope and of the
stress redistribution after tensile (or
compressive) collapse of the snow/ice

The curvature of the mountain slope, previously igno-
red in the literature, is demonstrated here to play an
important role. Instead of rewriting the theory reported
in the previous section for curved slope we derive in
this section a simple first order correction.

The indefinite force equilibrium equations for a
curved beam are:

dN

ds
+ T

r
+ p = 0,

dT

ds
− N

r
+ q = 0 (23)

where N and T are the normal and shear forces as well
as p and q are the applied axial or normal loads per
unit length; r is the radius of curvature of the slope.
Accordingly the following equation holds:

d2N

ds2 + 1

r

(
N

r
− q

)
+ T

d

ds

(
1

r

)
+ dp

ds
= 0 (24)

Assuming small ( N
r2 ≈ 0) and nearly constant d

ds

( 1
r

) ≈
0 curvature, we find:

d2N

ds2 − q

r
+ dp

ds
= 0 (25)

Thus the following relationship emerges:

dp (r = ∞)

ds
= −q

r
+ dp (r)

ds
(26)

Since p
q = tan ϑ we have:

p (r) ≈ p (r = ∞)

(
1 + l

r tan ϑ

)
(27)

where l is the length of the slope, and thus finally:

τN (r) ≈ τN (r = ∞)

(
1 + l

r tan ϑ

)
(28)

Equation (28) clearly shows that the radius of curvature
of the slope can increase (r > 0, convex, snow more

tensioned) or decrease (r < 0, concave, snow more
compressed) the effective applied load and this effect
is weakened for slope tending to the vertical condition
(as it must be for symmetry).

Finally note that if the maximum tensile or compres-
sive stress in the snow:

σ (x = ∓a) = ∓ [
τN − (

τ f + τa
)] a

h
(29)

reaches the snow material strength in traction or com-
pression, σT , σC , respectively, then the transversal col-
lapse of the snow/ice takes place; after tensile fracture
(at x = a) the axial load is linearly redistributed from 0
up to a maximal value (at x = −a) that is doubled than
that reported in Eq. (29), thus the tensile fracture further
weakens the stability of the snow. The new triggering
condition can be calculated according to the previous
analysis where fictitiously the crack length becomes
doubled. Note that the upper part of the snow slab is
not any more loaded by an axial force whereas the axial
force in the lower part is doubled. This evolutive mech-
anism was not previously discussed in the literature.

5 Discussion on the Manaslu tragedy

As reported in the Introduction, the Manaslu avalanche
hit camp number 3, at about 7,000 m altitude. The
mountaineer Silvio “Gnaro” Mondinelli, who survived
the tragedy, personally told us that the avalanche may
have been triggered by a falling serac and that the slope,
covered in about 3 m of snow, was around 50◦ (Pugno
et al. 2013). It is true that an avalanche or a collapse
of a serac can take place at both altitudes of 4,000 and
8,000 m, but at 8,000 we have demonstrated that there
is an additional risk of which even the very thin air
mountaineers have never heard of (Pugno et al. 2013).
Let us thus refer to the general model here derived and
consider some relevant limiting cases.

The simplest model to derive the propagation of an
avalanche predicts the detachment by friction when the
shear stress on the interface with the weakest layer
(typically consisting of snow crystals of larger size)
reaches a certain critical value, given by the pressure
of the snow multiplied by the friction coefficient. In
this model (τN = τ f ), detachment is predicted inde-
pendent of the amount of accumulated snow and at a
slope inclination angle equal or greater than the angle
of friction (arctan of the friction coefficient). A differ-
ent model predicts detachment when the shear stress,
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imposed by the accumulation of snow, reaches a critical
constant value which is characteristic of the material
strength (τN = τa = τC ). In this model, the detach-
ment of the avalanche is possible for any slope, as
long as there has been a sufficiently abundant precipi-
tation. The least favourable slope, corresponding to the
minimum necessary precipitation to cause detachment,
occurs at 45◦ (whereas, mathematically, at 0◦ and 90◦
the necessary precipitation to cause detachment tends
to infinity). A more evolved third model is based on
classical fracture mechanics (τN = τ f (�a = 0)). Our
“universal” model, see Eqs. (15) and (16), is an exten-
sion of the existing classical approaches and can also
be applied for the calculation of the collapse of sus-
pended seracs (and rock avalanches, i.e. landslides).
It takes into account friction, adhesion, cohesion and
fracture and also has the great advantage (also present
in classical fracture mechanics) to be sufficiently real-
istic as to highlight the size scale of the most dangerous
defect that generates detachment or collapse. It is not
easy to identify in practice this defect (it may be the
whole weak interface zone or a super-weak portion of
it), let alone its size, but it is reasonable to assume
that it is proportional to the size of the slope or the
serac, which in turn are proportional to the height of the
mountain, see Eq. (18c). Accordingly, we have demon-
strated the presence of “abnormal” conditions that dan-
gerous at 8,000 m, but that experience would rightly
lead to considering safe at 4,000 m, i.e. configurations
between the two curves in the graphs of Fig. 3, see
Eq. (21). Scientists, Engineers and Himalayan moun-
tain climbers must thus keep into account such size-
effects and related risks, today unacknowledged, when
translating their experience at 4,000 m to conditions at
8,000 m. These have been the cause of the collapse of
ships, bridges and entire buildings. There is no reason to
believe that they are not at play in the mountains. They
may have played an important role on Manaslu too.

6 Conclusions

A “universal” model for avalanche triggering, as well
as for collapse of suspended seracs, has been pre-
sented, unifying and extending the classical previ-
ous approaches reported in the literature, including

the role of the slope curvature, evolutive (tensile
fracture + sliding) failure and size-effect on mountain
height. This new size-effect, differently from the clas-
sical one on snow slab thickness, shows that snow pre-
cipitation needed to trigger avalanches at 8,000 m could
be up to 4, (with a more realistic value of 1.7) times
smaller than at 4,000 m. This super-strong size-effect
may suggest that the risk of Himalayan avalanches is
today still unacknowledged by alpinists (Pugno et al.
2013).
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