
Self-Healing of Hierarchical Materials
Federico Bosia,† Tamer Abdalrahman,‡ and Nicola M. Pugno*,§,∥,⊥

†Department of Physics and “Nanostructured Interfaces and Surfaces” Centre, Universita ̀ di Torino, Via P. Giuria 1, 10125 Torino,
Italy
‡Institute for Mechanics of Materials and Structures, Faculty of Civil Engineering, Vienna University of Technology, Karlsplatz
13/202, A-1040 Vienna, Austria
§Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering,
Universita ̀ di Trento, via Mesiano, 77, I-38123 Trento, Italy
∥Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Povo (Trento), Italy
⊥School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

ABSTRACT: We present a theoretical and numerical analysis of the
mechanical behavior of self-healing materials using an analytical model
and numerical calculations both based on a Hierarchical Fiber Bundle
Model, and applying them to graphene- or carbon-nanotube-based
materials. The self-healing process can be described essentially through a
single parameter, that is, the healing rate, but numerical simulations also
highlight the influence of the location of the healing process on the
overall strengthening and toughening of the material. The role of
hierarchy is discussed, showing that full-scale hierarchical structures can in
fact acquire more favorable properties than smaller, nonhierarchical ones
through interaction with the self-healing process, thus inverting the
common notion in fracture mechanics that specimen strength increases
with decreasing size. Further, the study demonstrates that the developed
analytical and numerical tools can be useful to develop strategies for the
optimization of strength and toughness of synthetic bioinspired materials.

1. INTRODUCTION

One of the most fascinating bioinspired properties of materials,
and thus far one of the least investigated, is that of self-healing
(SH), that is, the property of a material to autonomically heal
cracks, in other words to “repair itself”. This characteristic is
drawn from nature where tissues like skin or bone are able to
undergo long-term reparation after an instantaneous “trigger”
or damaging event. Although the idea to try and replicate this
behavior in artificial materials in itself is not new, its first
successful realization dates to 2001, with the work of White et
al.,1 who embedded microcapsules containing a healing agent in
a polymer composite, the cracking of which caused the healing
agent to disperse, interact with catalysts, and polymerize in the
composite. This concept was subsequently further developed to
study fatigue life extension due to SH in the same system,
obtaining up to 90% recovery of fracture toughness.2 With this
method, healing agent depletion leads to a reduction of SH in
time, so that these types of materials have a limited “working
life”. Chen and co-workers developed an organic polymeric
material capable of healing by heating at above 120° and then
recooling, with the advantage of not requiring a catalyst.3 All of
these approaches are well suited to stopping mainly macro-
scopic cracks, that is, catastrophic failure, but are scarcely
effective in the case of distributed damage, as is common in
fatigue experiments. “Vascular-based” SH systems were

accordingly developed to mimic blood circulation in the skin
healing mechanism, thus avoiding healing agent depletion and
enabling repeated healing. For example, a three-dimensional
microvascular network was employed to deliver the healing
agent to cracks in a polymer coating.4,5 This technique allows
repeated healing of the same crack, and has also been exploited
to arrest and retard fatigue cracks.6 Another approach to SH
has been through so-called molecular-based systems. For
example, Cordier et al. synthesized thermoreversible rubber
that when broken or cut can be simply repaired by bringing
together fractured surfaces to self-heal at room temperature.7

Molecular-based systems have also been developed: Burnworth
et al. demonstrated the synthesis of metallo-supramolecular
polymers that heal when exposed to light,8 and Chen et al.
designed multiphase supramolecular thermoplastic elastomers
that combine high modulus and toughness with spontaneous
healing capability.9 A comprehensive review of some of the
most promising approaches to SH is given in ref 10.
Despite the great potential of the topic, relatively little has

been done on the numerical modelization of SH. Most of the
studies have concentrated on specific aspects of experiments,
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for example, the modelization of the fracturing of the
microcapsules containing the healing agent, and subsequent
flow of the latter. For example, Verberg et al. used a hybrid
approach with a coupled Lattice Boltzmann Model (LBM) and
a Lattice Spring Model (LSM) to simulate the motion of
microcapsules on a substrate with an adhesive coating under
the effect of an imposed flow.11 Maiti et al. studied the behavior
of SH polymers applying coarse grained molecular dynamics on
the atomistic scale in order to compute necessary parameters
(e.g., local elastic modulus, reaction rates and cure kinetics) for
the continuum macroscopic scale model.12 Balazs and co-
workers developed a hybrid computational approach using
LSM and the Hierarchical Bell Model (HBM) to investigate the
mechanical properties and SH behavior of nanogel particles
connected by stable and labile bonds.13 The combined LSM
and modified HBM was also used to address the problem of
designing strong and tough biomimetic polymer networks with
the capability of reforming links in their chain.14 A review of
numerical methods applied to SH materials is given in ref 15.
Despite the advances obtained through these studies, much
remains to be done, and numerical modeling provides the
means to minimize the cumbersome efforts in experimental
work, optimizing the development of materials and highlighting
the most relevant features of all tested solutions. In particular,
since many macroscopic properties are a result of the behavior
of the underlying nano- and microscale structures, a multiscale
approach is essential to extract global physical and mechanical
properties. In addition, due to the inherently hierarchical nature
of natural materials, it is of great interest to evaluate the
interaction of SH with hierarchical structure. The objective of
this paper is thus to provide analytical and numerical tools to
calculate multiscale mechanical properties of SH materials and
discuss in particular the role of scaling, material structure and
hierarchy. In particular, we apply these concepts to nanoma-
terials of great interest such as graphene or carbon nanotubes
(CNTs), due to their particular relevance for the realization of
bioinspired high-performance nanocomposites. Note that
spontaneous healing mechanisms have been found at atomic
level in CNTs through interaction with a metal catalyst16 and in
monatomic graphene sheets as a result of their interaction with
metal impurities,17 and new healing strategies can be conceived,
for example, through the activation of carbon nanoscrolls.18

The paper is structured as follows: In section 2, an analytical
formulation of the problem is discussed. In section 3, the
numerical approach is presented. In section 4, calculation and
simulation results are discussed, and numerical predictions are
made for hierarchical structures. Finally, conclusions and an
outlook are given.

2. SELF-HEALING HIERARCHICAL DANIEL'S THEORY
Many biological materials (e.g., cellular protein filaments, spider
silk, tendon) display a fibrous structure, and several hierarchical
levels can often be identified.19−21 On the other hand, synthetic
materials of interest for structural applications are often also
fiber-based (e.g., graphene/CNT macroscopic fibers or
graphene/CNT-reinforced composites), and hierarchy could
be an important feature for future applications.22 Therefore, to
study the process of SH, we adopt a hierarchical fiber bundle
model (HFBM) which extends the classical FBM, first
introduced by Daniels23 and extensively studied during the
past years (see the review24 and references therein). This model
consists of arrays of fibers having statistically distributed
strengths, arranged in parallel and in series to form hierarchical

architectures.28 The “virtual” sample is loaded parallel to the
fiber direction, and the fibers fail if the load exceeds their
threshold value, with the load carried by the broken fiber being
redistributed among the intact ones. This model is useful to
simulate damage progression in a wide range of materials, not
necessarily fibrous in structure.

2.1. Engineering SH Parameter. Here, we extend the
approach proposed in ref 25 to hierarchical materials. For a
large number N0 of fibers in a bundle, the number of surviving
fibers Ns0, under an applied strain ε and in the absence of SH,
can be assumed to be

ε
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where ε0 and m are the scale and shape parameters of the
Weibull distribution for the fibers.26 The fraction of broken
fibers in the absence of SH is given by
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In the presence of SH, when the number of actual surviving
fibers is Nsh, this becomes
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We now introduce the parameter λ as the ratio between the
number of broken fibers in the presence of SH and the number
of broken fibers in the absence of SH:
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Finally, we introduce the healing parameter η, as
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so that 0 < η < 1. If η = 0, we have Nsh = Ns0 (no SH), whereas
for η = 1, Nsh = N0; that is, all fractured fibers heal. Since eqs 2
and 3 are reminiscent of the definition of engineering strain, ε =
(l − l0)/l0, we shall refer to η as “engineering SH parameter”.

2.2. True SH Parameter. We now introduce the “true”
parameter φh* as
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in analogy with the definition of true strain ε = ∫ l0
l (dl/l) = ln(l/

l0). In the absence of SH, this becomes

ϕ* =
N
N

ln0
s0

0 (7)

So that the true SH parameter can be defined as
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The introduction of the true SH parameter in eq 8 is needed to
take into account the variation of the total number of fibers
induced by SH (similarly to the fact that true strain accounts for
variations in the overall length l). As can easily be verified, the
parameters η and η* coincide for Nsh ≈ Ns0 ≈ N0, that is, for
relatively small damage levels. For simplicity, we will consider η
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and η* equivalent in the following. From eq 1, we immediately
derive:
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By substituting eq 9 into eq 8, we find:
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The introduction of SH into eq 11 generalizes the classical
Weibull relation26 which was used in eq 1. From eq 11, it is
possible to derive the tensile stress σ corresponding to an
applied strain ε as
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where E is the single fiber Young’s modulus. Thus, if the single
fiber and bundle properties (E, N0, m, and ε0) are known,
stress−strain curves (in displacement control) can be
calculated. Examples of these are shown in Figure 1 for N0 =
5 × 1010, E = 1 TPa, ε0 = 3.4%, and m = 2, that is, typical
parameters for CNTs (also similar to graphene nanoribbon
characteristics). It is apparent that the bundle strength, ultimate
strain, and toughness all increase with increasing healing
parameter η. The mean strength ⟨σD⟩ can be derived
analytically from Daniels’ theory23 as
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with standard deviation
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2.3. Heterogeneous SH Materials. Equation 12 can also
be generalized to the case of a healing agent with different
mechanical characteristics (E2, m2, and ε2) from those of the
original material (E1, m1, and ε1), usually with ε2 < ε1. This

amounts to modeling a heterogeneous material, as discussed
in,27 with the percentage of the two phases varying with strain,
and therefore damage level. Let us suppose that the specimen is
made up initially only of type 1 fibers and that it heals only with
type 2 fibers. The variation of the number of fibers of type 2 is
described by eq 11, but instead of a constant initial number of
fibers N0, the exponential part must multiply the number of
broken type 1 fibers (i.e., N0 − N0 exp[−(ε/ε1)m1]), multiplied
by the healing parameter η . Thus:
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Since from eq 5 η can be rewritten as η = (Nsh − Ns0
(2))/(N0 −

Ns0
(1)), where the superscript indicates the fiber type and Ns0
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= 0) = 0, we have
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and thus
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and finally
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This equation provides the correct limiting behavior:

Figure 1. Analytically calculated stress−strain curves (in displacement control) for self-healing CNT-based specimens for various SH parameter
values.
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which both for ε = 0 and for ε → ∞ gives Nsh = N0.
2.4. Hierarchical SH. Finally, we consider the effect of SH

in hierarchical materials. We adopt the procedure outlined in
ref 28, whereby the Weibull parameters at hierarchical level n
are derived from those at hierarchical level (n − 1) using
Daniels’ theory.23 For example, based on eq 11, the Weibull
distribution at the first hierarchical level can be taken to be
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with ε(1) and m(1) being the unknown scale and shape
parameters at level 1. The mean strength and standard
deviation of this distribution are
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By setting ⟨σWh1⟩ and θWh1 equal to the mean strength and
standard deviation obtained at level 0 through eqs 13 and 14, it
is possible to derive εh1 and mh1.

28 By repeating this procedure
iteratively up to level n, the Weibull parameters εh(n+1) and
mh(n+1) at any hierarchical level n + 1 can also be obtained from
those at level n (εhn and mhn), by numerically solving the two
following coupled equations:
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The effect of SH occurring at different hierarchical levels can
therefore be evaluated, and the corresponding strength of
different hierarchical structures can be calculated.

3. NUMERICAL SELF-HEALING HIERARCHICAL FIBER
BUNDLE MODEL

Though some interesting features of SH can be derived
analytically, as discussed in the previous section, it is necessary
to resort to numerical FBM simulations to additionally derive
more advanced features. In previous work, we have developed a
recursive, or “hierarchical”, formulation of a FBM, which we
have called HFBM,29 and which has been used to study

multiscale problems ranging from nanoscale to macroscale28,30

and composite materials with mixed brittle-ductile properties.31

The multilevel scheme is implemented by formulating the
problem at all relevant size scales using various (n) hierarchical
levels and recursively deriving level (n + 1) fiber characteristics
like strength, toughness, and Young’s modulus, from level n
simulations.30 This model has recently been applied to
heterogeneous materials, constituted of fibers with different
mechanical characteristics, to determine the influence of
hierarchy and material mixing in the optimization of the global
material properties.27 In spite of its simplicity, the HFBM can
capture many important aspects of damage phenomena in
heterostructured materials, and SH can be easily included in the
model. This can be done by replacing fractured fibers with
intact ones having appropriate mechanical properties, volume
fractions, replacement rates and locations as damage evolves
during simulations. This is schematically shown in Figure 2a.

The multiscale hierarchical scheme can be applied in this case
too, by calculating level n single fiber properties from repeated
simulations on level (n − 1) bundles, as shown in Figure 2b.
Thus, the simulations can account for SH at any given
hierarchical level, providing useful information about the scaling
of material properties with size, and the effectiveness of SH at
each hierarchical scale.
In this case, the control parameter is the so-called “healing

rate” γ, defined as the ratio between the number of “healed
fibers” Nh and the number of fractured fibers Nf in a given fixed
time interval. Since Nsh = N0 − Nf + Nh and Ns0 = N0 − Nf, the
definition of γ coincides with that of η introduced in section 2:

γ η= =
−
−

=
N
N

N N
N N

h

f

sh s0

0 s0 (26)

In the following, results will be presented as a function of η.
Contrary to the analytical treatment of the problem, in the
numerical case it is possible to control another critical

Figure 2. (a) Schematic representation of damage/SH process in a
fiber bundle. Broken fibers are represented by missing circles, and
healed fibers are represented by filled circles. The healing rate is η =
0.5, so that half of the damaged fibers are replaced by healed fibers; (b)
hierarchical implementation of the fiber bundle model: level n
properties are derived from repeated simulations at level (n − 1).
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simulation parameter, which is the location where fibers are
reintroduced. In the present study, two different scenarios are
considered: (a) Distributed healing: Fibers are reintroduced at
a random locations in the fiber bundle where fibers have
previously fractured. (b) Local healing: Fibers are reintroduced
at the location of the last fractured fiber. These two modeling
situations correspond, roughly speaking, to two limiting cases in
which the effectiveness of SH is (a) minimized and (b)
maximized, respectively, with distributed material damage in
the first case (i.e., uniformly distributed microcracking), or
macroscopic cracking in the second.

4. NUMERICAL VERSUS THEORETICAL RESULTS

4.1. Homogeneous Material-Healing Agent Proper-
ties. First, we perform numerical simulations and consider the
case in which the mechanical characteristics of the healing agent
are identical to those of the host material. This means that
when healing occurs, fractured fibers in the bundle are replaced
by fibers with statistically equivalent mechanical characteristics.
We use the same CNT material properties as above for the
single fiber type involved in the simulations: Young’s modulus
E = 1 TPa, Weibull shape parameter m = 2, and Weibull scale
parameter ε0 = 3.4%.
Various healing rates are analyzed to begin with, ranging

from η = 0.1 to η = 0.5, and both distributed and local healing

are considered. Simulations are carried out in crack-opening
displacement control instead of displacement or load control, in
order to monitor damage evolution for every fiber-break.
A typical example of the stress evolution in a specimen

subjected to uniaxial tensile loading is shown in Figure 3a, in
the case of distributed healing. The oscillating behavior in the
numerical curves is due to the alternating fiber ruptures and
healing events. The effect of increasing healing rate is evident in
the data. Stress strain curves (Figure 3b) display only minimal
softening before specimen failure, indicating SH in this case
does not modify the brittle material behavior. Here, the crack-
opening displacement control of the numerical test is
responsible for the simultaneous decrease of both stress and
strain after fiber rupturing.
In the local healing configuration, the time evolution of stress

curves up to specimen failure shows a longer time-to-failure
(Figure 3c), although the strength remains similar to the
distributed healing case (Figure 3d). This fact highlights the
greater effectiveness of local healing, for equivalent healing
rates, in ensuring structural integrity of the material. Also,
stress−strain curves display some softening before failure for
high η values.
This observation is confirmed by further analysis on the

simulation data. For example, Figure 4a and b illustrates the
failure strength distributions obtained in repeated simulations

Figure 3. (a) Time evolution of stress in SH specimens subjected to traction up to rupture for various healing rates (η = 0.1, 0.25, 0.33, 0.5), in
distributed healing configuration. (b) Stress vs strain behavior in distributed healing configuration. (c) Stress vs time in local healing configuration.
(d) Stress vs strain behavior (all simulations in crack-opening displacement control).
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on specimens in distributed and local healing configurations,
respectively. It is apparent that the mean strength increases
monotonically with healing rate, as does the dispersion of the
distributions. Looking at mean strength values, the effect of SH
is to cause the material strength to increase by up to 57% in the
case of distributed healing (from 8.8 GPa in the absence of
healing to 13.9 GPa for η = 0.5), and by 95% in the case of local
healing (from 8.8 to 17.2 GPa for η = 0.5). These data are
compared to analytical results in Figure 5a. The latter slightly
underestimate numerical values, probably due to the simplified
analytical approach. Energetic aspects of material damage can
also be considered using both the analytical approach and the
HFBM. The dissipated energy in the formation of a crack
surface at micro- or mesoscale is estimated by performing
integration of the resulting stress−strain curves obtained
analytically and numerically. Results are shown in Figure 5b.
Here, while the distributed healing configuration can increase
dissipated energy, and hence the material toughness, by up to
50% for η = 0.5, the improvement reaches 270% in the case of
local healing for η = 0.5. This indicates that SH can bring about
considerable strength enhancements, but even more so
toughness improvements. Analytical results do not under-
estimate numerical values in this case, probably due to the fact
that stress−strain curves are analytically calculated in displace-
ment control, while numerical curves are obtained in crack-
opening displacement control, so that the underlying areas are
smaller in the numerical case. It is interesting to note that all
curves in Figure 5a and 5b display a nonlinear dependence with
respect to η and are approximately quadratic in all cases.
Another important effect of SH is the influence on the time

to failure for specimens tested in crack-opening control. Using
the HFBM, it is also possible to estimate this quantity as a
function of SH rate. This is shown in Figure 5c. In this case, no
analytically calculated values are reported, as they would not be
comparable to the numerically derived values, due to the
different adopted loading control configurations. The same
increasing tendency is highlighted as in Figure 5a and b, with a

maximum increase in time to failure of 136% and 416% for η =
0.5 and distributed and local healing, respectively. These values
prove how the use of SH can improve material properties
considerably, especially in the case of local healing, and
simulations can be extended to fatigue experiments to predict
improved specimen lifetimes.

4.2. Heterogeneous Material-Healing Agent Proper-
ties. Next, we consider a condition which potentially occurs
experimentally, when the healing agent often displays
considerably reduced mechanical properties with respect to
the original material. In this case, it is reasonable to expect
reduced SH efficiency in recovering mechanical properties.
Numerical simulations can help in this case in quantifying the
effect. We thus consider the following mechanical properties for
the healing agent Young’s modulus Eh = Ef/5= 200 GPa and
Weibull scale parameters εh = 0.04, mh = 1.5, and carry out
simulations for a biphase material corresponding to the ideal
case of a graphene/CNT-based material with a healing agent
with reduced mechanical properties. Results are discussed for a
distributed healing configuration only, as this corresponds to
the situation that best corresponds to the analytical model. As

Figure 4. Strength distributions for (a) distributed healing and (b)
local healing, with η = 0, 0.1, 0.25, 0.33, 0.5.

Figure 5. Calculated and simulated variations in (a) mean strength
and (b) dissipated energy as a function of healing rate η in the case of
distributed and local SH. (c) Simulated time to failure as a function of
η in the case of distributed and local SH. Quadratic fits on all
numerical data are included.
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shown in Figure 6, analytical and numerical results are in good
agreement, despite the simplifications discussed above. Here,

the effect of SH on strength and toughness is strongly reduced,
and the approximately 5-fold reduction in healing agent
stiffness and strength results in an even greater reduction in
the effect of SH on strength (only a 5% strength increase
compared to the previous 56% for η = 0.5). The reduction is
smaller in the case of toughness, with an approximate increase
in dissipated energy of 7−9% instead of 39%. On the other
hand, the effect on the time-to-failure remains considerable,
with a 114% increase compared to the previous 416% for η =
0.5 (only numerical results are considered here). This shows
that healing agent mechanical properties are an important
factor to consider in the design of efficient SH materials: it is
essential to obtain mechanical properties as close as possible to

those of the host material, if not superior, to maximize the
effectiveness of the SH process.
Results from numerical simulations in a local healing

configuration are summarized in a wider parameter range in
Figure 7, where property maps are provided as a function of
varying healing agent stiffness Eh and strength σh, as well as
healing parameter η. Figure 7a shows the overall strength
improvement as a function of σh/σf and η, Figure 7b the overall
increase in dissipated energy (in log scale) as a function of σh/σf
and η, Figure 7c the overall strength improvement (in log scale)
as a function of Eh/Ef and η, and Figure 7d the overall increase
in dissipated energy (in log scale) as a function of Eh/Ef and η.
Some irregularities in the patterns of the maps appear, due to
the statistical nature of the simulations. These maps could
provide useful information for the design of experimental
studies, once relevant material properties are known.

4.3. SH in Hierarchical Structures. Next, the effect of SH
on a hierarchical structure is evaluated by using the HFBM, that
is, by applying the FBM recursively, as explained in section 3,
and comparing results to analytical calculations using the
hierarchical procedure described in section 2.4. Since analytical
results have been seen to be representative of a distributed
healing configuration, only this configuration is considered in
numerical simulations. Each hierarchical level corresponds to a
different size scale, depending on the chosen modeling
parameters (number of fibers in series and in parallel). As an
example, we consider a 4-level hierarchical structure ranging
from a length of 100 nm (fiber dimension at level 1) to 1 mm at
level 4. For brevity, we only analyze specimen strength to
evaluate effectiveness of SH. First, we consider the case in
which SH occurs at the same rate at all hierarchical levels, using
a healing agent with the same mechanical properties as the
original material (i.e., those specified at the beginning of section
4). The assumption here is that SH can occur at various size
scales in an equivalent manner, i.e. it can be triggered by micro-
to macrocracks. Clearly, this ideal case is a simplification, but it
serves the purpose of determining a benchmark with which to
compare more realistic scenarios. Analytical and numerical
results for this case are shown in Figure 8a, where the ratios
between the strength and the level-0 Weibull scale parameter
are plotted for various healing ratios. The decreasing trend with
increasing hierarchical level is consistent with previous results
obtained for homogeneous materials,27 but it is apparent that
SH introduces significant improvements to the mean strength
at all hierarchical levels. There is some discrepancy between
analytic and numerical results, possibly highlighting the need
for appropriate correction factors in the analytical hierarchical
formulation, as discussed in ref 28.
The exploitation of healing agents with superior mechanical

properties with respect to the host material provides, at least
theoretically, the possibility of reversing the trend shown in
Figure 8a, that is, decreasing strength for increasing hierarchical
levels. One numerically calculated example is shown in Figure
8b, where data are reported for a healing agent 100 times stiffer
and stronger than the host material: Eh = 100Ef, σh = 100σf. To
obtain an increase in strength with each hierarchical level, the
healing rates are suitably graded at each level: η1 = 0, η2 = 0.11,
η3 = 0.17, η4 = 0.25. Clearly, this is an extreme example, and
would require from an experimental point of view a “soft”,
rubberlike material, with some sort of high-quality polymeric
healing agent. However, numerical data indicate that the
possibility exists, in agreement with previous results by the
authors, showing that hierarchy alone is unable to provide

Figure 6. Calculated and simulated variations in (a) mean strength,
(b) dissipated energy, and (c) time to failure as a function of healing
rate η in the case of a healing agent with reduced mechanical
properties with respect to the host material (numerical results are
relative to distributed SH).
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improved mechanical properties, while hierarchy and material
mixing is.27

If we now consider SH to occur only at one specific size scale
or hierarchical level, the overall strengthening effect with
respect to the non-SH case is reduced, as shown in Figure 9.
Only results from numerical simulations are reported here, for
simplicity. It is interesting to observe that the lower the
hierarchical level at which SH occurs, the more effective the
healing is, particularly for high η values. Indeed, there is only a
small decrease in strength between the case in which SH takes
place at all levels and the case in which it only occurs at the
lowest hierarchical level. These results suggest that the most
effective SH strategies could thus lie at microscopic or
molecular level.
Next, we investigate the combined effect of SH and hierarchy

on the strength of different hierarchical architectures. For
simplicity, we consider four different hierarchical structures
made up of N = 8 fibers, differing only in hierarchical structure,
which varies from one to three hierarchical levels. The first-level
structure consists of eight parallel fibers (indicated as “(8,1)”).
The properties of each of these level 1 fibers is derived from the
level 0 Weibull statistics, including SH. There are two level 2
structures, indicated as “(4,2)”, that is, four bundles of two
fibers in parallel and “(2,4)”, that is, two bundles of four fibers

in parallel. Finally, there is one level 3 structure indicated with
“(2,2,2)”, that is, two bundles of two fiber bundles. These
structures are schematically illustrated in Figure 10. Only
analytical calculations are discussed here. If one considers SH to
be present at all hierarchical levels, we find as above that the
strength of all 4 structures (normalized with respect to the
chosen Weibull scale parameter) increases with increasing SH
parmeter, as shown in Figure 10. What is interesting, however,
is that the relative strength between the four structures is
reversed as η increases: when no SH is present, the
nonhierarchical structure (8,1) has the highest strength, while
for η > 0.2, the third level structure (2,2,2) becomes the most
favorable. Thus, the tendency found in previous publications
for nonhierarchical structures28 is reversed, and we find that
hierarchy enhances the effect of SH. Moreover, these results
point to the fact that in the presence of SH, the effect of
hierarchy is to improve mechanical material characteristics. This
tendency is precisely what is found in real biomaterials, where
the ability of self-healing combines with a natural hierarchical
structure to give enhanced structural properties. This finding is
extremely important as it shows that the conflict between
strength and hierarchy can be resolved by introducing self-
healing as an additional design variable. This can provide

Figure 7. Maps showing percentage improvement in overall material properties as a function of healing rate η and host material vs healing agent
properties: (a) Strength improvement for varying host material strength σf and healing agent strength σh (Ef = Eh). (b) Increase in dissipated energy
for varying σf and σh (log scale, Ef = Eh). (c) Strength improvement for varying host material stiffness Ef and healing agent stiffness Eh (log scale, σf =
σh). (d) Increase in dissipated energy for varying Ef and Eh (log scale, σf = σh). All results are for local SH.
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inspiration for scientists and engineers to design multifunc-

tional artificial materials with optimized properties.

5. CONCLUSIONS

We have presented numerical results on the mechanical
behavior of self-healing hierarchical materials, using a previously
developed Hierarchical Fiber Bundle Model. The model allows
one to consider varying healing rates and different healing
mechanisms, depending on where fibers are restored in the
considered bundle. Results show that considerable improve-
ments can be obtained in material strength and time to failure,
and especially in material toughness. Simulations on
hierarchical materials reveal the advantages of achieving self-
healing at the smallest possible scale, and the possibility of
inverting the strength scaling behavior (“smaller is stronger”)
when using healing agents with appropriate mechanical
properties. Finally, we show that combining self-healing and
hierarchy begets superior strength, as observed in natural
materials. These results are promising for further more in-depth
investigations in the possibilities of self-repairing materials, and
the presented analytical/numerical model can constitute a
useful tool to support experimental work and aid in the attempt
to synthesize real self-healing materials with tailor-made
properties.

Figure 8. Scaling of the ratio between mean strength and Weibull scale parameter as a function of hierarchical level n: a) Comparison between
analytical calculations and numerical simulations for various η values (distributed SH); b) Numerical comparison between “without SH” (η1 = η2 =
η3 = η4 =0) and “with SH” (η1 = 0, η2 = 0.11, η3 = 0.17, η4 = 0.25) when the healing agent mechanical properties are considerably superior to those of
the host material (see text for details).

Figure 9. Strength increase with respect to the non-SH case in 4-level
hierarchical structures as a function of η when SH is applied at a single
or at all hierarchical levels.
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