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In this paper, we constructed a new honeycomb by replacing the three-edge joint of the conventional reg-
ular hexagonal honeycomb with a hollow-cylindrical joint, and developed a corresponding theory to
study its mechanical properties, i.e., Young’s modulus, Poisson’s ratio, fracture strength and stress inten-
sity factor. Interestingly, with respect to the conventional regular hexagonal honeycomb, its Young’s
modulus and fracture strength are improved by 76% and 303%, respectively; whereas, for its stress inten-
sity factor, two possibilities exist for the maximal improvements which are dependent of its relative den-
sity, and the two improvements are 366% for low-density case and 195% for high-density case,
respectively. Moreover, a minimal Poisson’s ratio exists. The present structure and theory could be used
to design new honeycomb materials.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycomb or foam structures extensively exist in natural
materials, e.g. honeycomb [1], cancellous bone in animal skeletons
and tree or grass stems [2]. From the mechanical point of view,
their mechanical properties (such as light-weight, high-strength
and super-tough) are linked to their optimal structures by Nature,
which hints people to design different multifunctional materials
[3–6]. To this end, a considerable number of scientists and engi-
neers invented varieties of porous materials and investigated their
mechanical properties. For example, mechanical properties of hier-
archical nanohoneycomb or nanofoam materials, for which surface
effect was included, were studied [7,8]. It is found that the elastic
modulus and strength decrease as hierarchical level number in-
creases. Also the sandwich walls with core struts in lattice struc-
tures have superior mechanical properties to that with solid
walls [9]. Similarly, substituted solid cell walls of the conventional
hexagonal honeycomb with equal-mass honeycomb lattice, the
Young’s modulus of new structures is optimized and improved
by 75% comparing to the conventional hexagonal honeycomb
[10]; also, by replacing the three-edge joint of the regular hexago-
nal honeycomb with a hollow hexagonal prism, the Young’s
modulus of the fractal-like structure is optimized [11]. Besides,
replaced the solid cell walls of the conventional hexagonal
honeycomb with a equal-mass re-entrant negative Poisson’s ratio
honeycomb [12], the Young’s modulus of the new structure is
again dramatically improved.

Regarding the fracture behavior of honeycomb-like structures,
not like the theory for continuum media, the common method is
employing the stress field ahead of crack tip, then, performing
structural analysis. There exist such models in literatures [13–
15]. Maiti et al. [13] and Choi and Lakes [14] used the conventional
singular stress field and the nonsingular stress field for blunt
cracks to calculate the axial force acting on the first vertical cell
ahead of crack tip, respectively, and both the two models derived
fracture strength first and then stress intensity factor. However,
Choi and Sankar [15] calculated the axial force and bending mo-
ment acting on the first vertical cell ahead of crack tip, and selected
an effective portion of crack tip stress field considering the exis-
tence of singularity, then, the stress intensity factor was directly
obtained.

In this paper, by observing natural honeycombs, we found that
the cell walls of the natural honeycombs have varying cross-
sections, and the thickness reaches a maximum at both ends of cell
walls (marked by circle in Fig. 1a). It is speculated that the mo-
ments at these ends bear the greatest bending moment, and hon-
eybees strengthen their nests by introducing more materials to
the weakest points, exactly like the specifications of building de-
sign, in which more steel bars and concrete are placed at load-
bearing positions in beams. Meanwhile, considering the superior
mechanical efficiency of natural porous structures to solid materi-
als [8,10,11], we proposed a so-called hollow-cylindrical-joint hon-
eycomb (Fig. 1c) by replacing the three-edge joint with a hollow
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Fig. 1. (a) Natural honeycomb; (b) conventional regular hexagonal honeycomb; (c) hollow-cylindrical-joint honeycomb.
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cylinder instead of the hollow hexagonal prism reported in Ref.
[11]. The related structure can be regarded as the derivative struc-
ture from the family of center-symmetrical honeycombs in Ref.
[16]. In particular, the out-of-plane properties of the tetrachiral
and hexachiral honeycomb family were well studied by experi-
ments and finite element method, and the results showed that
buckling strength of the honeycombs could be optimized for appli-
cations in some fields [16]. For the present structure, its Young’s
modulus and Poisson’s ratio was derived basing on Castigliano’s
theorem, and its stress intensity factor and strength were calcu-
lated by invoking the quantized fracture mechanics (QFM) thanks
to the discrete feature of the honeycomb. In the following sections,
the mechanical properties of the honeycomb with respect to those
of the conventional regular hexagonal honeycomb are studied and
discussed in detail.

2. Structural theory

Regarding the relative density of the conventional regular hex-
agonal honeycomb (Fig. 1b), it is approximately expressed as

�qð1Þ ¼ qð1Þ
qs ¼ 2ffiffi

3
p tð1Þ

l

� �
, where, qs is the density of constituent materi-

als, t(1) is the thickness of cell walls, the superscript (1) denotes the
conventional regular hexagonal honeycomb, and its mechanical
properties dependent of t(1)/l are systematically derived by Gibson
and Ashby [17]. Different from the above expression of relative
density, here, it is precisely expressed by including a quadratic
term, i.e.,

�qð1Þ ¼ 1
3
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l
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:

As for the relative density of the hollow-cylindrical-joint struc-
ture denoted by the superscript (2), we calculate it by a geometri-
cal analysis as,

�qð2Þ ¼ qð2Þ
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3
ffiffiffi
3
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where t(2) is the thickness of structure’s cell walls, r is the radius of
the circular joint (Fig. 1c). It is noted that the structure’s geometry
requires 0 < t(2)/r 6 2 and 0 < r/l < 0.5.

2.1. Young’s modulus

A representative unit (Fig. 2) is selected and considered as the
sum of three components, i.e., semicircle AD, beams BC and DE. Un-
der the uniaxially external tensile stress, no rotation and horizontal
displacement occurs at the end A, thus, the boundary condition of
the end A is simplified to be guided, see Fig. 2. The force P0 acting
on the end C of the beam BC is equivalent to P0 ¼

ffiffiffi
3
p

rð2Þbl=2,
where r(2) is the external stress, b is the out-of-plane depth of
the honeycomb, and l is the length of cell walls.
For the representative unit ABCDE, according to its geometrical
components, the total strain energy stored in it is correspondingly
composed by three components,

U ¼ UAD þ UBC þ UDE ð2Þ

where UAD, UBC and UDE are elastic strain energies stored in the
semicircle AD, beams BC and DE, respectively. Furthermore,
the semicircle AD is divided into two subsections: one is AB and
the other BD. Performing force analysis (Fig. 2), we obtain inner
forces in the subsection AB: NI = R cos h, VI = R sin h, MI = �MA +
Rr(1 � cos h) when 0 < h 6 p/3 and in section BD: NII = �R cos
h + P0 sinh, VII = �Rsin h � P0 cos h, MII ¼ MA þM0þ
P0r

ffiffi
3
p

2 � sin h
� �

� Rrð1� cos hÞ, when p/3 6 h 6 p. Thus, the elastic

strain energy in the semicircle AD is calculated as:
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where M ¼ M0 þ
ffiffi
3
p

2 P0r is a defined moment.
According to Castigliano’s first theorem and boundary condi-

tions of the end A, the conditions oUAD/oR = 0 and oUAD/oMA = 0
hold, then, an equation system with respect to two dimensionless
reaction forces k1 ¼ Rl=M and k2 ¼ MA=M emerges:

k2 þ C1k1 þ C2 ¼ 0
k2 þ C3k1 þ C4 ¼ 0

�
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Fig. 2. Force analysis in a representative unit. Note that the red curves denote the after-deformed structures. (For interpretation of colour in this figure legend, the reader is
referred to the web version of this article.)
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solving the system, we obtain k1 ¼ �ðC2 � C4Þ=ðC1 � C3Þ and
k2 ¼ ðC2C3 � C1C4Þ=ðC1 � C3Þ. Then, the strain energy by Eq. (3)
can be calculated with the known forces P0 and M0. For the present

structure in Fig. 2, the two forces P0 and M0 satisfy M0 ¼
ffiffi
3
p

2 P0
l
2� r
	 


,

i.e., P0 l
M ¼ 4ffiffi

3
p . Then, the strain energy in ABCDE is expressed as:
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For the oblique cantilever beam BC, the inner forces are ex-

pressed as NIII = P0/2, V III ¼
ffiffiffi
3
p

P0=2;MIII ¼
ffiffi
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. It is
noted that the moments at the joint B are balanced, i.e.,
MIIIð0Þ ¼ MI

p
3

	 

þMII

p
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, which proves the correct force analysis

to some extent. Correspondingly, its elastic strain energy is
expressed as:
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For the vertical cantilever beam DE, only axial deforma-
tion occurs, and thus, its elastic strain energy is easily expressed
as:

UDE ¼
P2

0l

2EsAð2Þ
ð7Þ
Substituting Eqs. (5)–(7) into Eq. (2), the total elastic strain
energy U is derived. Again, employing Castigliano’s first theorem,
the displacement of the beam end C in the force direction is de-
rived as,
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and thus, the strain e in the representative unit is calculated:
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Finally, the Young’s modulus is obtained:
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if r/l tends to zero, and the quadratic term (t(2)/l)2 in f(r/l, t(2)/l) is ne-
glected due to its smallness (i.e., the shear and axial deformations
are neglected), then, f(r/l, t(2)/l) approach 3/8, and more, Eq. (10) will
be rewritten as E(2)/Es = 2.3(t(2)/l)3, which is the result of the conven-
tional regular hexagonal honeycomb reported in Ref. [17].

2.2. Poisson’s ratio

In Eq. (3), if we exclude M0 (i.e., let M0 disappear), P0 l
M ¼ 2ffiffi

3
p r

l

	 
�1

holds, and the strain energy is now defined as UAD, which is
expressed as:
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then, UAD;UAD, and M0 should satisfy:

u ¼ UAD � UAD

M0
ð12Þ

where u is the angular displacement caused by M0, see Fig. 2.
According to the structural analysis in Fig. 2, the displacements
caused by the shear and axial forces in part BC are:
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Therefore, the horizontal displacement of the point C is calcu-
lated as:
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Finally, the Poisson’s ratio is obtained as:
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Fig. 3. (a) Preexisting crack in the honeycomb; (b) fracture in vertical cell walls; (c) fract
2.3. Fracture strength and stress intensity factor

In this section, we consider two fracture mechanisms in an
imperfect honeycomb (Fig. 3) as stated in the literature [15]. One
is that the crack propagates due to the tensile-bending failure of
the vertical cell wall (Fig. 3b), and the other is due to the bending
failures of the curved cell wall (B0D0 in Fig. 3c) of the circular joint
and the inclined cell walls (B0C0 in Fig. 3d). For the two mecha-
nisms, their fracture strengths and stress intensity factors are de-
rived, respectively, and the competition between them, like that
in Ref. [18], is discussed.

2.3.1. Mechanism (1): tensile-bending failure of the vertical cell wall
According to Choi and Sankar [15], the axial force PE and

moment ME acting on the first cell wall ahead of crack tip are
expressed as,

PE ¼
Z a
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where a = fl is an effective length, f ¼ 0:411ð�qð2ÞÞ0:308 [15] is a
dimensionless factor, KI is the mode-I stress intensity factor. If the
failure of the vertical cell wall occurs, the maximum bending stress
rmax in the cell wall produced by the forces should equal the tensile
strength rs

cr of the cell wall materials, i.e.,

rs
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where Kð2ÞIC;1 is the critical stress intensity factor, in which the second
subscript 1 denotes the first failure mechanism. Then, rearranging
Eq. (17), the stress intensity factor is obtained as,
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ure at the point D0 and force analysis; (d) fracture at the point B0 and force analysis.
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The quantized fracture mechanics (QFM) presented by Pugno
[19,20], has already been applied to carbon nanotubes and graph-
ene. Thanks to the geometric similarity between the present struc-
ture and graphene, QFM is employed here to derive the
honeycomb’s fracture strength. If a preexisting crack with length
2c exists in the honeycomb (Fig. 3a), the effective length a is de-
fined as the fracture quanta, then, the QFM strength of the honey-
comb is expressed as rð2Þcr;1 ¼ Kð2ÞIC;1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðc þ a=2Þ

p
. Furthermore, we

assume that the crack length satisfies 2c ¼ n
ffiffiffi
3
p

l, where n is the
number of cracked cells, then, the strength of the honeycomb is
expressed,
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2.3.2. Mechanism (2): bending failure of cell walls
Before discussing the bending failure mechanism, let us study

the strength of a perfect honeycomb first. Its strength is reached
when a cell wall fails due to the maximum bending moment. We
can see that the moment at the end B (or B

0
due to symmetry) of

the beam BC (or B0C0) gradually disappears if the ratio r/l ap-
proaches 0.5, and the position of the maximum moment switches
from the end B (or B

0
) of the oblique cantilever beam BC (or B0C0) to

the end D (or D0) of the semicircle AD. According to the force anal-
ysis with above-obtained reaction forces R and MA, and denoting
the maximum moments at the two positions as MB (or MB0 ) and
MD (or MD0 ), respectively, the dimensionless moments are
expressed as:
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Second, for an imperfect honeycomb, the fracture location lo-
cates at the points B0 or D0. For these two cases, the force analysis
are shown in Fig. 3c and d, respectively. It is noted that 0.5 PE in
Fig. 3c and d corresponds to P0 in Fig. 2, and thus, substituted P0

in Eq. (20) with 0.5PE, the bending moment at the points B0 or D0

in the cracked honeycomb can be expressed as,
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where MB and MD, which can be calculated by Eq. (20), are bending
moments at the points B0 or D0 caused only by the axial force PE

thanks to the structural symmetry. For brittle materials, the maxi-
mum moment Mmax ¼ 1

6 r
s
crbðtð2ÞÞ

2
, thus, the failure occurs when

Mmax ¼maxðMB0 ;MD0 Þ, then, we find,
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similarly, the strength is derived by QFM,
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considering the limiting case that r/l tends to zero and f = 1, then,

MD < MB holds and Eq. (22) becomes Kð2ÞIC;2 ¼ 0:307rs
cr

ffiffiffiffiffi
pl
p

tð2Þ
l

� �2
,

which is identical to the result of the stress intensity factor of reg-
ular hexagonal honeycombs in Ref. [17]; and more, if n = 0, Eq. (23)
becomes
rð2Þ

cr;2
rs

cr
¼ 0:435 tð2Þ

l

� �2
� 4

9
tð2Þ

l

� �2
, which is also the result of the

compressive strength of perfect regular hexagonal honeycombs in
Ref. [17].

Overall, as the ratio r/l varies, the fracture location changes. For
the whole structure, its strength rð2Þcr can be determined by
rð2Þcr ¼minðrð2Þcr;1;r

ð2Þ
cr;2Þ according to Eqs. (19) and (23). Correspond-

ingly, its stress intensity factor Kð2ÞIC is also obtained by minimizing
Eqs. (18) and (22), i.e., Kð2ÞIC ¼minðKð2ÞIC;1;K

ð2Þ
IC;2Þ.

3. Results and discussion

Here, we study the influences of the relative density and param-
eter r/l on the Young’s modulus, Poisson’s ratio, fracture strength
and stress intensity factor of the honeycomb normalized by its
counterparts of the conventional regular hexagonal honeycomb.
The Poisson’s ratio ms of the constituent material is assumed to
be 0.3. The range for r/l is from 0.1 to 0.45 and �qð2Þ is set in the
range from 0.01 to 0.21, then, according to Eq. (1) and r/l, we find
t(2)/r varying from 0.001 to 1.741, which satisfies the conditions
0 < t(2)/r < 2.

For the normalized Young’s modulus, we compare the result of
the present structure by the theory with those of the similar struc-
ture studied by experiments and finite element results [11], and
parametrically investigate the influences of the relative density
and r/l. The structure in Ref. [11] is controlled by the ratio a/l, in
which a is the side length of the hexagon (see Fig. 4a). The results
are reported in Fig. 4. We can see that the present theory (the line
in Fig. 4a) agrees well with the experimental (the circle in Fig. 4a)
and finite element results (the square in Fig. 4a) even though they
have different geometries. The former has an optimal value when
r/l � 0.31, which is less than the latter’s optimal value when
a/l � 0.33, this is because r is less than a if a hexagon is equivalent
to a circle. The parametric study shows that the optimal value, with
respect to the conventional honeycomb, decreases (Fig. 4b) as the
relative density increases, and the normalized Young’s modulus
tends to one, as r/l approaches 0.1 which means that the Young’s
modulus of the honeycomb tends to that of the conventional hon-
eycomb. Corresponding to the conventional honeycomb, the
improvement of the Young’s modulus is up to 76% when
�qð2Þ ¼ 0:01 and r/l = 0.31.

For the structure’s Poisson’s ratio, the present prediction is also
compared with the finite element results reported in Ref. [11], and
a good agreement is again obtained, see Fig. 5a. If r/l ? 0.1, the
Poisson’s ratio tend to the well-known result (i.e., one), and a low-
est value m = 0.315 is reached when r/l = 0.38, which is less than the
reported value 0.37 when a/l = 0.4 under the common relative den-
sity �qð2Þ ¼ 0:06. The reason can be referred to the corresponding
discussion of Young’s modulus. The parametric study on the Pois-
son’s ratio is performed with respect to the relative density and r/l,
and the result is plotted in Fig. 5b, which shows that the Poisson’s
ratio is between 0.313 and 0.996.

For the fracture strength, the mechanism (1) is absent and the
mechanism (2) prevails, thus, the fracture location switches from
the point B0 to the point D0 (Fig. 6a). Interestingly, if the bending
failure occurs at the point B0, it reaches a minimum when
r/l � 0.25. This is because a smaller r results in a greater cell-wall
thickness t(2), which requires a greater bending moment to fail; a
greater r results in a smaller moment arm of the beam B0C0, which
also needs a greater force to fail, and r � 0.25l is in-between.
Whereas, if the failure is at the point D0, an increasing r results in
a decreasing t(2), thus, the failure bending moment becomes smal-
ler and smaller. Moreover, as the number of cracked cells (or crack
length) increases, the normalized fracture strength increases
(Fig. 6b). This is because the fracture quanta plays a more
important role in the case of a shorter crack which reduces the



Fig. 4. (a) Comparison between the present theory of the present structure, experiments and finite element results from the literature [11], when �qð2Þ ¼ �qð1Þ ¼ 0:1; (b)
normalized Young’s modulus vs. relative density �qð2Þ and r/l.

Fig. 5. (a) Comparison between the present theory of the present structure and finite element results from the literature [11], when �qð2Þ ¼ �qð1Þ ¼ 0:06; (b) Poisson’s ratio vs.
relative density �qð2Þ and r/l.

Fig. 6. (a) Normalized fracture strength vs. r/l when n = 7; (b) normalized fracture strength vs. number of cracked unit cells n and r/l when �qð2Þ ¼ �qð1Þ ¼ 0:1.
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improvement of the fracture strength, and its influence weakens as
the crack length increases. In particular, the maximal improvement
of the fracture strength with respect to the conventional honey-
comb is up to 300% when r/l = 0.1 and n = 25, and for each n, the
maximal improvement is always reached at r/l = 0.1. It is worth
mentioning that the critical failure at both points B0 and D0 occurs
simultaneously when r/l = 0.33, and its strength is improved by
264% when r/l = 0.33 and n = 25.

Finally, the result of the stress intensity factor is reported in
Fig. 7. Different from the optimal value of the Young’s modulus
when r/l = 0.31 (Fig. 4b) and the maximal value of the fracture
strength when r/l = 0.1 (Fig. 6b), the maximal value of the normal-
ized stress intensity factor varies from r/l = 0.1 to r/l = 0.33 as the
relative density decreases. Addressing this point, we study its crit-
ical conditions depicted in Fig. 7a. It shows that the maximal value
appears at both r/l = 0.1 and r/l = 0.33 when �qð2Þ ¼ 0:03; while it is
at r/l = 0.33 when �qð2Þ ¼ 0:02 and at r/l = 0.1 when �qð2Þ ¼ 0:04.
Therefore, combining Fig. 7b, it can be concluded that the maximal
value of the normalized stress intensity factor is at r/l = 0.33 if
�qð2Þ < 0:03 while at r/l = 0.1 if �qð2Þ > 0:03. Compared to the



Fig. 7. (a) Normalized stress intensity factor vs. r/l, note that the three horizontal lines are corresponding to the maximal values of the three cases, respectively; (b)
normalized fracture strength vs. relative density �qð2Þ and r/l.
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conventional regular honeycomb, the stress intensity factor is
maximally improved by 366% when �qð2Þ ¼ 0:01 and r/l = 0.33 and
by 195% when �qð2Þ ¼ 0:21 and r/l = 0.1. It is worth mentioning that
if the natural honeycomb has a relative density greater than 0.03,
the result illustrates why more silk and wax are centrally located
at the three-edge joint, according to strength and fracture tough-
ness of which the maximal values are at smaller r/l.

4. Conclusion

In this paper, we have constructed a hollow-cylindrical-joint
honeycomb, and developed a theory to calculate its Young’s mod-
ulus, Poisson’s ratio, fracture strength and stress intensity factor.
With respect to the conventional honeycomb, the results showed
that its Young’s modulus can be optimized and comparable to that
in the literature. The smallest Poisson’s ratio is obtained when
r/l � 0.38. For the maximal improvement of its fracture strength,
it can be obtained by decreasing the radius of the circular joint.
Whereas, a critical relative density 0.03 exists for the maximal
improvement of stress intensity factor, namely, the maximal value
is reached when the ratio r/l equals 0.1 and the honeycomb’s rela-
tive density is greater than 0.03; otherwise, the maximal value is
obtained when r/l equals 0.33 and the honeycomb’s relative den-
sity is less than 0.03. The present structure and theory could be
used as a guide to design new honeycomb materials.
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