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       The fracture strength of natural fi bers remains a topic of intense 
debate, as it has not yet been possible to predict their fracture 
strength directly from an atomistic point of view. [  1  ]  Here we 
show that the considerations of interatomic interactions alone 
cannot explain the fracture strength observed in biological 
fi bers. Instead, the fracture strength of a fi ber depends strongly 
on the length-scale of observation, and structures at multiple 
length-scales must be considered to explain their remarkable 
mechanical performance and resilience, including a fi ber’s sen-
sitivity with respect to cracks (and other fl aws). The impact of 
such stress concentrators on a material’s performance was fi rst 
quantifi ed by Griffi th and Weibull. [  2  ]  They developed strong 
theoretical arguments to explain the experimentally observed 
scaling of strength with specimen size, where smaller tends to 
be stronger, suggesting that the probability of having a critical 
fl aw decreases with specimen size. 

 The fracture analysis of polymers is commonly addressed 
from two points of view: a statistical, micromechanical (e.g., 
using Bell theory or atomic potentials) [  3  ]  or a continuum 
mechanical (e.g., using phase fi eld theory or linear/nonlinear 
fracture mechanics based on Griffi th’s work). [  4  ]  Both approaches 
are well explored, but are yet to be unifi ed in a comprehensive 
framework. Our work provides a step towards this framework 
by connecting the characteristic length scales in hierarchical 
biological fi brous materials to their fracture strength from the 

level of the interatomic potential upwards, to characterize the 
fracture properties at the macroscopic scale. 

 Consider a polymer fi ber of diameter D   with no intrinsic 
fl aws ( Figure   1 a). Under applied tension F0 , such a fi ber’s 
failure strength F f   would reach the theoretical limit of the 
interatomic bonds it consists of, denoted by Fth . Similarly, one 
could consider a fi ber with a distribution of intrinsic fl aws. 
Such a fi ber would fail at a fi nite ‘macroscopic’ strength. In 
contrast, a fi ber made of the same bonds but containing a large 
fl aw will signifi cantly decrease its strength according to Grif-
fi th’s size scaling, [  2a   ,   5  ]  where the crack size scales with the dia-
meter, such that F f ∼ 1/

√
D .   

 The process zone, also depicted schematically in 
Figure  1 b, characterizes the amount of material that contrib-
utes to resisting fracture, and is also referred to as the “cavita-
tion box”. [  1a  ]  It can be understood as the region surrounding a 
crack that is damaged during crack propagation. In the limit of 
a very small process zone (Figure  1 b), on the order of atomic 
bonds, the material is very brittle like glass and bonds simply 
snap to create new surfaces. In the limit of a very large process 
zone (Figure  1 c), driving a crack through the material leads to 
widespread damage that is not limited to the crack surface. An 
important aspect of a large process zone is that stress concentra-
tions at the crack tip are diminished, further reducing the threat 
imposed by cracks of causing catastrophic damage to a material. 
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      Figure 1.  (a) A fi ber of diameter D  that has no intrinsic fl aws. Under 
tension F0 , such a fi ber’s failure strength F f   would reach the theoretical 
strength of the interatomic bonds it consists of, Fth . (b) A fi ber made 
of the same bonds without internal structure but containing a fl aw of 
length a  would decrease its strength according to Griffi th’s size scaling 
as the ratio l0 /D  and the strength of the fi ber become smaller. (c) A pos-
sible strategy to maintain the strength of the fi ber at the macroscale is 
to increase the size of the process zone (the “cavitation box”), such 
that l0 ≈ D . Then, the strength of the fi ber will approach the theoretical 
strength of the internal structure, F f

∼= Fth . 
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 The process zone size, characterized by the length-scale 
l0  , is indicative of the fracture toughness K   of the fi ber, [  6  ]  
since K ∼ √

l0.   [  7  ]  This makes intuitive sense because dis-
sipative processes that increase the size of the process zone 
will thereby lead to a larger fracture resistance of polymeric 
fi bers. For example, self-healing processes (via H-bond stick-
slip or hidden length in molecular domains) can increase 
the toughness during fracture. In addition to molecular pro-
cesses, distributed failure processes can encompass micro-
cracking, crack bridging, crack-defl ection, as well as interfacial 
sliding (e.g., shearing of interfaces and unfolding of organic 
matrices). [  1b   ,   8  ]  

 How can we identify the process zone size l0  ? In most cases, 
it can be measured by experimental analysis only. Some pro-
gress has been made from a continuum mechanical point of 
view. [  9  ]  One can estimate the process zone size l0   from the ratio 
between a materials fracture strength F f   and its yield strength 
FY  (defi ned as the stress where the material undergoes irrevers-
ible, plastic deformation), [  10  ] 

l0 = $

(
F f

FY

)2

,
  

(1) 
    

 where $   is proportional to the crack size, depends (for 
example) on the specimen geometry, and can include non-
linear geometric effects. This scaling law refl ects the impor-
tance of the nonlinear nature of the stress-strain relationship 
as a means to decouple the failure stress from the yield stress. 
However, this does not provide an immediate route to predict 
l0  , because the ratio of failure to yield stress is not generally 
known. Starting from experimental observations, we will sys-
tematically address this question from the level of the intera-
tomic potential upwards. 

  Experimental Observations : For many biomaterials, the pro-
cess zone size l0   has been experimentally determined to be 
on the order of several micrometers,  e.g.  for bone, [  8d   ,   11  ]  poly-
mers, [  12  ]  and quasibrittle materials. [  13  ]  The process zone has 
also been directly measured in concrete, graphite, and wood 
via acoustic emission, digital imaging, and SEM. [  14  ]  In these 
studies, the damage zone surrounding the crack tip was vis-
ually identifi ed as process zone. In a recent paper, empirical 
relations were used to estimate the process zone size l0   in 
spider silk and other polymeric fi bers, and found to be on 
the order of one micrometer. [  1a   ,   15  ]  To obtain this result, the 
authors invoked an empirical scaling relation that relates the 
yield stress to the elastic properties via FY = 0.028E . As other 
analyses, this study did not describe the fracture properties of 
fi bers from a fundamental, interatomic potential point of view, 
but rather lumped a variety of mechanisms into an empirical 
equation that ultimately relates the yield strength to the frac-
ture strength. 

  Atomistic Perspective : We estimate the process zone size 
directly from an interatomic potential. This fundamental 
approach accounts for the fact that fracture involves the rup-
ture of atomic bonds. The generalized Lennard-Jones ( n, m ) 
potential (LJ) is often used as an approximation for the behavior 
of interatomic interactions in polymers and crystalline mate-
rials (e.g., Ref.  [  16  ] , and it therefore provides a good basis for 
the study of the fracture mechanisms in natural fi bers. [  17  ]  An 
appropriate model to estimate the size of the process zone size 

l0   from the interatomic potential is the Dugdale-Barenblatt 
yield-strip model, given by

l0 = B

8
E

Gc

F 2
th

,
  

(2)
     

 with Gc   as the critical energy release rate, E   the elastic mod-
ulus of the bonds, and Fth  the theoretical strength of a chemical 
bond. [  18  ]  For a nonlinear material, Gc   can be generalized to  [  10  ] 

Gc =
∞
∫
r0

F (r ) dr
  

(3)
    

  where r0   is the equilibrium lattice spacing of a cubic lattice 
on which the molecules are arranged (detailed derivation see 
Experimental Section and Methods). Solving Equation ( 2 ) 
yields the ratio of process zone size to the characteristic length 
scale r0  , with l0/r0 = f (n, m)  . Here, f (n, m)  is a function 
of the parameters of a generalized Lennard-Jones-potential. 
It is found that l0/r0   is relatively insensitive to the para-
meters (n, m  ), see  Table  1  . Estimating an upper and lower 
bound for this ratio yields an interval of l0/r0 ≈ [0.5, 16],   or 
[0.25 nm, 8 nm]  for most real materials. An important observa-
tion from this derivation is the existence of a relation between 
characteristic length scale r0   and process zone size l0  , which 
is in turn directly connected to the fracture toughness of the 
material. On the level of chemical bonds, one can think of 
r0   as the “lattice” spacing in the strong and often ordered 
polymer domains. In strong and tough protein or polymer 
fi bers this refers to the inter-chain distance in highly aligned 
$  -sheets (e.g., nylon, amyloids, spider dragline MaSp1 and 
silkworm silks, strained collagen, titin-rich myofi brils, and 
some synthetic polymers), [  19  ]  "  -helices (e.g., intermediate 
fi laments, actin fi bers), or $  -turns (e.g., silk MaSp2, elastin 
and some synthesized polymer fi bers). [  20  ]  Note the ratio l0/r0  
depends on the actual lattice structure present in the material 
(details, see Experimental Section and Methods) and on the 
specifi c make-up of its substructure, as well as other effects 
such as orientation and temperature. In view of the generality 
of our analysis and the purpose of obtaining an order of mag-
nitude estimate, this is considered negligible. 

 Our predictions are in good agreement with several earlier 
reports. For soft elastic materials, Hui et al. estimated the size 
of the process zone to be approximately 1 nm. [  21  ]  Similarly, 
Porter et al. derived the process zone size l0   for silk materials 
to be around 4 nm. [  22  ]  Keten et al. investigated the fracture 
behavior of hydrogen bond clusters, found in many secondary 
structural elements of (semi-)crystalline polymer fi bers, [  23  ]  
leading to a process zone size of approximately 1 nm. [  24  ]  Gener-
ally, this analysis holds not only for polymeric fi bers but also 
for metals or ceramics. In sum, the calculation based on the LJ 
potential results in exceedingly small sizes on the order of a few 

 Table 1.   Process zone (cohesive zone) for the generalized LJ potential. 

n   m   l0 /r0   

12  6  0.5–10  

12  8  0.4–9.2  

10  2  1.0–16  
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dimensions of 2–4 nanometers. [  26,28  ]  On the next hierarchical 
level, the beta-sheet crystals form a structure that can be under-
stood as a lattice with spacing of r0 ≈ 10nm  , the distance 
between the crystals (note how r0   changes with the length scale 
of observation).  

 The intrinsic strength of the lower scale feature – here the 
crystal and amorphous phase – is scaled up to the next larger 
scale. Paired with the unfolding of the semi-amorphous pro-
tein domains, the process zone size is then of the order of 
20–150 nm, the size of the fi brils. [  29  ]  This is in agreement 
with the estimate of the process zone size l0/r0 ≈ [0.5, 16]
 . The importance of spider silks heterogeneity in connection 
with these length scales has been intensively studied using 
SEM, X-Ray and neutron scattering techniques. [  30  ]  Through 
hierarchical assembly, i.e., the weak binding of many layers 
of fl aw-tolerant fi brils to fi bers, the material induces further 
toughening mechanisms (fi bril sliding and delocalization) 
and maintains its toughness at micrometer dimensions. [  31  ]  
This shows that the resilience of materials is greatly enhanced 
through hierarchical structure originating at the nanoscale, as 
deformation and damage processes become translated to larger 
scales. [  32  ]  A similar setup can be found in the cellulose fi bers 
in wood, where an arrangement of nanocrystals forms nanom-
eter-sized microfi brils that are densely packed into a lattice like 
structure. [  33  ]  Also collagen (e.g., in bone and mussel threads), 
keratin-based materials, chitin-protein fi bers and their deriva-
tives contain highly repetitive patterns on several length scales 
that can be interpreted as a lattice with spacing r0  . [  34  ]  The con-
cept is schematically shown in  Figure   3  for a general case. The 

nanometers. Consequently, this suggests a low fracture tough-
ness (as K ∼ √

l0  ), in contrast to the experimental results, 
which we will address in the next section. 

  Connecting the Length Scales : How is it possible that polymer 
materials show dramatically higher fracture toughnesses than 
predicted by the preceding atomistic analysis, with a remark-
able mismatch by a factor of 1000? This contradiction can be 
explained by Equation ( 1 ). Considering the purely elastic nature 
of the potential up to failure, the ratio between yield strength 
FY  and fracture strength F f = Fth  of a LJ material is approxi-
mately one, i.e., F f ≈ FY  (or close to it). [  25  ]  

 In order to achieve a very large process zone size the yield 
stress and fracture strength must be decoupled. As we have 
shown this cannot be achieved in a homogeneous material 
and therefore the existence of a heterogeneous material micro-
structure is critical. Spider silk’s heterogeneity, for example, is 
caused by a composite arrangement of alanine rich nanocrys-
tals within a glycine rich semi-amorphous phase (for a detailed 
description, see Ref. [26]). Other well-known examples that 
incorporate such complex microstructural architectures are 
wood, bone, glassy sponges, nacre, and tendons, to name a 
few. [  8b  ]  

 In such structures, the characteristic length scale r0   is not a 
material constant, but depends on the length scale of observa-
tion. [  27  ]   Figure   2  depicts this concept in the context of spider 
dragline silk. On the lowest hierarchical level, the scale of the 
atomic bonds, the maximum stress is the theoretical bond 
stress Fth  r0   and l0   are small. Therefore, a strong and tough 
fi ber requires a nanoscale substructure that has dimensions 
of the process zone size in order to be robust at larger scales. 

      Figure 2.  Length scales and toughening mechanisms in spider dragline silk. At the lowest hierarchical level, the scale of the atomic bonds, the 
maximum stress is the theoretical bond stress Fth  and r0  as well as l0  are small (in the order of nanometers). The nanocrystal is extremely robust 
because it is geometrically confi ned to the size of the plastic zone. At the next hierarchical level, the beta-sheet crystals form a structure that can be 
understood as a lattice with spacing of r0 ≈ 10 nm , the distance between the crystals. The intrinsic strength of the lower scale feature – here the crystal 
and amorphous phase – is scaled up to the next scale. Paired with the unfolding of the semi-amorphous protein domains, the process zone size is 
then on the order of 20–150 nm, the size of the fi brils. Through hierarchical assembly, i.e., the weak binding of many layers of fl aw-tolerant fi brils to 
fi bers, the material induces further toughening mechanisms (fi bril sliding and delocalization, inducing a process zone of 1  μ m) and maintains its 
toughness at micrometer dimensions. 
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the interpretation of the parameters, which differs between 
the nano- and the macroscale. We also found that the nano-
structure is fundamental to the mechanisms that transfer the 
strength from atomic bonds to the macroscopic fi ber. This par-
adigm could provide an answer to the longstanding question 
how natural fi bers scale up the nanoscale strength to the experi-
mentally observed high strength, extensibility and robustness. 
This insight provides a path towards new material designs by 
embracing hierarchical structures.  

  Experimental Section and Methods 
  Derivation of the process zone size for a generalized Lennard-Jones 

potential : The generalized LJ-(n, m) -potential formulation is given by

� (r, n, m) = T

[
m

n − m

( r0

r

)n
− n

n − m

( r0

r

)m
]

.
  

   (  A1  ) 
     

 Here, r0  is the equilibrium bond distance, r   the current bond 
distance, and T, n, m  potential parameters. Similar to the derivation in 
Ref.  [  17a  ] , one fi nds for this potential the strain energy density

� =
�

�
,
     

(  A2  )   

  the stress-displacement function with F = � /∂ g∂  , where 
g = (r − r0) / r0  is the bond strain,

F (r, n, m) =
nmT

(n − m)�

[
−

( r0

r

)n+ 1
+

( r0

r

)m+ 1
]

,
  

   (  A3  )
   

  and the elastic modulus E ∂2= � /∂g 2 ,

E (r, n, m) =
nmT

(n − m)�

[
(n + 1)

( r0

r

)n+ 2
− (m + 1)

( r0

r

)m+ 2
]

,
  

   (  A4  )
   

  with �   as the bond volume. 

 The theoretical attainable bond stress is given by setting E = 0 ,

Fth (n, m) =
nmT

� (n + 1)

(
m + 1

n + 1

) m+ 1
n−m

.
  

   (  A5  )
      

 Furthermore, the cohesive energy, which equals the fracture surface 
energy of the bond, is given by

fi ber becomes robust to fl aws at all these length scales and does 
not fail in a brittle manner, when part of a larger-scale hierar-
chical structure. This is achieved through the confi nement of 
each microstructure to the length scale of the process zone size 
(called r ∗   in Figure  3 ), governed by l0/r0 ≈ [0.5, 16]  , where r0   
is the characteristic size of the length scale under observation.  

 In spider silk, the onset of failure in the early deformation 
stages of the weakly bonded semi-amorphous phase controls 
the nonlinear softening after the elastic regime. [  26b   ,   35  ]  This con-
stitutes a yield mechanism where FY ≈ (1 /4)F f  . [  35,36  ]  A general 
observation of great importance is that spider silk features a 
very small yield stress and at the same time, a very large frac-
ture stress. This leads to a very large process zone size on the 
order of 300 nm to 1000 nm (see Supporting Information). 
The key to these considerations is that the particular non-
linear stress-strain relationship in silk fi bers originates from 
a hierarchical arrangement of distinct components, starting at 
the nanoscale. [  39  ]  Beyond the specifi c case of silk, the strategy 
to achieve large process zones is ubiquitous in many natural 
materials, [  37,40  ]  where strong nanoconfi ned constituents (in 
fi bers: crystallized fi brils, in composites: platelets) are bound by 
a weak matrix (in fi bers: weak chain interactions, in compos-
ites: a weak polymer phase). 

 In summary, we showed the existence of an intrinsic mis-
match between the length-scales involved in the fracture 
mechanics of biological materials, and applied a simple model 
to connect the interatomic potential to the fracture toughness 
of hierarchical materials. To achieve this we used fracture 
mechanics and derived the process zone size. We found that 
without considering hierarchical structures, the size of the pro-
cess zone derived from the atomistic scale is only a few nanom-
eters, constituting a mismatch by up to factor 1000. By incor-
porating a hierarchy of structures, each confi ned to a certain 
critical length-scale, we were able to explain the process zone 
size observed in experimental observations and link it directly 
to an interatomic potential. 

 We found that the scaling law for the strength of a mate-
rial and also the related experimental and theoretical analysis 
are universal throughout all length scales. What matters is 
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      Figure 3.  Schematic picture of the hierarchical build-up of materials, where at each level the building blocks are repeated n  times such that the total 
length is confi ned to r ∗ . At each hierarchical scale, the stress concentrations become delocalized. This is achieved through the confi nement of each 
microstructure to the length scale of the process zone size l0 /r0 = [0.5, 16] , where r0  is the characteristic size of the building block. The fi ber becomes 
robust to fl aws at all these length scales and does not fail in a brittle manner, when part of a larger-scale hierarchical structure. The resilience of materials 
is greatly enhanced through hierarchical structuring from the nanoscale upwards, as deformation and damage processes are translated to larger scales. 
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strength, so the estimate E = Ē   will serve as a lower bound for the 
process zone size l0  in Equation ( A7 ). 

 Due to the elastic nature of the potential, Gc  can be simplifi ed to

Gc = (s +
l0∫
0

(
gi j

∫
0
Fi j dg i j

)
dy == (s .

  
   (  A10  )      

 Now, we can write an expression for the plastic zone size only in 
terms of the bond potential parameters using Equation ( A7 ). The lower 
bound for l0  is given by the averaged modulus in Equation ( A10 ),

l0, Ē =
B (n + 1) m+ 1

n+ 1

)− m+ 1
n−m

8 nm
r0.

  
   (  A11  )      

 Alternatively, using the linearized expression of the elastic modulus, 
Equation ( A9 ), we obtain an upper bound for l0 ,

l0, E0 =
B (n + 1)2 m+ 1

n+ 1

)−2 m+ 1
n−m

8 nm r0.
  

   (  A12  )

      
 The results are summarized in Table 1 for typical combinations of 

parameters ( n, m ). The values for l0  aremonly a function of ( n, m ) and 
the bond distance r0 . Note that this assumes a 1-D arrangement of 
bonds, for example found on the nanoscale in  β -sheets. For a lattice-
like arrangement one would need to sum over the contributions from 
several bonds, which would lead to an increase in l0 . For the purpose of 
this paper, an order of magnitude estimation, the simple 1-D analysis is 
suffi cient.  
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(s =
∞
∫
r0

F (r ) dr = Tr0

�
.
  

   (  A6  )      

 These defi nitions have been reported in Ref.  [  17a  ] . To the best of the 
authors’ knowledge, the following derivation has not been reported in 
literature. 

 An appropriate model to estimate the size of the decohesion or 
process zone l0  is given by the Dugdale-Barenblatt yield-strip model, see 
 Figure   4 ,

l0 = B
8

E
Gc

F 2
th

,
  

   (  A7  )
    

 where Gc  is the critical energy release rate, a material parameter that 
quantifi es the amount of energy needed to drive a crack through a 
surface. [  38  ]  

  Usually, derivations for nonlinear constitutive behavior entail a 
linearization of the elastic modulus around g = 0  (i.e., r = r0 ), [  17a  ] 

E 0 (n, m) = nmT
�

.
  

   (  A8  )
      

 The modulus as it appears in Equation ( A7 ) is the modulus of the 
stress far fi eld, to account for the change in strain energy in the specimen 
upon crack propagation. In a very large specimen, it is reasonable to 
set E = E 0 . However, if the specimen size is small, in the order of the 
plastic zone, then E E 0�  . This is the case for nanoconfi ned constituents 
in many biological materials,  e.g.  the fi brils in spider dragline silk or 
cellulose fi brils in wood. [  37  ]  In many nonlinear elastic material models, 
the stress behind the crack tip degrades with close to 1/

√
r  , similar to 

the linear elastic case. This implies that the material within a zone of 3-5 
times the crack size (can be estimated from fracture mechanics, here 
without proof) has a much lower modulus than the far fi eld. In a nano-
sized material, this zone can contain the entire specimen. To account 
for the highly nonlinear behavior in the cohesive zone, it seems more 
appropriate to calculate an average elastic modulus that averages from 
the crack tip, E = 0 , to the linearized modulus E = E 0 .

Ē (n, m) =
nmT

� (n + 1) n + 1
m+1

) m+ 1
n−m

= Fth (n, m)

  
   (  A9  )      

      Figure 4.  Stress variation in the cohesive zone according to the Dugdale-
Barenblatt model. 
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