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a b s t r a c t

In this paper, we analytically studied the in-plane elastic and transport properties of a peculiar hexagonal
honeycomb, i.e., the multifunctional hierarchical honeycomb (MHH). The MHH structure was developed
by replacing the solid cell walls of the original regular hexagonal honeycomb (ORHH) with three kinds of
equal-mass isotropic honeycomb sub-structures possessing hexagonal, triangular and Kagome lattices.
Formulas to calculate the effective in-plane elastic properties and conductivities of the MHH structure
at all densities were developed. Results show that the elastic properties of the MHH structure with the
hexagonal sub-structure were weakly improved in contrast to those of the ORHH. However, the triangu-
lar and Kagome sub-structures result in substantial improvements by one or even three orders of mag-
nitude on Young’s and shear moduli of the MHH structure, depending on the cell-wall thickness-to-
length ratio of the ORHH. The present theory could be used in designing new tailorable hierarchical hon-
eycomb structures for multifunctional applications.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Low-density cellular materials widely exist in Nature and exhi-
bit fascinating mechanical properties in the aspects of strength,
stiffness, toughness, etc. [1–3]. As a typical low-density cellular so-
lid, honeycomb, which is mainly used as cores of light-weight
sandwich panel structures [4–7], has been used in many fields,
such as aerospace and automotive industries. Apart from its pecu-
liar low-density and mechanical properties, honeycomb also shows
other attractive functionalities, e.g., heat transfer, thermal protec-
tion, catalysis application and so on. In order to find optimal topol-
ogies for different multifunctional applications, varieties of
prismatic honeycombs have been developed and studied in recent
years.

Regarding the multifunctionality of honeycomb materials, Lu
[8] and Gu et al. [9] reported that the regular hexagonal metallic
cell, compared with triangular and square cells, provides the high-
est level of heat dissipation, which is comparable to that of the
open-cell metal foams. Combining experimental and numerical
methods, Wen et al. [10] revealed that the overall thermal perfor-
mances of metallic honeycomb structures are superior to other
heat sink media, such as metallic foams, lattice-frame materials,
3D Kagome structures and woven textile structures. Employing
the topology optimization technique, Hyun and Torquato [11]
showed that only the effective conductivity of the regular hexago-
nal honeycomb tends to the Hashin–Shtrikman (H–S) upper
bounds; while for triangular and Kagome honeycombs, both the
in-plane effective moduli and conductivity approach the H–S upper
bounds [12,13]. Hayes et al. [14] studied the mechanical and ther-
mal properties of linear cellular alloys with square cells, and con-
cluded that the mechanical and heat transfer characteristics of
the honeycomb materials outperformed those of the open- and
closed-cell metallic foams with comparable relative density. Vaziri
and his collaborators [15–25] focused on metallic sandwich panels
with different kinds of cellular cores, such as hexagonal honey-
combs [15], square honeycombs [16–20], open-cell rhombic
dodecahedron cellular structures [21] and pyramidal truss cores
[22–25], and explored their multifunctional applications, such as
energy absorption [24], sustaining shock loading [16–18] and
underwater impulsive loading [19,20]. Besides, Evans et al. [26],
Wadley et al. [27] and Wadley [28] reviewed the multifunctional-
ities and the fabrication technologies of the multifunctional peri-
odic cellular metals with different topological structures.
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Regarding the mechanical properties of honeycomb materials,
Wang and McDowell [29] investigated the in-plane stiffness and
yield strength of different periodic metallic honeycombs, and
showed that the diamond, triangular and Kagome cells have supe-
rior in-plane mechanical properties than the hexagonal, rectangu-
lar and mixed square/triangular cells. Fleck and Qiu [30] analyzed
the damage tolerance property of 2D elastic-brittle isotropic hon-
eycombs and reported that Kagome cells have much higher frac-
ture toughness than those of hexagonal and triangular cells.

Another concept related to honeycomb materials is the introduc-
tion of hierarchy. Compared with their single length scale micro-
structure counterparts, structural hierarchy in natural materials
can result in significantly higher stiffness or strength efficiencies
(i.e. stiffness- or strength-to-weight ratios), and maintain their
flaw-tolerance or energy-absorbing property [31–36]. Therefore,
many researchers [37–44] have focused on the mechanical proper-
ties of the hierarchical cellular structures. Burgueno et al. [45] stud-
ied the hierarchical cellular designs for load-bearing bio-composite
beams and plates. Kooistra et al. [46] investigated hierarchical cor-
rugated core sandwich panels and revealed that second-order
trusses can have much higher compressive and shear strengths than
their equal-mass first-order counterparts when relative densities
are less than 5%. Fan et al. [47] studied two-dimensional cellular
materials made up of sandwich struts and showed that the relevant
mechanical properties of the materials are improved substantially
by incorporating structural hierarchy. Inspired by diatom algae
which contains nanoporous hierarchical silicified shells, Garcia
et al. [48] revealed the toughening mechanism in the superductile
wavy silica nanostructures by performing a series of molecular
dynamics simulations. Taylor et al. [49] introduced the functionally
graded hierarchical honeycombs by performing a set of finite ele-
ment analyses, and their results suggested that the Young’s modulus
of the functionally graded hierarchical honeycomb can be 1.75 times
that of its equal-mass first-order hexagonal honeycomb if the struc-
ture is designed properly. Different from the topology of the com-
mon hierarchical honeycomb structures [37,38,43,49], Vaziri’s
group recently [50] developed a new hierarchical honeycomb struc-
ture by replacing every three-edge joint of a regular hexagonal lat-
tice with a smaller hexagon, and showed that the Young’s
modulus of the hierarchical honeycombs with one level and two lev-
els can be 2.0 and 3.5 times stiffer than their equal-mass regular hex-
agonal honeycomb, respectively. And more, Chen and Pugno [42–
44] explored the buckling behavior of 2D hierarchical honeycombs
and Young’s modulus and strength of 3D hierarchical foams by con-
sidering the surface effect at the bottom level of these structures.

In this paper, along the line, we analytically studied the in-plane
elastic moduli and thermal conductivity of a multifunctional hierar-
chical honeycomb (MHH). The MHH structure is formed by replac-
ing the solid cell walls of an original regular hexagonal honeycomb
(ORHH) with three different isotropic honeycomb sub-structures
possessing hexagonal, triangular or Kagome lattices. First, we derive
the theoretical formulas of the effective elastic moduli of the regular
hexagonal honeycombs for all densities. Then, the in-plane Young’s,
shear and bulk moduli of the three kinds of MHH structures are cal-
culated. Besides, the effective in-plane conductivities of the MHH
structures are also formulated through the H–S upper bounds.

2. Effective in-plane elastic moduli of the regular hexagonal
honeycombs for all densities

Hyun and Torquato [51] analytically studied the effective in-
plane properties of the regular hexagonal honeycomb for all densi-
ties via three-point approximations and expressed the effective
Young’s modulus Ee (Fig. 1b) as
Ee

Es
¼ /ð2f� 1Þðfþ g� 1Þ
f3� 2/� 2ð2� /Þð1� fÞ þ ð2� f� gÞ½2/ð1� fÞ � 1�g ð1Þ

in which / is the relative density of the hexagonal honeycomb, Es is
the Young’s modulus of its constituent solid, f and g are the three-
point parameters (Fig. 1a). The simulation data of the effective
Young’s modulus Ee [51] are also provided in Fig. 1b. It is apparent
that for the high density case (/ P 0.5), the prediction by the three-
point approximations method matches very well the simulation
data, but for the lower density case, it overestimates the results,
and in the super low density case, the overestimation is so
great that the three-point approximations method is not valid any
more.

It is well-known that for the low-density regular hexagonal
honeycombs, the Euler beam theory and the Timoshenko beam
theory can effectively predict their materials constants. Here, we
extend the Euler beam theory and the Timoshenko beam theory
to the all relative densities cases and compare the results with
the three-point approximations. Under the Euler beam theory, Tor-
quato et al. [52] expressed the effective Young’s modulus Ee as:

Ee

Es
¼ 3

2
/3 ð2Þ

And employing the Timoshenko beam theory Gibson and Ashby [3]
studied the elastic properties of the low density honeycombs. For
the regular hexagonal honeycomb, the effective Young’s modulus
is given by:

Ee

Es
¼ 4ffiffiffi

3
p t

l

� �3 1

1þ ð5:4þ 1:5msÞðt=lÞ2
ð3Þ

in which ms is the Poisson’s ratio of its constituent solid and
t=l ¼

ffiffiffi
3
p

1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� /

p� �
is the cell-wall thickness-to-length ratio.

For honeycombs at all densities, the comparison between the
Euler beam theory, Timoshenko beam theory, three-point approx-
imations method and the simulation data is plotted in Fig. 1b. We
can see that when / 6 0.5 the result calculated by the Euler beam
theory matches very well the simulation data, while the result is
well predicted by the three-point approximations method when
/ > 0.5. Therefore, the effective Young’s modulus of the regular
hexagonal honeycombs for all densities can be piecewisely ex-
pressed as:

Ee

Es
¼

3
2 /3 / 6 0:5

/ð2f�1Þðfþg�1Þ
f3�2/�2ð2�/Þð1�fÞþð2�f�gÞ½2/ð1�fÞ�1�g / > 0:5

(
ð4Þ

Besides, through the three-point approximations method, Hyun
and Torquato [51] also derived the effective in-plane bulk modulus
ke of the regular hexagonal honeycomb at all densities:

ke

ks
¼ Gs/ð2f� 1Þ

ksð1� /Þ þ Gs½1þ 2/ðf� 1Þ�

¼ Gs=ks/ð2f� 1Þ
ð1� /Þ þ Gs=ks½1þ 2/ðf� 1Þ� ð5Þ

where ks and Gs are the bulk and shear moduli of the constituent so-
lid, respectively.

Due to the in-plane isotropic properties, ks, Es, ke, Ge and Ee sat-
isfy the following relationships:

ks ¼
Es

2ð1� msÞ
ð6Þ

ke ¼
Ee

2ð1� meÞ
ð7Þ

Ge ¼
Ee

2ð1þ meÞ
ð8Þ



Fig. 1. (a) Three-point parameters f and g for the regular hexagonal honeycomb [51] vs the relative density /. (b) Effective Young’s modulus Ee/Es of the regular hexagonal
honeycomb vs the relative density / predicted by different methods.
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in which Ge and me are the effective in-plane shear modulus and
Poisson’s ratio of the hexagonal honeycombs, respectively. Defining
Ee/Es = A and ke/ks = B, Eqs. (4)–(8) provide the formula for Ge:

Ge

Es
¼ AB

4B� 2Að1� msÞ
ð9Þ

Then, the effective Poisson’s ratio me of the regular hexagonal hon-
eycombs can be derived through dividing Eq. (6) by Eq. (7):

me ¼ 1� A
B
ð1� msÞ ð10Þ

To verify the expressions of Ee, ke and Ge, Eq. (10) is depicted in
Fig. 2 for the honeycombs at all densities with ms = 1/3. Note that in
the calculations and following sections, the three-point parameters
f and g are interpolated from Fig. 1a.

Fig. 2 shows excellent agreement with the existing results [3,53],
that is to say, me tends to 1 for the extreme low densities and tends to
Poisson’s ratio of constituent solid ms = 1/3 for the extreme high den-
sities. This implies the validations of Eqs. (4), (5) and (9), which will
be employed to study the relevant properties of the MHH. It is worth
mentioning that different from the formula in Ref. [3], here Poisson’s
ratio is not a constant when the relative density is low.

3. MHH with isotropic hexagonal sub-structure

3.1. Basic theory

First of all, we consider the MHH with the isotropic hexagonal
lattice sub-structure (Fig. 3). The thicknesses of the ORHH
(Fig. 3a) and MHH (Fig. 3b) are denoted by t0 and t1, respectively,
and their lengths denoted by l0 are considered to be identical. In
particular, one of the MHH cell walls in Fig. 3b is shown in
Fig. 2. The effective Poisson’s ratio me of the regular hexagonal honeycomb with
ms = 1/3 vs the relative density /.
Fig. 3c, where the cell-wall thickness and length of the hexagonal
cells are denoted by th and lh, respectively. The out-of-plane depth
is a constant and identical for both structures.

The geometry of Fig. 3c implies:

l0 ¼ nlh þ ðnþ 1Þð2lhÞ ¼ ð3nþ 2Þlh ð11Þ

where n is the number of the solid hexagonal cell walls lying on the
middle line of the MHH cell walls (e.g., in Fig. 3c, n = 8). Defining
k = lh/l0 as the hierarchical length ratio, rearranging Eq. (11) provides,

k ¼ 1
3nþ 2

ð12Þ

Then, defining N as the number of hexagonal cells away from
the middle line of the MHH cell walls (e.g., in Fig. 3c, N = 1), and
M the total number of half-thickness hexagonal cells in a MHH cell
wall (see Appendix A), then, the relationship between M and N can
be expressed as:

M ¼ 2Nð2nþ 1Þ þ n
3
� 4AN ð13Þ

with AN = [(2N + 1)(N � 1) + 1]/6. After that, basing on the mass
equivalence between cell walls of the MHH and the ORHH, we find
t0l0 � 1

2
ffiffi
3
p t2

0 ¼ 6� 1
2 thlh � 1

2
ffiffi
3
p t2

h

� �
M, which gives

th

lh
¼

ffiffiffi
3
p

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3
ffiffiffi
3
p

k2M

t0

l0
1� 1

2
ffiffiffi
3
p t0

l0

� �s" #
ð14Þ

Besides, a geometrical analysis in Fig. 3c provides Nmax, the upper
bound of N, and t1, the thickness of the MHH cell walls:
Fig. 3. (a) The original regular hexagonal honeycomb (ORHH); (b) the tailorable
multifunctional hierarchical honeycomb (MHH) with hexagonal sub-structure; (c)
amplification of a hexagonal lattice cell wall in (b) (the cell walls marked by blue
circle suggest n = 8 and the dash line denotes the middle line of the MHH cell wall).
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Nmax ¼ fl
1
2k

� �
¼ fl

3nþ 2
2

� �
ð15Þ

t1 ¼
2N

ffiffiffi
3
p

lh
� �

þ th 1 6 N 6 Nmax � 1

2�
ffiffi
3
p

2 l0 N ¼ Nmax

8<
: ð16Þ

where ‘fl[ ]’ is the floor function, which denotes the largest integer
not greater than the term in the bracket. Then, rearranging Eq.
(16) gives:

t1

l0
¼

2
ffiffiffi
3
p

N þ th
lh

� �
k 1 6 N 6 Nmax � 1ffiffiffi

3
p

N ¼ Nmax

8<
: ð17Þ

On the other hand, Eq. (14) requires 1� 2= 3
ffiffiffi
3
p

k2M
� �

t0=l0

1� 1= 2
ffiffiffi
3
p� �

t0=l0

h i
P 0. Considering Eqs. (12) and (13), the

inequality provides Nmin, the lower bound of N:

Nmin ¼ ce
3nþ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3nþ 2Þ2 1� 2ffiffi

3
p t0

l0
1� 1

2
ffiffi
3
p t0

l0

� �h i
þ n

r
2

2
664

3
775 ð18Þ

where ‘ce[ ]’ is the ceiling function, which denotes the smallest inte-
ger not less than the term in the bracket. Note that Eq. (18) may give
Nmin = 0, in this case Nmin = 1.

Defining the in-plane Young’s, shear and bulk moduli of the
ORHH as EO, GO and kO, then, from Eqs. (4), (5) and (9), we find:

EO

Es
¼ AO ¼

3
2 /3

O /O 6 0:5
/Oð2fO�1ÞðfOþgO�1Þ

f3�2/O�2ð2�/OÞð1�fOÞþð2�fO�gOÞ½2/Oð1�fOÞ�1�g /O > 0:5

(
ð19Þ

kO

ks
¼ BO ¼

Gs=ks/Oð2fO � 1Þ
ð1� /OÞ þ Gs=ks½1þ 2/OðfO � 1Þ� ð20Þ

GO

Es
¼ AOBO

4BO � 2AOð1� msÞ
ð21Þ

where,

/O ¼
2ffiffiffi
3
p t0

l0
� 1

3
t0

l0

� �2 t0

l0
6

ffiffiffi
3
p� �

ð22Þ

is the relative density of the ORHH.
Besides, Hyun and Torquato [11,51] showed that the effective

thermal conductivity of the regular hexagonal honeycomb nearly
approaches the H–S upper bounds. Thus, defining the thermal con-
ductivities of the ORHH and the constituent solid as rO and rs, we
approximately obtain:
rO

rs
¼ /O

2� /O
ð23Þ

Note that due to the mathematical analogy, results for the effective
thermal conductivity translate immediately into the equivalent re-
sults for the effective dielectric constant, electrical conductivity and
magnetic permeability.

Similarly, defining the in-plane Young’s, shear and bulk moduli
and thermal conductivity of the hexagonal sub-structure as Eh, Gh,
kh and rh, we obtain:

Eh

Es
¼ Ah ¼

3
2 /3

h /h 6 0:5
/hð2fh�1Þðfhþgh�1Þ

f3�2/h�2ð2�/hÞð1�fhÞþð2�fh�ghÞ½2/hð1�fhÞ�1�g /h > 0:5

(
ð24Þ

kh

ks
¼ Bh ¼

Gs=ks/hð2fh � 1Þ
ð1� /hÞ þ Gs=ks½1þ 2/hðfh � 1Þ� ð25Þ

Gh

Es
¼ AhBh

4Bh � 2Ahð1� msÞ
ð26Þ

rh

rs
¼ /h

2� /h
ð27Þ

where,
/h ¼
2ffiffiffi
3
p th

lh
� 1

3
th

lh

� �2 th

lh
6

ffiffiffi
3
p� �

ð28Þ

is the relative density of the hexagonal sub-structure. Denoting the
effective Poisson’s ratio of the hexagonal sub-structure by mh, then,
the relation Gh = Eh/[2(1 + mh)] holds. Then, combining Eqs. (24) and
(26) gives,

mh ¼ 1� Ah

Bh
ð1� msÞ ð29Þ

Thus,

Gh

kh
¼ Eh=½2ð1þ mhÞ�

Eh=½2ð1� mhÞ�
¼ 1� mh

1þ mh
¼ Ahð1� msÞ

2Bh � Ahð1� msÞ
ð30Þ

In the meantime, defining the in-plane Young’s, shear and bulk
moduli and thermal conductivity of the MHH as EM, GM, kM and
rM, it is easy to obtain:

EM

Eh
¼AM ¼

3
2/3

M /M 60:5
/M ð2fM�1ÞðfMþgM�1Þ

f3�2/M�2ð2�/MÞð1�fM Þþð2�fM�gMÞ½2/Mð1�fMÞ�1�g /M >0:5

(
ð31Þ

kM

kh
¼BM ¼

Gh=kh/Mð2fM�1Þ
ð1�/MÞþGh=kh½1þ2/MðfM�1Þ� ð32Þ

GM

Eh
¼ AMBM

4BM�2AMð1�mhÞ
ð33Þ

rM

rh
¼ /M

2�/M
ð34Þ

where,

/M ¼
2ffiffiffi
3
p t1

l0
� 1

3
t1

l0

� �2 t1

l0
6

ffiffiffi
3
p� �

ð35Þ

Combining Eqs. (19), (24) and (31) yields the relative Young’s
modulus EM/EO:

EM

EO
¼ AMAh

AO
ð36Þ

Similarly, from Eqs. (20), (25) and (32), we can get the relative in-
plane bulk modulus kM/kO:

kM

kO
¼ BMBh

BO
ð37Þ

And from Eqs. (21), (24) and (33), we obtain the relative shear mod-
ulus GM/GO:

GM

GO
¼ AMBMAh

2BM � AMð1� mhÞ
2BO � AOð1� msÞ

AOBO
ð38Þ

Finally, from Eqs. (23), (27) and (34), we find the relative thermal
conductivity rM/rO:

rM

rO
¼ /M/hð2� /OÞ

/Oð2� /MÞð2� /hÞ
ð39Þ
3.2. Effect of N on the relative elastic moduli and thermal conductivity
of the MHH with hexagonal sub-structure

To investigate the influence of N on the relative elastic moduli
EM/EO, GM/GO, kM/kO and the relative thermal conductivity rM/rO,
here, we discuss the following example with parameters n = 16,
k = 1/(3n + 2) = 0.02 and t0/l0 = 0.01, 0.05, 0.1, 0.2 and 0.3. Then,
we can find Nmax = 25 through Eq. (15), and Nmin for each t0/l0
through Eq. (18). The results are reported in Figs. 4–6, respectively.

From Fig. 4a and b, we can see that almost for all t0/l0 consid-
ered, the optimal EM/EO and GM/GO, which vary between 1 and 2,
exist as N increases. Note that the optimal EM/EO and GM/GO may
do not correspond to the same N. The reason is that EO/Es and



Fig. 4. (a) The relative Young’s modulus EM/EO vs N for different t0/l0. (b) The relative shear modulus GM/GO vs N for different t0/l0.

Fig. 5. The relative bulk modulus GM/GO vs N for different t0/l0.

Fig. 6. The relative thermal conductivity GM/GO vs N for different t0/l0.
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EM/Eh depend on Poisson’s ratios ms and mh but GO/Gs and GM/Gh do
not [51].

Figs. 5 and 6 show that the relative bulk modulus kM/kO and the
relative thermal conductivity rM/rO increase with the increase of
t0/l0, but in general, they are less than one. This implies that the
effective bulk modulus and thermal conductivity of the MHH with
regular hexagonal sub-structure are less than those of the ORHH
structure. Of particular interest, there is the lowest value for the
thermal conductivity, and this could be used to design low heat
conductivity materials with the optimal topology.
3.3. The effects of t0/l0-the cell-wall thickness-to-length ratio of the
ORHH

To investigate the effects of the cell-wall thickness-to-length ra-
tio t0/l0 of the ORHH on the relative elastic moduli and thermal
conductivity of the MHH structure, again, we use the above exam-
ple given in Section 3.2. We maintain n = 16, k = 0.02 but vary t0/l0
from 0.01 to 0.5 with an increment of 0.01. In fact, under the same
N, the value of GM/GO is slightly greater than EM/EO (Fig. 4), so here
we only consider the relative Young’s modulus EM/EO influenced by
t0/l0. Regarding rM/rO and kM/kO, the discussions on them will not
be treated in this section, since their values are less than one
(Figs. 5 and 6), which shows the inferior properties of the MHH
to those of the ORHH.

Finally, the maximum EM/EO influenced by t0/l0 is reported in
Fig. 7. We can see that the maximum EM/EO increases before t0/l0
reaches 0.07 but after that it decreases. In other words, the optimal
EM/EO of the MHH with hexagonal sub-structure exists at t0/
l0 = 0.07, of which the value approximately equals 2. The result is
comparable to the finite element result given by Taylor et al. [49].

4. MHH with triangular sub-structure

4.1. Basic theory

In this section, we obtain the second topology of the MHH by
substituting the ORHH cell walls with the equal-mass isotropic tri-
angular sub-structure, see Fig. 8. As defined in Section 3, the hier-
archical length ratio is expressed as



Fig. 7. The maximum EM/EO vs t0/l0.

Fig. 8. Schematics of (a) the ORHH; (b) the tailorable MHH with triangular sub-
structure; and (c) amplification of a trianglar lattice cell wall in (b).

Y. Sun et al. / Composite Structures 107 (2014) 698–710 703
k ¼ lt
l0
¼ 1

n
ðn P 1Þ ð40Þ

where n is the number of solid triangular lattice cell walls lying on
the middle line of the MHH cell walls. From Fig. 8c, according to the
equal-mass principle, we can find t0l0 � 1

2
ffiffi
3
p t2

0 ¼ 3� 1
2 ttlt �

ffiffi
3
p

2 t2
t

� �
M,

which gives

tt

lt
¼ 1ffiffiffi

3
p 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ffiffiffi
3
p

3k2M

t0

l0
1� 1

2
ffiffiffi
3
p t0

l0

� �s2
4

3
5 ð41Þ

where M is the total number of half thickness triangular lattice cells
in a MHH cell wall and it has the following relationship with n and
N (see Appendix B):

M ¼ 2Nð2n� NÞ þ 2
3
ðn� NÞð1 6 N 6 nÞ ð42Þ

in which N is the number of triangular lattice cells away from the
middle line of the MHH cell walls. Similar to that in Section 3, a geo-
metrical analysis in Fig. 8c provides Nmax, the upper bound of N, and
t1, the thickness of the MHH cell walls:

Nmax ¼ n ð43Þ

t1 ¼
2N

ffiffi
3
p

2 lt

� �
þ tt 1 6 N 6 Nmax � 1

2�
ffiffi
3
p

2 l0 N ¼ Nmax

8<
: ð44Þ
Then, rearranging Eq. (44) gives,

t1

l0
¼

ffiffiffi
3
p

N þ tt
lt

� �
k 1 6 N 6 Nmax � 1ffiffiffi

3
p

N ¼ Nmax

8<
: ð45Þ

On the other hand, Eq. (41), requires
1� 4

ffiffiffi
3
p

=ð3k2MÞt0=l0 1� 1= 2
ffiffiffi
3
p� �

t0=l0

h i
P 0. Then, employing

Eqs. (40) and (42), the inequality gives Nmin, the lower bound of N:

Nmin ¼ ce
6n� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6n� 1Þ2 � 12n 2

ffiffiffi
3
p

n t0
l0

1� 1
2
ffiffi
3
p t0

l0

� �
� 1

h ir
6

2
664

3
775
ð46Þ

Note that Eq. (46) may give Nmin = 0, in this case Nmin = 1.
Like the discussion in Section 3, we would like to analyze the

effective elastic moduli and thermal conductivity of the triangular
lattice sub-structure. As mentioned in the introduction, Hyun and
Torquato [11] showed that for triangular and Kagome honey-
combs, both the in-plane effective moduli and conductivity ap-
proach the H–S upper bounds [12,13]. So, we approximately use
the H–S upper bounds to calculate the effective elastic moduli
and thermal conductivity of the triangular lattice sub-structure.
Defining the in-plane Young’s, shear and bulk moduli and thermal
conductivity of the triangular sub-structure as Et, Gt, kt and rt, we
obtain:

Et

Es
¼ At ¼

/t

3� 2/t
ð47Þ

kt

ks
¼ Bt ¼

/tGs=ks

1� /t þ Gs=ks
ð48Þ

Gt

Es
¼ Ct ¼

1
2ð1þ msÞ

/t

ð1� /tÞð1þ 2Gs=ksÞ þ 1
ð49Þ

rt

rs
¼ /t

2� /t
ð50Þ

where,

/t ¼ 2
ffiffiffi
3
p tt

lt
� 3

tt

lt

� �2 tt

lt
6

1ffiffiffi
3
p

� �
ð51Þ

is the relative density of the triangular sub-structure. Denoting the
effective Poisson’s ratio of the triangular sub-structure by mt, the
relation Gt = Et/[2(1 + mt)] holds. Then, combining Eqs. (47) and
(49) gives,

mt ¼
1
2

At

Ct
� 1 ð52Þ

Thus,

Gt

kt
¼ Et=½2ð1þ mtÞ�

Et=½2ð1� mtÞ�
¼ 1� mt

1þ mt
¼ 4

Ct

At
� 1 ð53Þ

Defining the in-plane Young’s, shear and bulk moduli and thermal
conductivity of the MHH with triangular sub-structure as EM, GM,
kM and rM, we have:

EM

Et
¼ AM ¼

3
2 /3

M /M 6 0:5
/M ð2fM�1ÞðfMþgM�1Þ

f3�2/M�2ð2�/MÞð1�fMÞþð2�fM�gMÞ½2/Mð1�fM Þ�1�g /M > 0:5

(
ð54Þ

kM

kt
¼ BM ¼

Gt=kt/Mð2fM � 1Þ
ð1� /MÞ þ Gt=kt ½1þ 2/MðfM � 1Þ� ð55Þ

GM

Et
¼ AMBM

4BM � 2AMð1� mtÞ
ð56Þ

rM

rt
¼ /M

2� /M
ð57Þ

where,



Fig. 10. The relative Young’s modulus GM/GO vs N for different t0/l0: (a) t0/l0 = 0.01; (b) t0/l0 = 0.05; (c) t0/l0 = 0.1, 0.2, 0.3.

Fig. 9. The relative Young’s modulus EM/EO vs N for different t0/l0: (a) t0/l0 = 0.01; (b) t0/l0 = 0.05; and (c) t0/l0 = 0.1, 0.2, 0.3.
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/M ¼
2ffiffiffi
3
p t1

l0
� 1

3
t1

l0

� �2 t1

l0
6

ffiffiffi
3
p� �

ð58Þ

and fM and gM, interpolated from Fig. 1a, are the three-point param-
eters corresponding to /M.

Combining Eqs. (19), (47) and (54) gives the relative Young’s
modulus EM/EO:

EM

EO
¼ AMAt

AO
ð59Þ

Similarly, from Eqs. (20), (48) and (55), we can find the relative bulk
modulus kM/kO:

kM

kO
¼ BMBt

BO
ð60Þ

And from Eqs. (21), (47) and (56), we obtain the relative shear mod-
ulus GM/GO:
Fig. 11. The relative bulk modulus
GM

GO
¼ AMBMAt

2BM � AMð1� mtÞ
2BO � AOð1� msÞ

AOBO
ð61Þ

Finally, from Eqs. (23), (50) and (57), the relative thermal conduc-
tivity rM/rO is derived:

rM

rO
¼ /M/tð2� /OÞ

/Oð2� /MÞð2� /tÞ
ð62Þ
4.2. Effects of N on the relative elastic moduli and thermal conductivity
of the MHH with triangular sub-structure

As discussed in Section 3, the influence of N on the effective
elastic moduli and thermal conductivity of the MHH with triangu-
lar sub-structure are studied, here we consider the second example
with parameters n = 20, k = 1/n = 0.05, t0/l0 = 0.01, 0.05, 0.1, 0.2 and
0.3. Then, we immediately obtain Nmax = 20 by Eq. (23) and the
kM/kO vs N for different t0/l0.



Fig. 13. Schematics of (a) the ORHH; (b) the tailorable MHH with Kagome sub-
structure (in this paper the red dashline is for the convenience of linear dimension);
(c) amplication of a Kagome sub-structure cell wall in (b); and (d) the represen-
tative cells for the Kagome honeycomb.
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lower bound Nmin for each t0/l0 by Eq. (46). The relative elastic
moduli EM/EO, GM/GO, kM/kO and the relative thermal conductivity
rM/rO vs N are reported in Figs. 9–12, respectively.

Figs. 9 and 10 show that the relative Young’s modulus EM/EO and
the relative shear modulus GM/GO increase with the increase of N,
and the thickness-to-length ratio t0/l0 has a strong influence on
them. With respect to its equal-mass ORHH, the enhancements
of the relative Young’s and shear moduli of the MHH can be one or-
der (Figs. 9c and 10c) or even three orders of magnitude (Figs. 9a
and 10a). Although the enhancement on Young’s modulus of the
MHH decreases with the increase of t0/l0, for a smaller t0/l0 (less
than 0.3), its stiffening effect (Figs. 9 and 10) by the triangular
sub-structure is much larger than that of the hexagonal counter-
part (Fig. 4a and b).

The relative bulk modulus kM/kO and the relative thermal con-
ductivity rM/rO shown in Figs. 11 and 12 have similar trends to
those of the MHH with the hexagonal sub-structure reported in
Section 3.2. Thus, the discussion is omitted here.

5. MHH with isotropic Kagome sub-structure

5.1. Basic theory

Kagome honeycomb has been revealed to have pronounced
fracture toughness [30] and better thermal–mechanical perfor-
mance than the triangular honeycomb [54]. Therefore, in this sec-
tion, we will consider the third topology of the MHH, namely,
substituting the ORHH cell walls with their equal-mass Kagome
sub-structure (Fig. 13), and study its effective elastic moduli and
thermal conductivity. In this case, the hierarchical length ratio is
expressed as:

k ¼ lk

l0
¼ 1

n
n ¼ 4;6;8;10 . . . ð63Þ

where lk is the side length of triangles in Kagome cells and n is the
number of sides of the effective triangles on the middle line of the
MHH cell walls. Again, the equal-mass principle provides
t0l0 � 1

2
ffiffi
3
p t2

0 ¼ 3� tklk �
ffiffi
3
p

2 t2
k

� �
M, and tk/lk is derived as:

tk

lk
¼ 1ffiffiffi

3
p 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffi
3
p

3k2M

t0

l0
1� 1

2
ffiffiffi
3
p t0

l0

� �s2
4

3
5 ð64Þ

where M is the total number of triangles in a MHH cell wall, and it is
expressed with n and N as (see Appendix C):

M ¼ 2Nðn� NÞ 1 6 N 6
n
2

� �
ð65Þ
Fig. 12. The relative thermal conductivity rM/rO vs N for different t0/l0.
in which N is the number of the Kagome representative cells away
from the middle line of the MHH cell walls (e.g., in Fig. 13c, N = 1).
Similar to those in Sections 3 and 4, a geometrical analysis in
Fig. 13c provides Nmax, the upper bound of N, and t1, the thickness
of the MHH cell walls:

Nmax ¼
n
2

ð66Þ

t1 ¼
2N

ffiffiffi
3
p

lk

� �
þ 2tk 1 6 N 6 Nmax � 1

2�
ffiffi
3
p

2 l0 N ¼ Nmax

8<
: ð67Þ

Then, rearranging Eq. (67) gives

t1

l0
¼

2
ffiffiffi
3
p

N þ tk
lk

� �
k 1 6 N 6 Nmax � 1ffiffiffi

3
p

N ¼ Nmax

8<
: ð68Þ

Again, Eq. (64) requires 1� 2
ffiffiffi
3
p

=ð3k2MÞt0=l0 1� 1= 2
ffiffiffi
3
p� �

t0=l0

h i
P 0. In conjunction with Eqs. (63) and (65), the inequality produces
Nmin, the lower bound of N:

Nmin ¼ ce
n� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ffiffi
3
p

3
t0
l0

1� 1
2
ffiffi
3
p t0

l0

� �r
2

2
664

3
775 ð69Þ

Also, when Nmin = 0, Eq. (69) provides Nmin = 1.
Here, the H–S upper bounds is again employed to analyze the

effective elastic moduli and thermal conductivity of the Kagome
lattice sub-structure. Defining the in-plane Young’s, shear and bulk
moduli and thermal conductivity of the Kagome sub-structure as
Ek, Gk, kk and rk, respectively, we obtain:

Ek

Es
¼ Ak ¼

/k

3� 2/k
ð70Þ

kk

ks
¼ Bk ¼

/kGs=ks

1� /k þ Gs=ks
ð71Þ

Gk

Es
¼ Ck ¼

1
2ð1þ msÞ

/k

ð1� /kÞð1þ 2Gs=ksÞ þ 1
ð72Þ

rk

rs
¼ /k

2� /k
ð73Þ

where,

/k ¼
ffiffiffi
3
p tk

lk
� tk

lk

� �2 tk

lk
6

1ffiffiffi
3
p

� �
ð74Þ



Fig. 14. The relative Young’s modulus EM/EO vs N for different t0/l0: (a) t0/l0 = 0.01; (b) t0/l0 = 0.05; and (c) t0/l0 = 0.1, 0.2, 0.3.

Fig. 15. The relative Young’s modulus GM/GO vs N for different t0/l0: (a) t0/l0 = 0.01; (b) t0/l0 = 0.05; and (c) t0/l0 = 0.1, 0.2, 0.3.

Fig. 16. The relative bulk modulus kM/kO vs N for different t0/l0.
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is the relative density of the Kagome sub-structure. Denoting the
effective Poisson’s ratio of the Kagome sub-structure by mk, employ-
ing Gk = Ek/[2(1 + mk)] and combining Eqs. (70) and (72) give

mk ¼
1
2

Ak

Ck
� 1 ð75Þ

Thus,

Gk

kk
¼ Ek=½2ð1þ mkÞ�

Ek=½2ð1� mkÞ�
¼ 1� mk

1þ mk
¼ 4

Ck

Ak
� 1 ð76Þ

Again, defining the in-plane Young’s, shear and bulk moduli and
thermal conductivity of the MHH with Kagome sub-structure as
EM, GM, kM and rM, we have:
EM

Ek
¼AM ¼

3
2/3

M /M 60:5
/Mð2fM�1ÞðfMþgM�1Þ

f3�2/M�2ð2�/M Þð1�fMÞþð2�fM�gMÞ½2/Mð1�fMÞ�1�g /M >0:5

(
ð77Þ

kM

kk
¼BM ¼

Gk=kk/Mð2fM�1Þ
ð1�/MÞþGk=kk½1þ2/MðfM�1Þ� ð78Þ

GM

Ek
¼ AMBM

4BM�2AMð1�mkÞ
ð79Þ

rM

rk
¼ /M

2�/M
ð80Þ

where,

/M ¼
2ffiffiffi
3
p t1

l0
� 1

3
t1

l0

� �2 t1

l0
6

ffiffiffi
3
p� �

ð81Þ



Fig. 17. The relative thermal conductivity rM/rO vs N for different t0/l0.
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Combining Eqs. (19), (70) and (77) gives the relative Young’s
modulus EM/EO:

EM

EO
¼ AMAk

AO
ð82Þ

Similarly, from Eqs. (20), (71) and (78) we can get the relative bulk
modulus kM/kO:

kM

kO
¼ BMBk

BO
ð83Þ

And from Eqs. (21), (70) and (79) we obtain the relative shear mod-
ulus GM/GO:

GM

GO
¼ AMBMAk

2BM � AMð1� mkÞ
2BO � AOð1� msÞ

AOBO
ð84Þ

Finally, from Eqs. (23), (50) and (57), we find the relative thermal
conductivity rM/rO:

rM

rO
¼ /M/kð2� /OÞ

/Oð2� /MÞð2� /kÞ
ð85Þ
Fig. 18. The relative Young’s modulus EM/EO vs N for different sub-structures with
the same parameters t0/l0 = 0.1 and k = 1/20.
5.2. Effects of N on the relative elastic moduli and thermal conductivity
of the MHH with Kagome sub-structure

In this section, we consider the third example with parameters
n = 20, k = 1/n = 0.05, t0/l0 = 0.01, 0.05, 0.1, 0.2 and 0.3. Then, Eq.
(66) provides Nmax = 10 and Eq. (69) the lower bound Nmin for each
t0/l0. The results of the relative elastic moduli EM/EO, GM/GO, kM/kO

and the relative thermal conductivity rM/rO vs N are shown in
Figs. 14–17, respectively.

Comparing Figs. 14 and 15 with Figs. 9 and 10, we can see that
Young’s and shear moduli of the MHH with Kagome sub-structure
are similar to those of the MHH with triangular sub-structure, so
the discussion can be referred to the Section 4.

However, it is worth to say that, different from the MHH with
hexagonal and triangular sub-structures, the relative bulk modulus
kM/kO and the relative thermal conductivity rM/rO of the MHH with
Kagome sub-structure become greater than one with the increase
of t0/l0 (Figs. 16 and 17). This is to say, when t0/l0 is great enough,
the effective bulk modulus and thermal conductivity of the MHH
with Kagome sub-structure could be beyond those of the ORHH
structures.

6. Comparisons of hexagonal, triangular and Kagome sub-
structures

Comparing the examples discussed in Sections 3–5, it is appar-
ent that for an ORHH, the in-plane stiffness enhancements of the
Fig. 19. The relative bulk modulus kM/kO vs N for different sub-s
MHH with triangular and Kagome sub-structures could be much
greater than that with the hexagonal sub-structure. This is illus-
trated by the fourth examples with the parameters t0/l0 = 0.1 and
k = 1/20 and the result is plotted in Fig. 18, in which the relative
Young’s modulus EM/EO versus N for the MHH with the above three
sub-structures are reported. Interestingly, we find that the relative
Young’s moduli of the MHH with triangular and Kagome sub-struc-
tures increase as N increases in contrast to that with hexagonal
sub-structure. And more, Young’s modulus of the MHH with Kag-
ome sub-structure is improved most with respect to the ORHH.
tructures with the same parameters t0/l0 = 0.3 and k = 1/20.



Fig. 20. The relative thermal conductivity rM/rO vs N for different sub-structures with the same parameters t0/l0 = 0.3 and k = 1/20.

Fig. A.1. Schematics of MHH cell walls in Fig. 1b: (a) N = 1 and (b) N = 2.
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For the comparisons on bulk modulus and thermal conductivity
of the three MHHs, the parameters t0/l0 = 0.3 and k = 1/20 are em-
ployed, and the results are depicted in Figs. 19 and 20, respectively.
From the two figures, we can say that the MHH with Kagome sub-
structure is the optimal structure to design the bulk modulus and
thermal conductivity of the multifunctional regular hexagonal
honeycomb.

7. Conclusions

In this paper, we have studied the in-plane elastic and trans-
port properties of the MHH, which is formed by replacing the
ORHH solid cell walls with three types of equal-mass isotropic
honeycomb sub-structures. The analytical results show that with
the hexagonal sub-structure it is difficult to greatly increase
Young’s and shear moduli of the MHH. Whereas, triangular and
Kagome sub-structures share a similar improvement on the
MHH’s Young’s and shear moduli, and the improvement is sub-
stantial, from one order to three orders of magnitude depending
on the cell-wall thickness-to-length ratio t0/l0 of the ORHH.
Meanwhile, if t0/l0 is great enough, the effective bulk modulus
and transport ability of the MHH with Kagome sub-structure
can exceed those of the ORHH structure. These interesting find-
ings show a possibility to design hierarchical honeycombs for
multifunctional applications, e.g., the metallic MHH can be used
as the core of light weight sandwich panels in electronic packages
and airborne devices, where both the structural and thermal char-
acteristics are desirable.
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Appendix A. MHH cell wall with hexagonal sub-structures

Fig. A.1 shows the representative cell walls of the MHH with
regular hexagonal sub-structures in Fig. 3b. The mass of the sub-
structure is distributed uniformly among the half-thickness hexag-
onal sub-structure cells within the blue hexagon.
From Fig. A.1 we can see that the number of the half-thickness
hexagonal sub-structure cells M can be determined by n and N as
the following form:

M ¼ 2N½nþ ðnþ 1Þ� þ 1
6
ð2nÞ � 4AN

¼ 2Nð2nþ 1Þ þ n
3
� 4AN ðA:1Þ

in which A1 = 1/6 and A2 = 1.
Here, AN depends on N, we find it generally expressed as:

AN ¼
ð2N þ 1ÞðN � 1Þ þ 1

6
ðN P 1Þ ðA:2Þ
Appendix B. MHH cell wall with triangular sub-structures

Fig. B.1 schematically shows the cell wall of the MHH with tri-
angular sub-structures (Fig. 8b). The hierarchical length ratio is
k = 1/n. M is the total number of the half-thickness triangular cells
in one sub-structure cell wall. It is easily to get the following rela-
tion between M, N and n:

N ¼ 1 : M ¼ 2ð2n� 1� 1Þ þ 2
3
ðn� 1Þ

N ¼ 2 : M ¼ 2ð2n� 2� 1� 1� 2Þ þ 2
3
ðn� 2Þ

N ¼ 3 : M ¼ 2ð2n� 3� 1� 1� 2� 2� 3Þ þ 2
3
ðn� 3Þ

ðB:1Þ



Fig. B.1. Schematics for the representative cell walls of the MHH with triangular
sub-structures: (a) N = 1 and (b) N = 2.

Fig. C.1. Schematics for the representative cell walls of the MHH with Kagome sub-
structures: (a) N = 1 and (b) N = 2.
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Then, by inductive method, we find:

M ¼ 2ð2n� N � BNÞ þ
2
3
ðn� NÞ1 6 N 6 n ðB:2Þ

with

BN ¼ N2 ðB:3Þ

Substituting Eq. (B.3) into Eq. (B.2) gives:

M ¼ 2Nð2n� NÞ þ 2
3
ðn� NÞð1 6 N 6 nÞ ðB:4Þ
Appendix C. MHH cell wall with Kagome sub-structures

Fig. C.1 schematically shows the cell wall of the MHH with Kag-
ome sub-structures. The hierarchical length ratio is k = 1/n. M is the
total number of the triangular cells included in one Kagome sub-
structure cell wall. Then, the relationship between M, N and n are
expressed as:

N ¼ 1 : M ¼ 2½ðn� 1Þ � 0�
N ¼ 2 : M ¼ 2½2ðn� 1Þ � 2�
N ¼ 3 : M ¼ 2½3ðn� 1Þ � 2� 4�

ðC:1Þ

Likewise, we find:
M ¼ 2½Nðn� 1Þ � CN � 1 6 N 6
n
2

� �
ðC:2Þ

with

CN ¼ NðN � 1Þ ðC:3Þ

Substituting Eq. (C.3) into Eq. (C.2) gives:

M ¼ 2Nðn� NÞ 1 6 N 6
n
2

� �
ðC:4Þ
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