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Abstract The mechanism of detachment of thin films from

a flat smooth rigid substrate is investigated. In particular,

analytical solutions in closed form are proposed for the

double peeling of an elastic tape as well as for the axisym-

metric peeling of a membrane. We show that in the case of

double peeling of an endless elastic tape, a critical value of

the pull-off force is found, above which the tape is com-

pletely detached from the substrate. In particular, as the

detachment process advances, the peeling angle is stabilized

on a limiting value, which only depends on the geometry of

the tape, its elastic modulus and on the interfacial energy Dc.

This predicted behavior agrees with the ‘‘theory of multiple

peeling’’ and clarifies some aspects of this theory. Moreover,

it is also corroborated by experimental results (work in

progress) we are carrying out on a standard adhesive tape

adhered to a smooth flat poly(methyl methacrylate) surface.

In the case of the axisymmetric adhering membrane, a dif-

ferent behavior is observed. In such case, the system is

always stable, and the detached area monotonically increases

with the peeling force, i.e., the elastic membrane can sustain

in principle any applied force. Results are validated by a fully

numerical analysis performed with the aid of a finite element

commercial software.

Keywords Peeling � Double peeling � Peeling of

thin membranes � Fracture � Adhesion � Energy

release rate

1 Introduction

Adhesion of thin films and membranes is crucial in a

countless number of biological and industrial applications.

As an example, the membrane–membrane adhesion is

important in the mechanism of aggregation of cells and in

the attachment of cells to extracellular matrix (ECM).

Cellular adhesion is also essential in maintaining multi-

cellular structure. The cell adhesion theory, known as dif-

ferential adhesion hypothesis, was developed in the 1960s

by Steinberg [1–3]. It is based on the assumptions that

adhesion of cells occurs as a result of surface tensions due

to embryonic tissues and cell lines. This theory explains

‘‘the mechanism by which heterotypic cells in mixed

aggregates sort out into isotypic territories’’ and is gener-

ally supposed ‘‘to be sufficient to account for the phe-

nomenon without the need to postulate cell type specific

adhesion systems’’ [4].

An other example is the hairy attachment systems of

insects, reptiles and spiders that show extraordinary adhe-

sive abilities [5] even at the human size scale [6, 7]. These

systems consist of arrays of hierarchical hairs or setae, which

allow for a large contact area and hence high adhesion

derived from van der Waals interaction forces [8]. The single

peeling model of Kendall [9] has been used to explain why

most biological hairy adhesive systems involved in
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locomotion rely on spatula-shaped terminal elements [10].

Indeed, many insects, spiders and some vertebrates are

capable of climbing on diverse substrates, using adhesive

structures on their legs [11]. In this respect, the role of highly

flexible terminal spatula elements as compliant contacting

surfaces is crucial [12, 13]. An additional example is collapse

and sticking of thin films onto substrates that are serious

problems in microfabrication and operation processes of

microelectromechanical systems (MEMS) [14, 15]. In par-

ticular, at separations of the order of a micrometer, occur-

rence of sticking phenomena has been reported, wherein a

thin micromachined membrane unexpectedly glues on an

adjacent parallel surface [16]. Sticking is usually observed in

wet environment; however, it also occurs in vacuum. In this

case, van der Waals forces [17, 18] are often responsible for

sticking in MEMS.

For these reasons, many experimental and theoretical

approaches have been developed to study the mechanism

of detachment of adhering systems such as thin films [19–

27]. In Ref. [22], for example, a comprehensive study of

the detachment process of a rigid flat punch from a flexible

membrane is proposed under the assumption of small

deformations. The model has been extended to the case of

isotropic incompressible hyperelastic membranes in [28],

showing that finite deformations can have a significant

effect on membrane adhesion. In [29], moving from the

method developed in [30], analytical solutions for neo-

Hookean material and an I2-based material model are given

in the limiting case of large membrane strain due to strong

adhesion or large pre-stretch.

The study of the detachment of thin adhesive films also

allows to elucidate some of the mechanisms of gecko

adhesion. In fact, in order to avoid toe detachment, the gecko

adhesive mechanism is based on the use of opposing feet and

toes leading to a V-shaped geometry [31–36], whose

behavior strongly resembles the multiple peeling mechanism

studied in [37]. Moreover, bio-inspired micropatterned sur-

faces [38], showing enhanced adhesive [5, 39, 40], and/or

superhydrorepellent [41–44] properties, have been drawing

a strong scientific interest. The potential applications of

gecko like adhesives in robotics, biomedical devices, man-

ufacturing and consumer products have spawned a large

number of attempts to create usable material [45]. For this

reason, many experimental [32, 34, 46–48], computational

[31, 49, 50] and theoretical [7, 10, 37, 51–58], investigations

have been carried out to achieve a better understanding of

biological attachment/detachment mechanisms, also in the

presence of roughness. For example, in [59], the work of [60]

was extended to the case of adhesive contact between two

rough surfaces. However, recently it has been shown [61–65]

that the so-called multiasperity contact models do not give

reliable results, and hence, a deep understanding of the

adhesion phenomena is still lacking.

In this paper, we study the double peeling of an endless

thin tape and the axisymmetric peeling of a circular ini-

tially flat elastic membrane adhering to a rigid substrate.

We find that, in the case of tape detachment, the peeling

angle is always stabilized on a limiting value and the

supported load cannot exceed a maximum beyond which

the endless tape necessarily detaches from the substrate.

This predicted behavior is in agreement with the theory of

multiple peeling [37] and with experimental observations.

In the case of thin membranes, instead, there is no limit, in

principle, to the load that can be supported by the system.

2 Formulation

Consider an adhesive tape or the adhesive membrane in

partial contact with a flat rigid substrate. The non-contact

area acts as an interfacial crack, that, as the system is

pulled apart from the substrate, propagates determining the

advance of the peeling process. Observe that, in the case of

the axisymmetric membrane, the peeling line is a circum-

ference whose radius increases as the crack propagates

outwards, while in the tape case, the length of peeling line

remains constant during the detachment process. Both tape

and membrane are assumed to be elastic and nearly

incompressible with Young’s modulus E = 3 MPa and

Poisson’s ratio m = 0.5. Moreover, we assume that, during

the detachment process, suction effects can be neglected.

Assuming isothermal conditions, the equilibrium requires

that the total free energy Utot is stationary (Griffith crite-

rion), i.e.,

G ¼ Dc ð1Þ

where Dc is the work of adhesion, also referred to as the

Duprè energy of adhesion [66], and G is the energy release

rate at the crack tip, defined as

G ¼ � oUel

oS

� �
d

ð2Þ

when the displacement d is prescribed, or

G ¼ � oUel

oS
þ oUP

oS

� �
P

ð3Þ

when the external load P is fixed. In Eqs. 2 and 3, Uel is the

elastic energy stored in the system, UP is the potential

energy associated with the force P and S is the size of the

detached area.

2.1 Double Peeling of an Elastic Tape

Now, consider an elastic tape, with cross-section At = bt,

pulled apart from a rigid substrate by a constant vertical
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force 2P, as shown in Fig. 1. Due to the symmetry of the

system, we can limit our study to half the tape.

The action of the vertical force P makes the tape

increase its length of the quantity

DL ¼ aþ hð ÞT
E�bt

ð4Þ

where T ¼ P= sin h and E� ¼ E= 1� m2ð Þ is the composite

Young’s modulus. We assume b is sufficiently large to

consider the tape in plane strain conditions. Therefore, the

elastic energy is

Uel ¼
1

2
TDL ¼ 1

2

P2 aþ hð Þ
E�bt sin2 h

ð5Þ

and the potential energy associated with the applied load

P is

UP ¼ �P aþ hþ DLð Þ sin h ¼ �P aþ hð Þ sin hþ P

E�bt

� �

ð6Þ

The energy release rate G can be then obtained from (3) as

G ¼ � 1

b

oUel

oa
þ oUP

oa

� �
P

¼ P

b sin h
P

2E�bt sin h
þ 1� cos h

� �
ð7Þ

where we have used that a ¼ aþ hþ DLð Þ cos h; (see

Fig. 1), i.e., that

h

a
¼ 1� cos h� P cot h= E�btð Þ

cos hþ P cot h= E�btð Þ ð8Þ

The corresponding vertical displacement d is

d ¼ � oUel

oP
þ oUP

oP

� �
a

¼ h
P= E�btð Þ þ sin h

1� cos h� P cot h= E�btð Þ � 1

� �
ð9Þ

Interestingly, recalling that T ¼ P= sin h; we note that

Eq. (7) is exactly the same as the one obtained by Kendall

[9] as previously demonstrated in [37]. It clearly indicates

that, at equilibrium (i.e., when G ¼ Dc), the load P only

depends on the peeling angle h. However, for the double

peeling case, a lower bound hlim of the peeling angle exists

below which any equilibrium solution, predicted by the

Griffith criterion, is not physically meaningful (see also

Sect. 3.1). In fact, observing that h/a C 0, Eq. (8) implies

that at equilibrium, the peeling angle must satisfy the

condition

1� cos h� P

E�bt
cot h� 0; ð10Þ

i.e., h C hlim, where hlim is solution of the equation

1� cos h� P cot h= E�btð Þ ¼ 0.

A convenient dimensionless formulation can be devel-

oped by defining the following quantities

d̂ ¼ d=h; â ¼ a=h; P̂ ¼ P= E�btð Þ;
Ĝ ¼ G= E�tð Þ

ð11Þ

in which case Eqs. 7 and 9 reduce to

Ĝ ¼ P̂

sin h
P̂

2 sin h
þ 1� cos h

� �
ð12Þ

d̂ ¼ P̂þ sin h

1� cos h� P̂ cot h
� 1 ð13Þ

2.2 Axisymmetric Peeling of an Elastic Membrane:

A Simplified approach

Now consider a membrane, pulled apart by applying a

vertical displacement d, as shown in Fig. 2. The total force

P acting on the membrane is balanced by the vertical

component (perpendicular to the flat substrate) of the

resulting force, due to membrane traction stresses rm,

P ¼ 2prtrm sin h ð14Þ

We assume negligible radial displacement w as well as

negligible circumferential strain eh. As a result, the only

component of the membrane strain is the radial strain

em ¼
dl� dr

dr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u0 rð Þ2

q
� 1 ’ u0 rð Þ2

2
ð15Þ

where u rð Þ is the vertical displacement (i.e., perpendicular

to the flat substrate) of the membrane. The stress is

therefore

rm ¼ E�em ¼
1

2
E�u0 rð Þ2 ð16Þ

Substituting (16) in (14), u rð Þ can be obtained by solving

the following ordinary differential equation

u0 rð Þ3¼ �P= pE�tð Þ
r

ð17Þ

with the boundary condition u r0 þ að Þ ¼ 0, being a the

detached radius. Since we are controlling the displacement

d, the unknown load P can be determined enforcing the

Fig. 1 Double peeling of a tape

Tribol Lett (2013) 52:439–447 441

123



additional boundary condition u r0ð Þ ¼ d. Solving Eq. (17)

with the aforementioned boundary conditions yields:

u rð Þ ¼ d
r2=3 � r0 þ að Þ2=3

r
2=3
0 � r0 þ að Þ2=3

ð18Þ

and

P ¼ 8pE�td3

27 r0 þ að Þ2=3�r
2=3
0

h i3
ð19Þ

Note that Eq. (19) is the equation of state of the system,

which correlates the displacement d, the load P and the

radius a of the detached area. The total elastic energy can

be calculated as

Uel ¼
1

2

Z
V

rmem þ rhehð ÞdV

� 1

2

Z
V

r2
m

E�
dV ¼ 2pE�td4

27 r0 þ að Þ2=3�r
2=3
0

h i3

ð20Þ

The energy release rate G can be hence obtained from

(2) as

G ¼ � 1

2p r0 þ að Þ
oUel

oa

� �
d

¼ 2E�td4

27 r0 þ að Þ4=3
r0 þ að Þ2=3�r

2=3
0

h i4
ð21Þ

Finally, the detached radius at the equilibrium can be

obtained by enforcing the Griffith condition (1).

By defining the following reduced quantities

d̂¼ d=r0; â¼ a=r0; P̂¼ P= 2pE�r0tð Þ; Ĝ¼G= E�tð Þ
ð22Þ

Eqs. (19) and (21) can be rewritten in dimensionless form

as

P̂ ¼ 4d̂3

27 1þ âð Þ2=3�1
h i3

ð23Þ

Ĝ ¼ 2d̂4

27 1þ âð Þ4=3
1þ âð Þ2=3�1

h i4
ð24Þ

3 Results and Discussion

In this section, we compare the double peeling of an end-

less tape with the axisymmetric peeling of a membrane. As

we will show in the sequel, the two adhesive mechanisms

are very different from each other. In particular, in the

double peeling case, the dimensionless load per unit length

of the peeling line, that the tape can support, cannot exceed

a maximum value uniquely identified by the dimensionless

quantity Dĉ ¼ Dc= E�tð Þ. On the other hand, in the case of

the axisymmetric peeling of an infinite membrane, this

limiting load does not exist, i.e., the membrane can support

any load, independently of how large it is. This indeed can

be easily understood if one considers that the supported

load P at equilibrium should be proportional to the length

of the peeling line. So, in the case of the tape, the peeling

line does not change during the peeling process, whereas in

the case of the membrane, the peeling line is just the length

of the circumference enclosing the detached region, and

this length continuously increases as the peeling advances.

3.1 Double Peeling of a Tape

For the tape case, Fig. 3 shows the dimensionless load P̂ as

a function of the detached length âeq at equilibrium, for

different values of the work of adhesion Dĉ. The figure

shows that the force constantly increases as the crack

propagates. However, the trend shows an asymptotic

behavior toward a limiting value P̂lim, which only depends

on Dĉ. This is more clear in Fig. 4, where the load P̂ is

Fig. 2 Peeling of an axisymmetric initially flat membrane

Fig. 3 The dimensionless peeling force P̂ as a function of the

dimensionless detached length âeq for an adhesive tape. Plots are

given for different values of the dimensionless work of adhesion Dĉ
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shown as a function of the peeling angle heq at equilibrium.

We note that the trend of the curves is in perfect agreement

with the theoretical prediction presented in Ref. [37].

Interestingly, increasing the pull-off force determines, as

expected, a decrease in the peeling angle. However, a

lower bound hlim of the peeling angle exists at which the

pull-off force takes its maximum value. Below this

threshold value (see the gray area in Fig. 4), the condition

10 is violated and, therefore, the solution obtained for

heq \ hlim is physically meaningless, i.e., it is not

admissible.

Figure 5 shows the quantity d̂ ¼ d=h at equilibrium as a

function of heq. Notice d̂ diverges as heq approaches to its

lower bound heq

� �
lim

. Hence, at the maximum pull-off force,

the corresponding displacement is infinitely large: in the

double peeling case, an endless tape can be detached by a finite

force. The above arguments have implicitly assumed that

h [ 0. So one may wonder what happens when h is infinitely

small, i.e., when h! 0. This implies that also a is infinitely

small because, for P̂\P̂lim, the quantity âeq ¼ aeq=h must be

finite (see Fig. 3). As the applied load increases, the peeling

angle constantly decreases. When heq = hlim, the load no

longer increases, i.e., the status of the system is uniquely

identified by the conditions P̂ ¼ P̂lim and heq = hlim. When

this happens âeq ¼ aeq=h diverges (see Fig. 3), therefore,

being h = 0, the dimensional detached length aeq takes a finite

value, i.e., the tape starts to detach. Under this conditions, the

equilibrium is ‘‘neutral,’’ and an infinitesimally small incre-

ment of P̂ above P̂lim causes the detached length aeq to increase

constantly until the tape completely detaches from the sub-

strate. Notice that during this process, the displacement d
remains proportional to a through the relationd ¼ aeq tan hlim.

Figure 6, where the ratio d̂=â
	 


eq
¼ d=að Þeq at equilibrium as

a function ofheq is shown, clarifies this last point. As expected,

at heq ¼ hlim; d=að Þeq reaches the limiting value tan hlim.

The theoretical predictions presented so far agree very

well with experiments carried on a standard adhesive tape

adhered to a smooth flat Poly(methyl methacrylate)

(PMMA) surface (see Ref. [67] for a detailed description of

the setup and experimental procedure). The used tape was a

Narpaint (NAR S.p.A. Reg. Imprese Padova C.F.) with a

mean thickness of 125 ± 12.5 lm and a width of 15 mm.

Tensile tests of the tape were performed on 20 specimens

of adhesive tape, using a testing machine (Insight 1 kN,

MTS, Minnesota, USA), equipped with a 10 N cell load

with pneumatic clamps in order to estimate the Young’s

modulus of the tape itself. The computer program Test-

Works 4 (MTS, Minnesota, USA) has been employed to

acquire the experimental data of the tensile force applied

and, then, the stress–strain curves were computed using the

estimation of the real width and thickness at the cross-

section of each specimen. Tests were recorded by a DCR

SR55E SONY digital video camera, which allowed us to

measure, with the aid of an ad hoc developed Matlab, �

Fig. 4 The dimensionless peeling force P̂ as a function of the peeling

angle heq for an adhesive tape. Plots are given for different values of

the dimensionless work of adhesion Dĉ
Fig. 5 The dimensionless displacement d̂ as a function of the peeling

angle heq for an adhesive tape. Plots are given for different values of

the dimensionless work of adhesion Dĉ

Fig. 6 The ratio d̂=â ¼ d=a as a function of the peeling angle heq for

an adhesive tape. Plot is given for Dĉ ¼ 4� 10�5. Observe that when

heq ¼ hlim; d=a ¼ tan hlim
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1994–2012 The MathWorks, Inc. code, the two peeling

angles, respectively, at the left a1 and right a2 sides of the

screen, see Fig. 7. Tests were performed starting with the

adhesive tape which, at the beginning, was apparently fully

adherent to the PMMA base. Figure 8 show how the

measured peeling angles evolves as the double peeling

advance. Observe that the two values of the peeling angles

rapidly stabilize on a almost constant value hlim as indeed

predicted by the theory. Noteworthy, the measured limiting

angle hlim depends only Dĉ; and therefore, it can be used to

indirectly measure the adhesion energy Dc, given the

geometric and elastic properties of the tape.

3.2 Axisymmetric Peeling of a Membrane

Now let us study the axisymmetric peeling of a initially flat

infinitely large membrane. Figs. 9 and 10 show, at equilib-

rium, the dimensionless pull-off force P̂ and applied dis-

placement d̂ as a function of the dimensionless radius âeq of

the detached area, for different values of the work of adhesion.

Both the peeling force and displacement increase almost

linearly with the detached radius âeq. This simply leads to the

conclusion that, as expected, the supported load is propor-

tional to the length of the peeling line l = 2p aeq which, this

time, increases linearly with the radius aeq. Moreover, from

Fig. 10, one also draws the conclusion that the peeling angle

is, in this case, almost independent of the applied load. It only

depends on the work of adhesion Dc. The above arguments

lead to the conclusion that a stable equilibrium condition is

always found for any given applied load.

Results are also compared with those obtained with a

finite element (FE) analysis carried out with the aid of the

commercial software ANSYS [68]. In particular, axisym-

metric shell elements have been adopted. Such elements

are defined by two nodes and three degrees of freedom at

each node: translations in the x, and y directions, and

rotation about the z-axis corresponding to the

Fig. 7 Two frames recorded from experiments. The upper picture

was taken at the beginning of the traction, and the second after few

minutes

Fig. 8 The measured evolution of the left a1and rigth a2 peeling

angles during double peeling advance. Observe that the peeling angles

rapidly stabilize on a almost constant limiting value hlim as indeed

predicted by the theory

Fig. 9 The dimensionless peeling force P̂ as a function of the

dimensionless detached length âeq for an adhesive membrane. Plots

are given for different values of the dimensionless work of adhesion

Dĉ. A comparison of the solution (solid lines) with FEM results (dots)

is also shown

Fig. 10 The dimensionless applied vertical displacement d̂ as a

function of the dimensionless detached length âeq for an adhesive

membrane. Plots are given for different values of the dimensionless

work of adhesion Dĉ. A comparison of the solution (solid lines) with

FEM results (dots) is also shown
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circumferential direction. The membrane option has been

employed, so the element uses one integration point

through-the-thickness and accounts for only membrane

stiffness (i.e., bending and transverse shear stiffness are

ignored, and the rotational degree of freedom is excluded).

The contact zone between the adhesive membrane and the

flat rigid substrate is considered in sticking friction. This

condition is taken into account by constraining the nodes

on the adhering zone. Finite strain effects are taken into

account by performing a large deflection analysis. To cal-

culate, at prescribed displacement d, the energy release

rate, which occurs during the crack propagation, the fol-

lowing steps have been performed: (1) the detached radius

ai is fixed by constraining all nodes with radial coordinate

larger than ai, (2) the vertical displacement d is applied to

the nodes lying on the inner radius r0 of the membrane, (3)

the corresponding reaction force P and the elastic energy

Uel stored in the system are calculated, then (4) the pro-

cedure is repeated for a new value of the detached radius

aiþ1 ¼ ai þ Da, given the same displacement d. The energy

release rate G for each ai is hence calculated as:

Gi ¼ �
DUel

DS
¼ � 1

p
Ueliþ1

� Ueli

a2
iþ1 � a2

i

ð25Þ

Finally, the detached radius at the equilibrium is

evaluated by enforcing the Griffith equation (1).

Notwithstanding the assumptions employed to formulate

the problem, the agreement between our analytical solution

and the fully numerical one is very good. In particular, in

terms of pull-off force, analytical results are only a few

percentage points different from the FEM ones.

Figure 11 shows the dimensionless deformed profile of

the membrane for different values of the dimensionless

applied displacement d̂ and a work of adhesion

Dĉ ¼ 4� 10�5. FEM results are also plotted for compari-

son. The membrane profile predicted by (18) slightly

deviates from the numerical results, leading to a slight

overestimation of the profile height distribution. Interest-

ingly, this small mismatch very negligibly affects the

prediction of the pull-off force (see Fig. 9).

We observe that a discontinuity in the peeling line

caused by the presence of a defect under the contact zone

would determine a decrease in the supporting load capacity

of the membrane in the zone perturbed by the defect.

However, in the unperturbed regions, the peeling line

would not be interrupted by defects, and the loading

capacity of the system would remain necessarily

unchanged.

4 Conclusions

The mechanism of detachment of thin films adhering to a

rigid substrate has been investigated. We have proposed a

comparison between the double peeling of an elastic end-

less tape and the axisymmetric peeling of an elastic

membrane. In particular, for the membrane case, a sim-

plified approach, based on the assumption of negligible

radial displacements and small deformations, has been

developed leading to a very good agreement with results

obtained by large deformation numerical calculations.

In the case of tape case, a lower bound hlim of the

peeling angle exists at which the pull-off force P takes its

maximum value Plim, i.e., a further increase in P above Plim

causes the detachment of the entire tape. These results

agree with the theory of multiple peeling and clarify some

aspect of this theory. Moreover, the theoretical predictions

have been confirmed by experiments.

The mechanism of detachment of a thin membrane is

substantially different, since, in this case, the peeling line

increases linearly with the radius of the detached area,

leading to an almost proportional increase in the supported

load. We, indeed, find that, in the case of membrane

peeling, the mechanism of detachment is always stable,

i.e., the membrane can sustain, in principle, any applied

load, the limit being only represented by the strength of the

material. Moreover, the theoretical predictions have been

confirmed by FEM simulations.
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