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In silico tensile tests and design of
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In this contribution, we apply a hierarchical fibre bundle model
(HFBM), previously developed to estimate the mechanical
properties of multiscale carbon nanotube (CNT)-based structures,
to the case of graphene macroscopic cables. The nonlinear elastic
properties of graphene and its exceptional intrinsic strength,
with mean Young’s modulus of 1 TPa, third-order elastic stiffness
of —2.0 TPa and intrinsic strength of 130 GPa, are drawn
from recent experimental studies. The model allows to derive
macroscopic characteristics like strength, stiffness, toughness as a

1 Introduction In recent years, much effort has gone
into investigating graphene for its exceptional electronic,
thermal, optical and mechanical properties. Various different
graphene nano/micro-structures have by now been synthesized
and characterized, including graphene paper [1], graphene
nanoribbons [2] and also macroscopic assembled graphene
fibres [3]. In addition, large area growth techniques have been
increasingly developed thanks to specific research in this
direction [4, 5]. Another important field is that of graphene-
based composites, which could provide the means to harness
graphene’s exceptional properties for applications [6].

From a mechanical point of view, graphene can be
considered ‘the strongest material ever measured’, ever since
Lee et al. managed to measure the elastic properties and
intrinsic breaking strength of free-standing monolayer
graphene membranes by nanoindentation in an atomic force
microscope [7]. In this study, graphene was found to display
a nonlinear elastic behaviour of the type

o = E¢ + Dé?, (1)
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function of hierarchical structure, starting from statistically
distributed properties at the nanoscale and without the introduc-
tion of additional ad hoc parameters. The influence of the presence
of defects in the graphene bundles is evaluated. We also analyse
the properties of graphene-reinforced composites, including
the influence of the volume fraction of a ductile polymeric
matrix. We show that the composite properties can be engineered
to optimize strength and/or stiffness, and that the present model
can be a useful tool to help pursue this objective
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where o is the stress, ¢ the strain, £ = (1.0 & 0.1) TPa and
D = (—2.0 £ 0.4) TPa. Moreover, its measured intrinsic
strength was oy = (130 & 10) GPa, which is the highest
value found for any material in nature [7]. However, it is
unclear what the effect of defects, grain boundaries, etc.
could have on these values. In carbon nanotubes (CNTs), a
low-dimensional material like graphene, the introduction of a
single vacancy can determine a drop in strength of up to
20% [8]. CNT-based composites have been widely studied in
past years [9]. Although graphene can be considered as a two-
dimensional system, as opposed to CNTs that are usually
considered one-dimensional, both share high aspect ratios
and exceptional mechanical properties, which can be ex-
ploited in composites. Thus, another question is: in graphene
composites, how can we optimize mechanical performance
(stiffness, strength, toughness...) by varying constituent
material properties, mixing ratio, hierarchical structure or
other parameters? Clearly, experimental investigations to
reply to these questions would entail very cumbersome
studies, therefore it is convenient to develop numerical
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models to predict mechanical multiscale behaviour of
graphene structures and composites. To do this, we have
adopted a very simple modelling approach, previously used
to perform multiscale simulations on the stiffness and
strength of defective nanotube-based mega-structures [10], or
for the design of supertough nanofibers inspired by spider
silk [11], where CNT-polyvinyl alcohol (PVA) composites
were analysed. The model is presented in Section 2 and
simulation results on graphene ribbons and composites are
presented in Section 3.

2 Hierarchical fibre bundle model (HFBM) The
model used here is related to that proposed by the authors in
the past [10, 12], which is based on a fibre bundle model
(FBM) approach, and whereby a specimen is discretized in
an array of springs (or ‘fibres’) arranged in series and
parallel. The individual fibres have randomly assigned
statistically distributed strengths, in this case according to the
two-parameter Weibull distribution, which is described by
the following equation [13]:

m—1
plo) = (1) oGoton)”

= oo oo (2)
where oy and m are the scale and shape parameters,
respectively. In order to model heterogeneous media, such as
in composites, the fibres of each bundle can assume different
mechanical properties. The k-th fibre type is characterized by
a Young’s modulus E}, length [;, cross-sectional area A; and
Weibull-distributed fracture strengths, the latter character-
ized by a scale parameter og; and shape parameter m,;. The
various types of fibres combine in forming ‘bundles’, with
complex mechanical behaviour emerging from the mechan-
ical properties and arrangement of the constituent fibres. The
specimen’s stress-strain behaviour is determined by impos-
ing an increasing displacement and ‘rupturing’ individual
fibres in the bundle (i.e., setting their stiffness to zero) when
their statistically assigned strength is exceeded. After each
fracture event, the load is redistributed uniformly among the
fibres in the same bundle as the fractured one (equal load
sharing). The bundle strength is obtained as the maximum
stress value reached in the simulation before failure, i.e.,
when all parallel fibres of the bundle have failed. Since the
fibre strengths are assigned randomly according to the
Weibull distribution, results differ for each simulation, and
average trends can be derived from repeated simulations.
The model is replicated in a hierarchical scheme at
various length scales (‘levels’) to predict the multiscale
mechanical behaviour. This is implemented as described in
Ref. [10], i.e., the input mechanical behaviour of a level
i=h—1 ‘fibre’ or subvolume is statistically inferred
from the average output deriving from repeated level h
simulations, that of a level i = h — 2 subvolume from
level i = h — 1 simulations and so on, down to the lowest
hierarchical level i = 1. Overall, the specimen is modelled
as an ensemble of Ny subvolumes arranged in a bundle. Each
of these subvolumes is in turn constituted by N, subvolumes,
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Figure 1 Schematical representation of hierarchical scheme used
in the HFBM model.

arranged in a bundle as before. This scheme is applied for &
‘generations’, up to a level 4 subvolume, which is constituted
N, type ‘a’ fibres, N, type ‘b’ fibres and so on. This is
schematically shown in Fig. 1.

3 Simulation results Two specific systems are
considered in the following, namely graphene ribbon
bundles/fibres and graphene-reinforced polymer composites.

3.1 Graphene ribbons/fibres Graphene nanorib-
bons can be obtained through various methods: unzipping
of CNTs [2], STM lithography, catalytic hydrogenation,
using thermally activated Ni nanoparticles, exfoliation of
chemically modified and expanded graphite [14]. We wish to
numerically characterize the uniaxial tensile mechanical
behaviour of nanoribbon bundles and evaluate the possible
influence of defects on the overall response at microscale and
macroscale. In order to do this, we use the previously
mentioned parameters derived experimentally by Lee
et al. [7] for single graphene flakes/ribbons at level 1 of
our HFBM. These material parameters were obtained
through nanoindentation experiments, but are applicable
to uniaxial tensile tests. To use these data to construct the
desired Weibull distribution in Eq. (2), we assume that each
material parameter is normally distributed around the given
mean value, with standard deviation equal to its uncertainty.
We then fit the resulting normal distribution with a Weibull
distribution, and use the corresponding Weibull shape and
scale parameters as inputs of the level 1 hierarchical
simulations. An example is shown in Fig. 2 for the Weibull
distribution for the strength of the graphene ribbons in the
bundle, corresponding to scale and shape parameters of
oo = 131 GPaand m = 14. As can be seen, the discrepancy
between the normal and Wiebull distributions is small. The
specimens are discretized with N, = 10° and N, = 10°
fibres. This choice of parameters provides a sufficiently
refined discretization of the specimen so as to guarantee that
simulation results are independent of the ‘grid’. Simulations
are repeated 10° times to calculate mean values.

Some typical output stress—strain curves for the
graphene ribbon bundles are shown in Fig. 3. The different
curves correspond to separate runs, which differ due to the
statistical variation in level 1 parameters. The nonlinear
elastic constitutive law from Ref. [1] is reflected in the
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Figure 2 Normal strength distribution for single graphene ribbons
derived from Ref. [7] and corresponding fitted Weibull distribution.

observed nonlinear behaviour up to fracture. The obtained
mean bundle strength is 91 GPa, showing how ‘upscaling’
leads to a considerable strength decrease, even in the absence
of defects. This is due to the statistical variation in the
ribbon strengths in the bundle, so that their failure is not
simultaneous, and the maximum stress value in simulations
is reached only for a given percentage of surviving ribbons,
giving a reduced strength value.

In addition to this effect, the role of defects (such as
single or multiple vacancies, carbon adatoms, substitutional
impurities [15]) is decisive in determining the overall
strength of a graphene ribbon bundle. This can be verified by
introducing randomly distributed ‘voids’ in the array of
fibres at single level in the model, with a set volume ratio
(i.e., percentage). As expected, given the low-dimensionality
of graphene, the presence of even small percentages of
defects in the graphene ribbon bundles reduces the strength
dramatically. Results are shown in Fig. 4 in log scale: a
100-fold strength reduction is obtained for a defect
percentage of approximately 10%.

To compare these predictions with experimental values,
we consider the data from Xu and Gao [3] on graphene
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Figure 3 Simulated stress—strain curves for a graphene ribbon
bundle in repeated runs.
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fibres. The fibre dimensions are length / = 1 m and radius
r = 20 pm. Experimental results for tensile tests on these
fibres yield strength values of approximately 140 MPa.
In simulations, since it is necessary to span from the
length dimensions of graphene flakes (10~° m), for which
mechanical properties are known, to the length of full fibres
(10° m), the number of hierarchical levels necessary to
model the chosen system in multiscale simulations and the
(NVy, Ny) discretization at each hierarchical level need to be
chosen so that (N,)" = 10°. For simplicity, we choose a
constant discretization at each level of N, = N, = 100,
which provides a sufficiently refined grid, and & = 3.
Simulations are carried out for various defect percen-
tages (uniformly distributed at all levels). In this case, we are
essentially considering single-vacancy defects, modelled as
missing ‘links’ (fibres) in the lattice. An agreement with
experimental values is obtained for a defect percentage of
approximately 20%. Thus, it is possible to infer the actual
defect percentage of the material, based on the measured
mechanical properties, through numerical modelling. This
result of a very high defect content is in keeping with the
analysis in Ref. [3] whereby the ‘mechanical properties of
the fibres can be greatly improved by optimization of the
spinning process and post-annealing to decrease the voids’.
Numerical results for the determined defect percentage of
20% are reported in Fig. 5, and show a power law-type
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Figure 5 Strength decrease for a graphene fibre as a function of
hierarchical level for a defect percentage of 20%.
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decrease in the predicted strength with increasing hierarchi-
cal level, and therefore size.

3.2 Graphene-polyvinyl chloride (PVC) compo-
sites The second graphene-based system we consider is a
graphene-reinforced PVC composite. Experimental data
exist in the literature on this system which is of interest due
to its flexibility, conductivity, high mechanical strength and
thermal stability [16]. In particular, researchers found that a
significant enhancement in the mechanical properties of
pure PVC films was obtained with a 2 wt.% loading of
graphene, such as a 58% increase in Young’s modulus
and an almost 130% improvement of tensile strength.
HFBM simulations have been carried out on this system
using for PVC a tensile strength of 25 MPa and Young’s
modulus of 0.8 GPa[16], and considering increasing weight
percentages of graphene fibres. Again, three hierarchical
levels and N, = N, = 100 at each level are used for
the simulations. In this case, at the first hierarchical
level, corresponding to the 1-100 wm range, a composite
structure is considered, composed by two types of fibres in
varying weight percentages. The Young’s modulus and
strength distributions of graphene are those mentioned in
Section 3.1, while those for PVC are derived in a similar
manner from the corresponding mean values, with slightly
wider Weibull distributions (m = 3) to account for a greater
variability in the matrix properties. Simulations at levels 2
and 3 are carried out for ‘homogeneized’ samples, with a
single fibre type whose properties are derived from level 1
simulations.

Numerical results are compared to experimental data
in Fig. 6, and very good agreement is found. A linear
increase in Young’s modulus is found for increasing
weight fractions of graphene, at least for small percentages,
which is in the range of values that can be realized
experimentally. For greater weight fractions, experimental
stiffness values are found to saturate, probably due to the fact
that an imperfect dispersion of graphene is obtained in the
polymeric matrix.
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Figure 6 Stiffening effect for increasing graphene reinforcement
weight concentrations in graphene—-PVC composites (experimental
data from Ref. [14]).
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4 Conclusions Graphene shows great promise in the
fields of mechanics and materials science due to its
exceptional properties, and may prove a valid alternative
to CNTs, for example as a reinforcement in composites. The
presented HFBM model provides a simple but highly
predictive tool to simulate the mechanical behaviour of
nanostructured hierarchical graphene-based materials. In
particular, the influence of defects at various hierarchical
levels can be evaluated in macroscopic graphene fibres, and
proves to be a critical parameter, with realistic estimates at
about 20% for some recently produced fibres [3]. As far as
graphene-polymer composites are concerned, the graphene
reinforcement is shown to be very effective in the stiffening
and strengthening of PVC-matrix composite materials. In
future, the presented HFBM can be used to evaluate the
potential performance of graphene composites and design
tailor made characteristics for specific applications.
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