
Physica E 53 (2013) 217–222
Contents lists available at SciVerse ScienceDirect
Physica E
1386-94
http://d

n Corr
E-m
journal homepage: www.elsevier.com/locate/physe
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� The regular hexagonal honeycomb is
not isotropic but orthotropic.

� The competition between the sur-
face residual stress and the surface
elasticity exists.

� The surface residual stress domi-
nates the surface effect when the
cell-wall thickness to15 nm while
the surface elasticity does when
t415 nm.
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Summary: Comparision of shear modulus predicted by different considerations, i.e., without surface
effect, only surface elasticity, both surface elasticity and surface residual stress.
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Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper.
The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the
contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity)
are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic.
An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in
both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic
constants when to15 nm (or the relative density o0.17), which is in contrast to that the surface
elasticity does when t415 nm (or the relative density 40.17) for metal Al. The present structure and
theory may be useful in the design of future nanodevices.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Due to the existence of a surface, surface effect resulting in an
excess free energy per area [1], produces an important influence on
the mechanical properties of nanostructures when the structure's
size comes down into nanoscale (less than 100 nm) [2]. At present,
a huge number of works studies the mechanical behaviors of rod- or
wire-like nanostructures for potential applications in micro- or nano-
electromechanical systems by performing experiments [3] or popular
numerical method—molecular dynamics simulations [4], such as
elasticity [5], fracture [6], buckling [7] and plasticity [8]. In theoretical
ll rights reserved.
aspect, models are often treated as structures with bulk core and
surface shell, i.e., so-called core–shell model [9,10], or composite
model [11]. These works provide deep insights of the mechanisms of
surface effect on mechanical properties of the tiny structures.

Not confined by the nano-wire-structures, nanoporous struc-
tures have also drawn considerable attention for the future
applications, e.g. catalysts, molecular sieves. Starting from fabri-
cating technology, nanochannel [12] and mesoporous structures
[13] were firstly developed by chemical methods, and the mechan-
ical properties of the nanoporous materials have been investigated
recently. Indeed, due to the high surface/volume ratio of the
nanoporous structures, the formula of macroporous materials
loses their validity, and the surface effect has to be included. For
example, by incorporating the surface effect into the continuum
mechanics of the composite materials, the elastic constants of the
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nanoporous materials with uniformly distributed cycle channels
and the Young's modulus of the regular nano-foams were studied
[14–16]. All of the results show that the nanoporous structures can
be stiffer (positive surface effect) or softer (negative surface effect)
than their parent materials, which are dependent on the crystal
orientations. Zhang and Wang [17] presented a theory to study the
surface energy on the yield strength of nanoporous materials,
basing on the traditional micromechanics. In particular, for irre-
gular nanoporous materials, the Hall–Petch relationship, which
states that the materials' strength is proportional to the reciprocal
of the square root of their grain size (i.e., materials' yield strength
increases as their grain size decreases), is often employed to
predict the effective materials' strength [18,19], and the classical
power law to calculate the mechanical parameters of foam
materials is modified according to the effective mechanical
strength. But it is worth mentioning that an inverse Hall–Petch
relationship may appear in nanostructures because of sufficiently
small grain size, and several reasons are considered to contribute
to this phenomenon [20]. Furthermore, the effect of surface stress
on the plastic deformation of nanoporous or nanocomposite
materials was formulated by a micromechanical framework [21].
Recently, inspired by the hierarchical structures of natural materi-
als, which span from nano- to macro-scale, a hierarchical foam or
honeycomb taking the surface effect of nano-scale sub-structures
into account was developed by the authors [22–24].

As discussed before, the elastic constants of the nanoporous
materials with uniformly distributed cycle channels and regular
nano-foam have been studied based on a continuum mechanics,
but the surface effect on the elastic properties of the hexagonal
honeycomb (or nanoporous materials with uniformly distributed
hexagonal channels, Fig. 1) is not investigated yet. To this end, here
we developed a relevant theory for the nanohoneycombs, and
compared the results with different theories. Moreover, the
influences of the cell-wall thickness and the relative density on
the four independent elastic constants of regular Al nanohoney-
combs were studied. Besides, we have to point out that the
hexagonal unit cells of the structure is stable [25], and the
curvature induced by the residual surface stress [26] is neglected;
this is because the smallest size of the cell walls discussed in this
work is 5 nm, over which the mechanical properties of the cell
walls are close to those of their bulk counterparts [5,11].
Fig. 1. Regular hexagonal nanohoneycomb.
2. Surface stress

Surface effect was firstly introduced by Gibbs [1] in the sense of
thermodynamics of surfaces, and a keystone in the theory is about
the surface free energy. As for the surface stress caused by the
surface free energy, it is generally expressed as [2]:
τij ¼ γδij þ ∂γ=∂εij, where, γ is the surface excess free energy, δij is
the Kronecker delta, and εij is the strain tensor. For the elastic case,
τij can be rewritten as [5]: τij ¼ τ0ij þ Kijklεkl, where, τ0ij is the surface
residual stress tensor, and Kijkl is the stiffness matrix. Due to the
structural deformation inducing the change of surface curvature,
the surface stress will produce a distributed force perpendicular to
the structural surface, and the distributed force is easily formu-
lated by the general Young–Laplace equation [5]: Δsijninj ¼ ταβκαβ
(i, j¼1,2,3 and α, β¼1, 2), Δsij is the stress difference across the
structural surface, ταβ and καβ are the surface stress tensor and
surface curvature tensor, respectively. Then, for a one-dimensional
nanostructure, the distributed force along its longitudinal axis can
be expressed as qðxÞ ¼ ΔsðxÞ ¼Hw″, where, H ¼ 2τW for rectangu-
lar cross-sections, w″ is the approximate curvature under small
deformation, and W is the width of the cross-sections. Plus,
because of the small displacement, H can be written as
H0 ¼ 2τ0W [27]. In the following sections, the distributed force
qðxÞ ¼ 2τ0Ww″ will be employed to derive the elastic constants of
nanohoneycombs.

It is worth mentioning that surface stress is composed of two
parts from the expressions τij: The first is contributed by the
intrinsic surface residual stress and the second by the structural
deformation (or surface elasticity); interestingly, the surface elas-
tic modulus in the second part can be positive or negative; this is
due to the fact that a surface cannot exist without the bulk, and
the total energy (bulk and surface) needs to satisfy the positive
definiteness condition [28]. As for their contributions to the
structural behavior, both the surface elasticity and surface residual
stress have significant influences on the vibrational behavior of
micro- or nano-beams [29]. In particular, the surface residual
stress (or residual strain) prevails on the plastic behavior of the
nanoporous and nanocomposite materials [21] compared to the
surface elasticity, and the theoretical frame based on strain
gradient theory also supports that residual elastic strain gradient
(or residual stress) effect is significant in the elastic deformation of
small-scale structures [30], and more, the residual stress field
considerably affects the effective Young's modulus of Al nanowire
[31]. Here, addressing their influences on the Al nanohoneycomb,
we will discuss this point in Section 5.
3. Elastic constants

3.1. Young's modulus in 1-direction and Poisson's ratio ν12

The total deformation in 1-direction includes two components:
the bending deflection of inclined cell walls (B & C) and the axial
deformation of horizontal cell wall A (Fig. 2(a)). On the one hand,
according to the classical Euler formula for pure-bending struc-
tures, the modified result by surface effect of the cell wall is
expressed as [27]:Dew″¼H0w′′, where w(x) is the cell wall deflec-
tion, and De ¼Dð1þ 6lin=tÞ [5,32], in which De is effective flexural
rigidity of cell walls, D¼ EWt3=12 is flexural rigidity without
surface effect, and lin ¼ Esur=E with surface Young's modulus Esur

is the materials' intrinsic length [22–24,32]. Then, the differential
equation is solved as, wðxÞ ¼ A1e−kx=k

2 þ A2ekx=k
2 þ A3xþ A4 with

boundary conditions wð0Þ ¼w′ð0Þ ¼w′ðLÞ ¼ 0, w‴ðLÞ ¼ −P1=D
e, in

which k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0=De

q
and P1 ¼ s1WLcos2θ. Substituting the boundary

conditions into wðxÞ, we immediately obtained the four integral
constants:

A1 ¼
P1

2Dek
tanh

kL
2
þ 1

� �
; A2 ¼

P1

2Dek
tanh

kL
2
−1

� �
;

A3 ¼
P1

Dek2
; A4 ¼

−P1

Dek3
tanh

kL
2

and the bending deflection wðxÞ of the cell walls (B & C) is
expressed as

wðxÞ ¼ P1

H0 xþ 1
k
tanh

kL
2
ðcoshðkxÞ−1Þ−1

k
sinhðkxÞ

� �
ð1Þ



Fig. 2. Unit-cell deformations in (a) 1-direction and (b) 2-direction of nanohoneycombs.

Q. Chen et al. / Physica E 53 (2013) 217–222 219
the maximum displacement located at x¼L, and it is formulated as

δb1 ¼
P1L

H0 1þ 1
β

tanh
β

2
⋅ðcosh β−1Þ−sinh β

� �� �
with β¼ kL ð2Þ

On the other hand, the axial displacement of the cell wall A is

δa1 ¼
2P1h
de

ð3Þ

where, de ¼ dð1þ 2lin=tÞ [5] is the effective tensile stiffness of cell
walls, in which d¼ EA is tensile stiffness without surface effect.
Finally, the total displacement Δ1 is obtained as

Δ1 ¼ δb1cos θ þ δa1 ¼
P1Lcos θ

H0 f 1ðβÞ ð4Þ

where,

f 1 βð Þ ¼ 1þ 1
β

tanh
β

2
⋅ cosh β−1ð Þ−sinh β

� �
þ 4
Ecos θ

h
L

� ��

τ0

t

� �
1

1þ 2lin=t
� �

#

Then, the strain in the 1-direction is calculated:

ε1 ¼
Δ1

hþ Lsinθ
¼ s1WLcos3θ

H0ðh=Lþ sinθÞ
f 1ðβÞ ð5Þ

and the Young's modulus in the 1-direciton is derived:

E1 ¼
s1
ε1

¼ h=Lþ sinθ
cos3θ

⋅2
τ0

t

� �
t
L

� �
f 1ðβÞ−1 ð6Þ

correspondingly, the Poisson's ratio ν12 is also obtained:

ν12 ¼−
ε2
ε1

¼ δb1sinθ=Lcosθ
ðδb1cosθ þ δa1Þ=ðhþ LsinθÞ

¼ ðh=Lþ sinθÞsinθ
cos2θ

⋅
f 2ðβÞ
f 1ðβÞ

ð7Þ
where

f 2ðβÞ ¼ 1þ 1
β

tanh
β

2
⋅ðcosh β−1Þ−sinh β

� �� �

Apparently, f 1ðβÞ4 f 2ðβÞ, the Poisson's ratio ν12 is less than 1 for
regular hexagonal honeycombs of which ν12 is a constant in [33].
This is because the axial deformation is neglected due to its
smallness compared with the bending deflection, when the cell-
wall thickness is small; however, the difference between these two
methods tends to be larger as t=L (or relative density) increases,
which will be shown later.

3.2. Young's modulus in 2-direction and Poisson's ratio v21

Likewise, we find that the displacement of the cell walls under
the 2-direction stress is only contributed by the bending deflection
of the inclined cell walls (B & C), and their boundary conditions are
identical with those of the 1-direction. Then, the displacement δb2
is similar as Eq. (2) but with a different load P2, i.e.,

δb2 ¼
P2L

H0 f 2ðβÞ ð8Þ

where

P2 ¼ s2Wðhþ Lsin θÞsin θ:

so the displacement Δ2 is expressed as

Δ2 ¼ δb2sinθ¼
P2Lsin θ

H0 f 2ðβÞ ð9Þ

and the strain in the 2-direction is calculated:

ε2 ¼
Δ2

Lcosθ
¼ s2WLðh=Lþ sinθÞsin2θ

H0cosθ
f 2ðβÞ ð10Þ

Thus, the Young's modulus in the 2-direciton is derived:

E2 ¼
s2
ε2

¼ cosθ

ðh=Lþ sinθÞsin2θ
⋅2

τ0

t

� �
t
L

� �
f 2ðβÞ−1 ð11Þ

and the corresponding Poisson's ratio ν21 is expressed as

ν21 ¼−
ε1
ε2

¼ δb2cosθ=ðhþ LsinθÞ
δb2sinθ=Lcosθ

¼ cos2θ
ðh=Lþ sinθÞsinθ ð12Þ

Different from Eq. (7), Eq. (12) is the same as that reported in
Ref. [33], and this is due to no axial displacement of cell walls in
the 2-direction. Thus, the regular hexagonal honeycomb is not an
isotropic structure any more, but the reciprocal relationship
E1ν21 ¼ E2ν12 still holds, that is to say, the structure is orthotropic.

3.3. Shear modulus

Deformation of cell walls under shear load in honeycombs is
more complex than those under normal stresses in the two
directions discussed above. The shear deformation includes the
rotation angle ϕABC of the joint of cell walls A, B, C, and the vertical
translation δA of the point a, see Fig. 3. In Fig. 3(a), a, b, c denote the
middle points of the cell walls A, B, C, respectively. At point a, there
is a vertical displacement and rotation, whereas, at points b, c, only
rotation exists, because of the structural anti-symmetry; therefore,
the structure could be simplified as Fig. 3(b) and the total
displacement at point a is [33]

Δ12 ¼ ϕABCh=2þ δA ð13Þ
On the one hand, for the rotational angle ϕABC , reconsidering the

expression of wðxÞ but with different boundary conditions of the
cell wall B according to Fig. 3(b), i.e., wð0Þ ¼w ðL=2Þ ¼w″ð0Þ ¼ 0,



Fig. 3. Deformation of cell wall under shear load. (a) Representative element
deformation; (b) simplified structure.

Fig. 4. Unit cell of nanohoneycombs with (a) cylindrical nano-channel and
(b) hexagonal nano-channel.

Fig. 5. Comparison of shear moduli predicted by different methods. Note: The
shear moduli of the nanohoneycombs are normalized by those of the honeycombs
without surface effect.
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w‴ðL=2Þ ¼M=De, where M¼ Sh=4 and S¼ 2s12 WLcos θ, we find
the four integral constants:

A1 ¼ −
M
2De sinh

kL
2

� �−1

; A2 ¼
M
2De sinh

kL
2

� �−1

; A3 ¼ −
M
Dek

⋅
2
kL
;

A4 ¼ 0; thus, wðxÞ is expressed as

wðxÞ ¼ Sh

4H0

sinhðkxÞ
sinhðkL=2Þ−

2
L
x

� �
ð14Þ

furthermore, the rotation angle ϕABC ¼w′ðL=2Þ is obtained:

ϕABC ¼
S

2H0

h
L

� �
β

2
coth

β

2

� �
−1

� �
ð15Þ

On the other hand, the vertical translation δA is calculated from
the existing formula of the cantilever structure [27]:

δA ¼
Sh

2H0 cosh β′ 1−
1
β′
tanh β′

� �
with β′¼ h

2L
β ð16Þ

then, substituting Eqs. (15) and (16) into Eq. (13), the shear
displacement is obtained:

Δ12 ¼
Sh

2H0

h
2L

β

2
coth

β

2

� �
−1

� �
þ cosh β′ 1−

1
β′
tanh β′
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ð17Þ

thus, the shear strain is calculated:

γ ¼ Δ12

ðhþ Lsin θÞ=2 ¼ s12
h
L ⋅cos θ
h
L þ sin θ

 !
t
τ0

� �
L
t

� �
gðβÞ ð18Þ

where,

gðβÞ ¼ h
2L

β

2
coth

β

2

� �
−1

� �
þ cosh β′ 1−

1
β′
tanh β′

� �� �

Finally, the shear modulus is obtained:

G12 ¼
s12
γ

¼
h
L þ sin θ
h
L ⋅cos θ

 !
τ0

t

� �
t
L

� �
gðβÞ−1 ð19Þ
4. Example and discussion

4.1. Comparison of shear modulus of nanohoneycombs with different
channel shapes

In this part, we compare our prediction on the shear modulus of
the present structure (Fig. 4(a); θ¼ 30o and h=L¼ 1) with that of the
other similar structure (Fig. 4(b)) presented in the literature [14] under
the identical conditions of constant porosity 0.2 (or relative density
0.8), side length L and out-of-plane depth of unit cells (Fig. 4). Other
parameters are set as below: First, according to the porosity 0.2 and
the geometry in Fig. 4(a), we obtain the relationship between the side
length L and cell-wall thickness t, i.e., L¼ 1:045t; likewise, for the
structure in Fig. 4(b), we find L¼ 2:459R; if the pore radius R varies
from 1 nm to 30 nm and then t from 2.353 nm to 70.593 nm; second,
we also use the data of Al presented by Miller and Shenoy [5], namely,
the bulk Young's modulus E of Al is 89.392 GPa, the surface Young's
modulus Esur on surfaces of [1 1 1] and [1 0 0] crystal orientations for
plates are 5.1811 N/m and −7.9146 N/m, respectively, and the surface
residual stress τ0 on the two surfaces are 0.9096 N/m and 0.5682 N/m,
respectively.

In Refs. [14,24], the surface elasticity is only considered; therefore,
the influence of the surface residual stress can be evaluated thanks to
the inclusion of both the surface elasticity and surface residual stress
by comparing the two cases. The results are reported in Fig. 5.

Fig. 5 shows that surface effect on the shear modulus decreases as
the cell-wall thickness t increases. The present method agrees very
well with the result from Ref. [24], and this explains that the influence
of the surface residual stress is very weak in the elastic deformation of
nanohoneycombs when the relative density is 0.8. Moreover, the
prediction is comparable to the result from Ref. [14], even though our
result shows a slightly greater influence on the [1 1 1] orientation
surface; this is induced by their different geometries and other effects
(such as the shear effect in the bending of cell walls). Moreover, it is
noted that the negative surface Young's modulus softens the shear
behavior of the nanohoneycomb.

4.2. Competition between surface elasticity and surface residual
stress

Let us continue the previous example, but the cell-wall thickness t
varies from 5 nm to 29 nm, and the side length L is maintained as a
constant (100 nm); thus, the corresponding relative density ranges



Fig. 6. Comparisons of four elastic constants on the surfaces of [1 1 1] and [1 0 0] orientations, influenced by only surface elasticity (the black and red curves) or both surface
elasticity and surface residual stress (the green and blue curves). (a) Young's moduli in the 1-direction; (b) Young's moduli in the 2-direction; (c) Poisson's ratio ν12; (c) Shear
moduli. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Q. Chen et al. / Physica E 53 (2013) 217–222 221
from 0.06 to 0.31. Like the comparison of the shear modulus, two cases
are considered: One is only considering the surface elasticity, and the
other both surface elasticity and surface residual stress, the results are
reported in Fig. 6, in which EG and GG are Young's modulus and shear
modulus calculated by the Gibson's method, respectively [33].

In Fig. 6, an increase in cell-wall thickness generally results in a
decrease in the surface effect on the four independent elastic
constants. If the surface elasticity is only considered, the normalized
Young's moduli and shear modulus are enhanced for positive Esurand
reduced for negative Esur as cell-wall thickness decreases, which
again softens the mechanical behavior of the nanohoneycomb. E1=EG
of the two surfaces approach a value less than one due to the
inclusion of the axial deformation of horizontal cell walls (black and
red lines in Fig. 6(a)); whereas, E2=EG or G12=GG approach unity,
which is the result by the Gibson's method (black and red lines in
Fig. 6(b and d)). However, the surface elasticity does not influence the
Poisson's ratio ν12 at all (black line and red circle in Fig. 6(c)).

On the other hand, if the surface elasticity and surface residual
stress are both included, the surface residual stress plays much
more important roles when the cell-wall thickness is less than
15 nm (or relative densityo0.17); this is because the cell walls B &
C in Fig. 3 are similar as one-end clamped and one-end guided
structures, and in this case, the distributed force induced by the
surface residual stress produces an opposite deflection to that by
the external normal load, thus, δbi (i¼1,2) decreases and τ0

strengthens nanohoneycombs; so, the two Young's moduli are
improved and greater τ0 results in greater Young's modulus (green
and blue lines in Fig. 6(a and b)); different from the surface effect
on the other constants, the surface effect on the Poisson's ratio is
much weaker (green and blue lines in Fig. 6(c)); for the shear
modulus, different from the cell walls B & C, the cell wall A is
equivalent as a cantilever structure, so the distributed force
produces a consistent deflection to that by the external shear
load, therefore, δA increases and τ0 softens nanohoneycombs
(green and blue lines in Fig. 6(d)). In the end, the elastic constants
influenced by both surface elasticity and surface residual stress on
the same crystal surface tend to those influenced only by the
surface elasticity when cell-wall thickness increases after 15 nm.

Therefore, we can conclude that the surface residual stress
dominates the surface effect when to15 nm (or relative densi-
tyo0.17), while the surface elasticity dominates when t415 nm
(or relative density40.17). At this point, it is different from the
conclusion by Feng et al. [16], which reported that the surface
residual stress has a weaker influence on the effective elastic
constants than the surface elasticity; this is because in that work
they considered a large constant relative density 0.35 (40.17 [16]),
and the weaker influence of the surface residual stress is also
observed in Fig. 5 under the larger constant relative density 0.8
(40.17).

4.3. Elastic modulus of Al nanohoneycombs

Here, we again use the above set of surface properties, the
variable t, constant L. Addressing the four independent elastic
constants, the comparison between the results of nanohoney-
combs with both surface elasticity and surface residual stress and
macrohoneycombs (Gibson's method) are reported in Fig. 7 versus
relative density. For the two Young's moduli and shear modulus in
Fig. 7(a, b, d), the normalized values can be referred to those in
Fig. 6(a, b, d). In Fig. 7(c), the results of the Poisson's ratio predicted
by different methods are compared, and the present method
considering the axial deformation of horizontal cell walls is
between the FEM [34] (Timoshenko beam theory) result and unity,
which is formulated by the Gibson's method (Euler beam theory).



Fig. 7. Young's moduli of nanohoneycombs in the (a) 1-direction and (b) 2-direction on the surfaces of [1 1 1] and [1 0 0] orientations; (c) comparison of Poisson's ratio by
different methods, note that FEM (TB) denotes Timoshenko-beam element in finite element method; (d) shear moduli of nanohoneycombs on the surfaces of [1 1 1] and
[1 0 0] orientations.
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5. Conclusion

In this paper, we have calculated the elastic constants of nanoho-
neycombs influenced by the surface effect (surface residual stress and
surface elasticity), and different from the Gibson's method, the axial
deformation of the horizontal cell wall is included. The result shows
that the regular hexagonal honeycomb is not isotropic but orthotropic,
and as the cell-wall thickness t increases, the discrepancy of the
Young's moduli in two directions increases. Meanwhile, the surface
effect plays a vital role when t is a few nanometers; when to15 nm,
the surface residual stress dominates the surface effect on the elastic
constants of metal Al nanohoneycombs, otherwise (i.e. t415 nm), the
surface elasticity does. Finally, the nanohoneycomb and present theory
could be important and useful in the design of nanosieves or other
nanodevices.
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