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Abstract

This paper presents a novel experimental–theoretical method to investigate the strength of structures having complex
geometries, which are commonly used in microelectromechanical systems (MEMS). It involves the stretching to failure
of freestanding thin-film membranes, in a fixed–fixed configuration, containing micro-fabricated sharp cracks, blunt
notches and re-entrant corners. The defects, made by nanoindentation and focused ion beam milling, are characterized
by scanning electron microscopy (SEM). MEMS structures made of ultra-nano-crystalline-diamond (UNCD), a mate-
rial developed at Argonne National Laboratory, were investigated using this methodology. A theory to predict the
strength of microstructures with defects is proposed and compared with experimental results. It is shown that fracture
mechanics general concepts can be applied with confidence in the design of MEMS. An experimental methodology and
formulas to predict strength of MEMS structures possessing defects of various geometries are provided.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Significant research has been conducted on the design, modeling, and manufacturing of microelectrome-
chanical systems (MEMS). However, long-term durability of various MEMS devices requires a fundamen-
tal understanding of the failure characteristics of micro-fabricated structures such as fracture strength and
fracture toughness.
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Several micro-scale testing techniques have been employed to investigate fracture toughness or fracture
strength of thin films. Ballarini et al. (1997) and Kahn et al. (2000) used polysilicon fracture specimens inte-
grated with on-chip fabricated electrostatic comb-drive actuators. The devices were tested using DC elec-
trostatic actuation and the displacements were measured using an optical microscope. The measured
fracture toughness, KIC, of polysilicon showed a median value of 1.1 MPam

1/2, which was found to be inde-
pendent of polysilicon microstructure. The advantage of this technique is that the entire fracture experiment
is performed at the chip level, thus, eliminating difficulties associated with attaching the specimens to exter-
nal loading sources.
Sharpe et al. (1999, 2001) and Jackson et al. (2002), have performed microsample tension tests to study

the fracture strength of SiC and polysilicon. The specimens were manufactured by surface micromachining
with one end attached to the silicon wafer. The gage section and the grip end of the specimen were released
by etching away the underlying sacrificial layer. A probe was attached to the grip end of the specimen,
which was pulled by a piezoelectric translation stage. Force was measured with a 100 g load cell and overall
system displacement was measured with a capacitance probe. The strain was measured directly on the spec-
imen via laser interferometry. Young�s modulus was extracted from the force–displacement curve by com-
paring the records of specimens of different lengths to eliminate the need to know the system stiffness. Using
this technique, the strength of several thin film materials were determined. For polysilicon, the measured
strength was found to be highly dependent on the film deposition parameters. A strength of 1.56±0.25
GPa was measured for the Cronos fabrication, 2.85±0.40 GPa for the Sandia process, and 2.04±0.30
GPa for the SMI process. When measuring the fracture toughness of polysilicon the specimens were
micro-fabricated with notches of 1.0 lm in radius. They reported a critical stress intensity factor, KIC, of
1.4 MPam1/2 associated with the finite radius of the notches. Thus, the measurement does not represent
the true fracture toughness of the material as we will show in the theoretical section of this paper.
Chasiotis and Knauss (2000, 2001), performed tensile tests, using a sample geometry and loading stage

similar to the one used by Sharpe et al. (1999, 2001, 2002), to investigate the mechanical strength and frac-
ture toughness of polysilicon films. A ‘‘dog-bone-shaped’’ tensile micro-specimen was employed, with test
section dimensions of length = 400 lm, width = 50 lm, and thickness = 2 lm, attached at one end to a sil-
icon substrate. Displacements were imposed to the specimen via an inchworm actuator that was powered
by a personal computer and a dedicated controller. The controller provided a measurement of the system
displacement with an accuracy of 4 nm for every single step of the actuator. The induced load was measured
by a miniature tension/compression load cell with an accuracy of 10�4 N and maximum capacity of 0.5 N.
In this case, the local deformation field was monitored directly on the specimen surface by means of AFM
digital image correlation. These researchers measured a fracture strength of 1.3±0.1 GPa for the Cronos
process, which is slightly smaller than the one measured by Sharpe et al. (1999, 2001, 2002). The stress
intensity, KI, was obtained by this method using perforated specimens. As a result, fracture toughness
was not measured but rather the materials strength at stress concentrations (Chasiotis and Knauss, 2002).
Espinosa et al. (2003a,b,c, 2004) employed a membrane deflection experiment to investigate the mechan-

ical properties of thin film materials. This technique offers certain advantages such as the loading procedure
is straightforward and accomplished in a highly sensitive manner while preserving the independent meas-
urement of stress and strain (Espinosa et al., 2003a). The simplicity of sample micro-fabrication and ease of
handling make this technique suitable for routine on-chip screening of material properties. As an example,
the strength and the material properties of UNCD thin films were investigated. This material was developed
at Argonne National Laboratory and possesses unique properties particularly suitable to the development
of novel MEMS/NEMS devices (Gruen, 1999; Espinosa et al., 2003b). The measured fracture strength of
UNCD is in the range of 4.2±0.9 GPa and follows the Weibull distribution (Espinosa et al., 2003c). The
high stiffness (960 GPa Young�s modulus) and brittleness of UNCD make the measurement of its facture
strength and toughness particularly challenging. However, the MDE experimental approach is capable of
providing sufficient force and elongation to ensure crack propagation.
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The problem in evaluating the strength of MEMS structures is further complicated by the fact that they
are often designed with blunt notches and re-entrant corners. Furthermore, sharp cracks can result as a
consequence of the micro-fabrication process or as a consequence of pre-existing defects. Accordingly,
the evaluation of the strength for micro-structures containing sharp cracks, blunt notches and re-entrant
corners, seems to be a fundamental step towards an optimal MEMS design.
On the other hand, from a different viewpoint, the understanding of such phenomenon would allow for

corrections on the experimentally obtained stress-intensity factors, when a perfectly sharp crack instead of a
real micro-fabricated blunt notch is assumed. Usually, we can assume an ideal crack (with an atomic tip
radius) if it is obtained by propagating pre-exiting defects. Nevertheless, a blunt notch has to be considered
if a crack-like defect is obtained in the specimen by a cut (e.g., ion beam cutting).
The evaluation of the influence of the radius of the blunt notch, in the fracture behavior at the micro-

scale is not trivial as emphasized by Drory et al. (1995). They propose a blunt correction due to the notch
radius by equating the asymptotic stress fields of a blunt notch and of a sharp crack. Unfortunately, as
mentioned by the same authors, an uncertainty remains in the selection of the radial distance use to equate
the two stress fields. Therefore, only a conservative estimate is suggested.
Recently, Espinosa and Peng (2004) presented a technique to investigate the fracture toughness of

MEMS materials and thin films. These authors illustrated the technique by identifying the fracture tough-
ness of UNCD. They found that when the fracture initiates from sharp cracks, produced by nanoindenta-
tion, the fracture toughness was found to be 4.5 MPm1/2. When the fracture initiates from blunt notches
with radii about 100 nm, machined by focused ion beam (FIB), the mean value of the apparent fracture
toughness was found to be 6.9 MPam1/2. Using, as a first approximation, the blunt notch correction pro-
posed by Drory et al. (1995), they fit their experiment results and showed that a better estimate is found
when the mean value of q/2x = 1/2 is employed (Espinosa and Peng, 2004).
Since it is clear that a better understanding of the effect of blunting is needed, in this paper we present an

analysis aimed to evaluate in a rigorous way this effect, as well as that of re-entrant corners. In the later,
formulas developed by Carpinteri and Pugno (2000, 2003) are employed. We begin the paper by describing
the experimental approach. A description of tested MEMS specimens, made of UNCD, is provided. A sec-
tion follows in which the strength of micro-tensile specimens, with and without sharp cracks, notches and
re-entrant corners are reported. Interpretation of these experiments using fracture mechanisms theory is
then discussed. We next show by employing fracture mechanics ideas that a well-defined criterion for pre-
dicting the strength of MEMS structures, having a variety of defects, exists. We conclude with some general
remarks and comments on the applicability of the experimental–theoretical approach.
2. Experimental procedure

In order to investigate the strength of freestanding thin films, with and without defects, the membrane
deflection experiment is used (Espinosa et al., 2003a). The technique involves the stretching of freestanding
specimens in a fixed–fixed configuration with submicron thickness. The specimen geometry utilized in this
study resembles the typical dog-bone tensile specimen but with an area of additional width in the specimen
center designed to prevent failure at the point of application of a line load (see Fig. 1a). The suspended
membranes are fixed to the wafer at both ends such that they span a bottom view window (Fig. 1b). In
the areas where the membrane is attached to the wafer and in the central area the width is varied in such
a fashion to minimize boundary-bending effects. These effects are also minimized through large specimen
gauge lengths. Thus, a line load applied in the center of the span results in direct stretching under large dis-
placements of the membrane, in the two areas of constant width, in the same manner as in a direct tension
test. In this study, UNCD membranes with nominal dimensions of length LM = 329 lm, widthW = 20 lm,
and thickness, t = 0.8 lm, were tested (see Fig. 1b). The films are grown directly onto a Si substrate using a



Fig. 1. (a) Schematic of membrane geometry indicating the various parameters used to define the tested specimen dimensions; where
E = 100 lm, R = 40 lm, W = 20 lm, N = 20 lm, L = 200 lm, S = 34.64 lm, M = 10 lm, D = 657.84 lm. (b) Scanning electron
microscopy (SEM) image of UNCD membrane showing characteristic dimensions. LM is half the membrane span and W is the
membrane width.
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microwave plasma chemical vapor deposition technique involving a novel CH4/Ar chemistry (Gruen,
1999). The specimen structures were micro-fabricated using standard techniques as described by Espinosa
et al. (2003b,c, 2004).
The testing procedure involves applying a line-load, with a nanoindenter, at the center of the spanning

membrane (see Fig. 2a). Simultaneously, an interferometer focused on the bottom side of the membrane
records the deflection. The result is direct tension of the gauged regions, in the absence of strain gradients,
with load and deflection being measured independently.
The data directly obtained from the experiment is processed to arrive at a stress–strain signature for the

membrane. The load in the plane of the membrane is found as a component of the vertical nanoindenter
load by the following equations:
tan h ¼ D
LM

and PM ¼ PV

2 sin h
; ð1Þ
where (from Fig. 2a) h is the angle of deflection, D is the displacement, LM is the membrane half-length, PM
is the load in the plane of the membrane, and PV is the load measured by the nanoindenter. Once PM is
obtained at each time t, the Cauchy stress, r(t), can be computed from:
rðtÞ ¼ PM
A

; ð2Þ
where A is the cross-sectional area of the membrane in the gauge region.
The interferometer yields vertical displacement information in the form of monochromatic images taken

at periodic intervals (see Fig. 2b). The relationship for the distance between fringes, d, is related through the
wavelength k of the monochromatic light used (see Fig. 2c). Assuming that the membrane is deforming uni-
formly along its gauge length, the relative deflection between two points can be calculated, independently of
the nanoindenter measurements, by counting the total number of fringes and multiplying by k/2. Normally
part of the membrane is out of the focal plane and thus all fringes cannot be counted. By finding the



Fig. 2. (a) Schematic of the experimental setup. Parameters are defined in the text. (b) Monochromatic images of the bottom side of the
membranes showing a membrane under load which has developed fringes. (c) A schematic representation showing the relationship
between distance between fringes (d) and vertical displacement. The distance between fringes is taken at the central points of the dark
bands.

N. Pugno et al. / International Journal of Solids and Structures 42 (2005) 647–661 651
average distance between the number of fringes that are in the focal plane of the interferometer, an overall
strain, e(t), for the membrane can be computed from the following relation:
eðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðk=2Þ2

q
d

� 1: ð3Þ
An important aspect of the UNCD specimens was that each membrane bowed upward as processed, i.e.,
out of the wafer plane. This is believed to result from the difference in thermal expansion coefficients, be-
tween the film and Si wafer, such that cooling down from the deposition temperature, approximately 800
�C, resulted in the Si shrinking more than the UNCD film. The film curvature is indicative of a gradient of
residual stresses across the film thickness. The out-of-plane profile was obtained through interferometric
measurements (Espinosa et al., 2003b). From this profile the height above the plane of the wafer, Dc,
was determined. Also, the profile was used to measure the actual length of the curved membrane, which
is used to determine the downward deflection, Ds, corresponding to the beginning of uniform specimen
straining, see Fig. 3.
Next, we focus our attention on the two theoretically well-known limit cases of structures without

defects, and structures with perfectly sharp cracks. They represents the limit case of micro-fabricated



Fig. 3. Optical interferometric images of the UNCD specimen gauged region at 3 different time intervals with corresponding side-view
schematic showing the profile of the membrane. Dc is the vertical displacement at the middle of the span and Ds is the deflection at
which uniform straining of the membrane begins.
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structures with defect length tending to zero (only pre-existing defects exist) and of micro-fabricated
structures with blunt notch radius or corner angle tending to zero (sharp crack). The most general cases
will be treated in subsequent sections.
3. Strength for MEMS structures without (micro-fabricated) defects

The stress–strain behavior obtained in a typical test considering a MEMS structure without micro-
fabricated defects is shown in Fig. 4. The slope of the plot represents the elastic modulus, which was found
to be 956 GPa. Modulus varied from 940 to 970 GPa for all the specimens tested (Espinosa et al., 2003b).
Failure stress varied in a statistical manner. The fracture stress was in the range of 2.92–5.03 GPa (Espinosa
et al., 2003c).
UNCD is a brittle material displaying a perfectly linear stress–strain response from zero strain to frac-

ture, as we can see from Fig. 4. Lack of ductility or yielding leads to large data scatter in strength. The
fracture strength of UNCD is determined by a combination of material microstructure and a variable
defect size. As the fracture toughness is not variable, the variation must come from a variation in the size
of the most critical defect. This is the reason why it is not possible to define the strength of UNCD as a
constant material property but rather in terms of statistical parameters.
   

 

 

Fig. 4. Stress–strain curve representative of the behavior exhibited by a typical UNCD sample.



0

10

20

30

40

50

60

70

80

90

100

2 2.5 3 3.5 4 4.5 5 5.5
Failure Stress (GPa)

%
 P

ro
ba

bi
lit

y 
of

 F
ai

lu
re

Experiment Data

Theoretical curve

Fig. 5. Weibull plots for UNCD samples (Espinosa et al., 2003c).
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It is known that the strength distribution of brittle materials does not follow a Gaussian distribution.
Failure is described by the widely used Weibull cumulative function (Lawn, 1993; Sullivan and Lauzon,
1986; Nemeth et al., 2001). Weibull statistics allows examination of strength values in the sense of failure
probability at a certain stress level. The Weibull distribution is defined as
P fðV Þ ¼ 1� exp � V
V 0

rf � rt
rn

� �m� �
; ð4Þ
where rf is the failure stress, rn is the stress scaling parameter, in other words, it is the nominal stress that
would result in 63%, (1�e�1) Æ 100%, of the specimens to fail, m is the Weibull modulus, which can be iden-
tified from a log–log plot of the probability of failure, rt is a threshold stress (in our case set to zero), and V0
is the reference volume on which the Weibull parameters are identified. Here V/V0 is assumed to be unity
since the volume of the specimens was constant. For the validity of this formula in the context of MEMS
materials see Peng et al. (2004). The Weibull plot is based on data obtained on a representative population
of samples and, where possible, tested in a manner similar to those MEMS structures would experience dur-
ing their lives. Thirty-four UNCD membranes were tested under the same environment using the proposed
technique, with a higher than 97% success rate of failure.
The results of the fracture strength measurements are shown in Fig. 5 (Espinosa et al., 2003c). From

plots of probability of failure and strength, the scaling parameter rn was identified as 4.18 GPa. The exper-
imental data fit the Weibull distribution fairly well.
4. Strength of MEMS structures with sharp cracks

The fracture toughness, KIC, can be determined using the membrane deflection technique by testing spec-
imens possessing sharp cracks (Espinosa and Peng, 2004). The corresponding strength can be predicted for
other geometries according to fracture mechanics. Sharp cracks were achieved by placing a Vickers indenter
(with a 200 g load) near the specimen prior to its releasing. Although the indent was placed on the silicon
substrate (see Fig. 6a) the radial crack initiated at one of the corners propagated into the UNCD specimen.
The length of the crack was measured using high resolution scanning electron microscope (SEM), see Fig.
6b. In this configuration (edge crack), fracture toughness can be computed from the following equations
(see Murakami, 1987):



Table
Fractu

a (lm)

2.1
3.9
5.8
6.6
8.2

Fig. 6. (a) Optical image showing a sharp crack induced from an indent on the silicon substrate before the specimen was released, (b)
SEM micrograph of the crack after the specimen was released. Crack length was measure from SEM images.
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KIC ¼ rf
ffiffiffiffiffiffi
pa

p
f

a
W

� �
; ð5Þ

f
a
W

� �
¼ 1:12� 0:23 a

W

� �
þ 10:55 a

W

� �2
� 21:72 a

W

� �3
þ 30:41 a

W

� �4
; ð6Þ
where rf is the failure stress, a is the length of the crack and W is the width of the gauge region and
a/W 6 0.6.
Five specimens with sharp cracks were tested under the same condition except that the crack length, a,

varied from 2.1 to 8.2 lm. The ratio of the crack length and specimen width, a/W, has a value in the range
of 0.11–0.45. The fracture toughness of the UNCD membranes was computed using Eq. (5) and an average
value of KIC = 4.5±0.25 MPam

1/2 was obtained (Table 1). It is clear that KIC is independent of crack
length. This confirms that only the region of the material immediately in front of the pre-crack affects
the material toughness.
5. Crack propagation criterion

We start by assuming the discrete crack propagation criterion suggested by Novozhilov (1969). Accord-
ingly, a crack will propagate not when the stress reaches a critical value but when its integral along a finite
length d0 reaches a certain threshold. Consequently, the Novozhilov�s brittle fracture criterion should be
written in the following integral form:
Z

d0

ryðxÞdxP ru d0; ð7Þ
where ru is a strength characteristic value for the material without defects (the ideal strength of the material
at the characteristic size of d0); ry(x) represents the stress-field ahead of a defect with generic shape. This
1
re toughness measurement of MEMS structures

W (lm) rðexpÞ
f (GPa) KIC (MPam

1/2), Eq. (5)

18.1 1.35 4.1
18.2 0.95 4.4
18.0 0.80 4.8
18.2 0.71 4.5
18.1 0.75 4.4
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criterion has been recently applied by Carpinteri and Pugno (2000, 2003) to predict the strength in struc-
tures containing re-entrant corners.
6. Strength of MEMS structures with blunt notches

For a blunt crack tip the asymptotic stress field is (Creager and Paris, 1967):
ryðxÞ ¼
KIffiffiffiffiffiffiffiffi
2px

p 1þ q
2x

� �
; ð8Þ
where the origin of the reference system is in the middle between the tip and the center of the circular blunt
notch, so that x > q/2, where q is the root notch radius.
Drory et al. (1995) propose, comparing Eq. (8) and the case of a sharp crack (q!0), to obtain an equiv-

alent stress-intensity factor for blunt notches, namely,
K 0
IC ¼ 1þ q

2x

� �
KIC ð9Þ
in which the variable x, as suggested by the same authors, is not well defined. They propose as a limit the
‘‘reasonable assumption’’ of q/2x!1. According to this limit case, they propose to estimate the real stress-
intensity factor of the material KIC simply dividing by a factor of 2 the measured stress-intensity factor K

0
IC

obtained from experiments on structures with blunt notches. On the other hand, focusing on the strength
prediction, this assumption implies that crack blunting increases the component strength by a factor of 2.
On the other hand, by substituting the stress field (8) in Novozhilov�s criterion, Eq. (7), we obtain the

following condition for brittle crack propagation, as

Z q=2þd0

q=2
ryðx;KI ¼ K 0

IC; qÞdx ¼
ffiffiffiffiffiffiffi
2d0
p

r
K 0
ICffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q
2d0

q ¼ rud0: ð10Þ
For a sharp crack q/2d0!0 Eq. (10) becomes
Z d0

0

ryðx;KI ¼ KIC; q ¼ 0Þdx ¼
ffiffiffiffiffiffiffi
2d0
p

r
KIC ¼ rud0: ð11Þ
By comparing Eqs. (10) and (11), the asymptotic correction for q/2d0!0 on the stress-intensity factor
due to the presence of blunting is obtained, i.e.,
K 0
IC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

2d0

r
KIC; ð12Þ
so that the uncertainty in the value of x, as it is the case in Eq. (8), disappears.
The finite length d0 is a material property and can be obtained (Carpinteri and Pugno, 2000, 2003) from

Eq. (11):
d0 ¼
2

p
K2IC
r2u

: ð13Þ
The ideal strength ru of the material, at the characteristic length of d0, can be estimated from atomistic
numerical simulations. On the other hand, d0 can be obtained by matching two different experimental re-
sults performed on notches with different root radii q, as suggested by Eq. (12). Accordingly, for the tested
UNCD we estimate d0 by employing K 0

IC (blunt notch with q	100 nm of about 6.9 MPam1/2) and KIC
(sharp cracks), of about 4.5 MPam1/2, see Section 4. We have considered the smallest value of q because
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the analysis is based on asymptotic behavior. The corresponding d0 is estimated for the tested UNCD as
dUNCD0 	 37 nm. Furthermore, from Eq. (13) we can estimate the ideal strength of the material at the
characteristic size of d0 as rUNCDu 	 18:6 GPa, which is consistent with the UNCD strength identified by
Espinosa et al. (2003b,c) based on Weibull theory.
Instead of Eq. (5), according to our analysis, the blunt notch equivalent stress intensity factor is given by
K 0
IC ¼ r0

f

ffiffiffiffiffiffi
pa

p
f

a
W

� �
; ð14Þ
where r0
f is the predicted strength in the case of blunting.

It is important to note that this analysis is asymptotic as a consequence of the considered asymptotic
stress-field of Eq. (8). Accordingly for q=2d0 ! 1 it loses its validity, predicting K 0

IC ! 1 and r0
f ! 1.

Practically, the collapse will arise in the ligament zone when the non asymptotic stress field will reach
the ultimate strength of the material, i.e., r0

fA ¼ r�
fAlig, where r�

f (equal to rn defined in Section 3) is the
failure stress for a membrane without additional defects (different from ru as a consequence of the pre-
existing defects); A is the cross-section area of the membrane and Alig is the cross-section of the ligament.
Hence, substituting r0

f ¼ r�
fAlig=A in the ratio between Eqs. (14) and (5) yields:
K 0
IC ¼ KIC

r�
fAlig
rfA

: ð15Þ
As a consequence, the radius of curvature in Eq. (12) must be formally lower than
q�

2d0
¼ r�

fAlig
rfA

� �2
� 1: ð16Þ
Note that q* is a function of crack depth and specimen width. It also takes into account boundary effects.
Hence, the resulting fracture toughness correction, as a function of notch radius q, is shown in Fig. 7.
Considering this limit case, the ratio K 0

IC=KIC could became larger than 2, the limit case assumed by
Drory et al. (1995), as we have experimentally observed (see Section 8). The other limit case of Eq. (12)
is obviously K 0

IC ¼ KIC.
Accordingly, the prediction for the strength in the case of blunt notches is the smaller value between the

following:
r0
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

2d0

r
rf ;

q
q� � 1

� �
; ð17Þ
KIC

K’IC

ρ ρ∗

Fig. 7. Stress-intensity factor as a function of notch radius.
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r0
f ¼ r�

f

Alig
A

;
q
q�  1

� �
: ð18Þ
Eqs. (12) and (15) represent the corresponding corrections for the stress-intensity factor. The limit case
of a sharp crack can be obtained for q = 0.
7. Strength of MEMS structures with re-entrant corners

A similar analysis can be performed for re-entrant corners (Carpinteri and Pugno, 2000, 2003). Williams
(1952), proved that, when both the notch surfaces are free, the symmetrical stress field at the notch tip of a
corner angle c is
ryðxÞ ¼
K�
I ðcÞ

ð2pxÞaðcÞ
; ð19Þ
where K�
I ðcÞ is a generalized stress-intensity factor (note that its physical dimension changes with a, from a

fracture toughness to a stress) as well as the power a of the stress singularity is provided by the eigen-
equation:
ð1� aÞ sinð2p � cÞ ¼ sin½ð1� aÞð2p � cÞ� ð20Þ

and ranges between 1/2 (when c = 0) and zero (when c = p).
Substituting the stress field around the vertex of the corner (19) into Eq. (7), the condition for brittle

crack propagation is obtained. Note that for the limit case of c = 0 we obtain the same relation of Eq.
(13) for the fracture quantum.
The problem here is more complex than the previous case of blunt tips, as a consequence of the changing

in the physical dimensions of K�
ICðcÞ. In spite of this, the result is very simple and considers automatically

the non-asymptotical effects as shown by Carpinteri and Pugno (2000, 2003). The result can be summarized
as follows:
r00
f ¼ r2aðcÞf r�

f

Alig
A

� �1�2aðcÞ
ð21Þ
from which the strength r00
f for (MEMS) structures with re-entrant corners can be predicted. In Eq. (21), rf

and r�
f are the strength corresponding to the two well-defined limit cases (i) that of an ideal crack of the

same length (c = 0), (ii) and that of a simple cross-sectional reduction. Eq. (21) has been experimentally
validated at the macro-scale by Carpinteri and Pugno (2000, 2003), starting from the experimental analysis
performed by Carpinteri (1987).
According to Eqs. (5) and (14), in which 0 is replaced by 00, the correction for the stress-intensity factor is
K 00
IC ¼ KIC

r�
fAlig
rfA

� �1�2aðcÞ
: ð22Þ
Eq. (22) predicts the same limit cases discussed in the previous section. The limit case of a sharp crack
can be obtained for a = 1/2.
8. Experimental assessment

A strength comparison between experimental results and theoretical predictions, based on Eqs. (17) and
(18), for blunt notches, and on Eq. (21), for re-entrant corners, is given in Tables 2–4. The results are also



Table 2
Strength of MEMS structures as a function of the crack length (q	100 nm)
a (lm) W (lm) rðexpÞ

f (GPa) Experimental r0
f (GPa) Theory with
notch correction Eq. (17)

rf (GPa) Theory without notch
correction Eq. (5)

1.0 16.2 3.23 3.16 2.01
1.7 16.3 2.69 2.57 1.63
1.7 16.5 2.46 2.52 1.63
2.0 17.1 2.27 2.38 1.53
2.1 16.5 2.41 2.30 1.48
2.2 16.2 2.28 2.28 1.46
2.3 16.4 2.19 2.24 1.43
2.4 16.7 2.14 2.19 1.39
2.7 16.8 2.08 2.03 1.32
3.5 16.3 1.78 1.82 1.18
3.5 16.2 1.88 1.84 1.17
3.7 16.9 1.68 1.76 1.13
4.0 16.5 1.67 1.71 1.09
4.1 16.4 1.73 1.65 1.06
4.9 16.7 1.53 1.50 0.95

Table 3
Strength of MEMS structures as a function of the notch radius

q (nm) a (lm) W (lm) rðexpÞ
f (GPa)
Experimental

r0
f (GPa) Theory with
Notch correction Eq. (17)

r0
f (GPa) Theory with
notch correction Eq. (18)

rf (GPa) Theory without
notch correction Eq. (5)

100 2.4 16.2 2.04 1.94 (2.98) 1.25
140 2.2 16.1 2.25 2.29 (3.02) 1.32
170 2.1 16.1 2.50 2.28 (3.04) 1.23
220 1.4 16.3 3.52 (3.54) 3.20 1.74
230 1.2 16.2 3.55 (3.93) 3.24 1.90
490 2.2 16.2 2.85 (3.73) 3.02 1.32

Table 4
Strength of MEMS structures as a function of the re-entrant corner angle

c (degree) a (lm) W (lm) rðexpÞ
f (GPa)
Experimental

r00
f (GPa) Theory on
re-entrant corners Eq. (21)

rf (GPa) Theory on
sharp-cracks Eq. (5)

16 8.0 18.2 0.39 0.36 0.38
79 5.4 17.6 0.73 0.70 0.60
92 10.2 18.1 0.25 0.21 0.26
101 3.0 17.5 1.45 1.35 1.06
120 10.1 18.3 0.41 0.43 0.23
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compared to the trivial assumption of perfectly sharp cracks. In these tables, the influences of the crack
length a, of the blunt notch radius q, and of the angle c of the re-entrant corner are respectively analyzed.
Several optical images of the micro-fabricated defects are reported in Table 5. In Table 3, the theoretical
strength prediction is the smallest (not within brackets) between the two values as given by Eqs. (17)
and (18). Note that the experimental cases for which we have found r0

f > 2rf indicate a departure from
the correction proposed by Drory et al. (1995). Even if a clear scattering emerges from the experimental
results, due to the statistics of pre-existing defect distribution (e.g., according to Weibull), as well as to
the irregular geometry of the micro-fabricated defects, the analysis clearly shows that the corrections here
derived cannot be neglected for an optimal MEMS structural design.



Table 5
SEM images of several micro-fabricated defects

Table 6
Estimated mechanical parameters for the tested UNCD

UNCD: grain size (nm) �5
d0 (nm) 37
r�
f (GPa) 4.2

ru(d0) (GPa) 18.6
aeq (lm) 0.3
E (GPa) 950
KIC (MPam

1/2) 4.5
GIC (N/m) 20
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By means of Eq. (5), the equivalent length of pre-existing (crack-like) defects in the UNCD material can
be estimated. For r�

f ¼ 4:2 GPa, stress corresponding to 67% probability of failure, a defect length aeq	0.3
lm is obtained. The fracture energy of the UNCD can be simply estimated as GIC ¼ K2IC=E, and it appears
close to 20 N/m. In Table 6 the estimated set of mechanical properties for the tested UNCD are also
reported.
9. Conclusions

We have proposed a novel experimental–theoretical method to investigate the strength and fracture of
MEMS structures having complex defect geometries. We illustrated the applicability of the method by test-
ing UNCD; although the method is general and applicable to many other materials. The main material
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properties have also been estimated, showing that the proposed corrections for the stress-intensity factor
cannot be neglected even for very small notch radius. In particular, a good agreement between theoretical
prediction and experimental measurements of strength was obtained when varying crack length, notch ra-
dius and re-entrant corner angles were examined. This seems to suggest that the proposed analysis can be
applied with confidence in the optimal structural design of MEMS.
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