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The aim of this article is to present a technique capable of evaluating the dynamic
response of a beam with several breathing cracks perpendicular to its axis and subjected to
harmonic excitation. The method described is based on the assumption of periodic
response and that cracks open and close continuously. In this way, a non-linear system of
algebraic equations can be de"ned and solved iteratively, with the advantage over direct
numerical integration of the equation of motion of being easier and therefore faster to
compute.

In this article, the vibrational response to harmonic force of a cantilever beam with cracks
of di!erent size and location is analyzed using this &&harmonic balance'' approach and the
results are compared with those obtained through numerical integration.

( 2000 Academic Press
1. INTRODUCTION

Currently, the research community is demonstrating considerable interest in techniques
which, by processing the dynamic response of the structure under test, can identify its
damaged state. During the past few years, this progress has led to the development of a large
number of methods most of which, however, have the limitation of being only valid for
linear structures [1, 2].

Various studies performed over the last decade have indicated that a beam with
a breathing crack, i.e., one which opens and closes during oscillation, shows non-linear
dynamic behaviour because of the variation in the structural sti!ness which occurs during
the response cycle. This phenomenon was observed initially by Gudmunson [3] through
experimental tests aimed at correlating the location and extent of a crack with the variation
in natural frequencies.

The main result obtained by several researchers is that the shift in natural frequencies due
to a breathing crack cannot be determined through mathematical models if it is assumed
that the crack is always open during the motion of the beam. In particular, a beam with
a breathing crack has natural frequencies which are intermediate between natural
frequencies of the undamaged and of the faulty beam with crack always open [4].
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It is clear that in these cases vibration-based inspection methods based on the
hypothesis that the structure under analysis behaves linearly may lead to incorrect
conclusions regarding the state-of-damage. Correspondingly, it would seem appropriate to
study the non-linear dynamic behaviour of beams with breathing cracks in order to
investigate the potential for developing more generally applicable vibration-based
inspection techniques.

1.1. PREVIOUS STUDIES

Several researchers have addressed the problem of a beam with a transverse closing crack
from the analytical standpoint. Zastrau [5] demonstrated the bilinear behaviour by using
the "nite element method to determine the dynamic response of a simply supported beam.
Qian et al. [6] observed that the di!erence between the forced vibration amplitude of
cracked and uncracked beams becomes lower if the model of a breathing crack is
considered. Ibrahim et al. [7] applied a method based on a lumped parameter model to
analyze the frequency response function of a cantilever beam and in reference [8] performed
some experimental tests to validate their method. Collins et al. [9] used direct numerical
integration to study forced vibrations of a beam with breathing crack.

In reference [10] Friswell and Penny studied the non-linear behaviour of a beam with
a closing crack and analyzed its forced response to harmonic excitation for a frequency near
the "rst natural frequency of the beam, such that it can be considered as a simple
one-degree-of-freedom (d.o.f.) system with bilinear sti!ness. The analysis of frequency
response functions and of the response to harmonic excitation, obtained through numerical
integration, highlighted the presence of peaks in the response spectrum at integer multiples
of the excitation frequency, a common property for non-linear systems. Similar results were
obtained by Ruotolo et al. [11] by performing numerical integration of the equation of
motion and using a "nite element model of the beam, as well as by Shen and Chu [4], who
tried to determine the variations in the response spectrum due to the presence of a breathing
crack. In a following article [12], the latter authors used two square-wave functions
representing the modi"cation in sti!ness, at low-frequency excitation, during the beam
motion in order to reduce calculation times.

The non-linear behaviour of beams with breathing cracks has been also highlighted by
Ruotolo et al. [11, 13, 14], Crespo et al. [15] and Pugno et al. [16] where the concept of
higher order frequency response functions [17] has been applied to characterize the
non-linearity due to the closing crack.

In reference [18] Ostachowicz and Krawczuk used the harmonic balance method to
determine the response of a cantilever beam with closing crack taking advantage of the
great reduction of calculation times permitted by this technique with respect to numerical
integration. However, their approach to solve the problem does not permit one to consider
either the out-of-phase relation between forcing term and structural response, or the fact
that the non-linear nature of the system may cause appreciable distortion in the response
waveform due to the higher harmonic components which in turn in#uence the activation of
the crack.

In almost all the previous articles it is assumed that the crack opens or closes
instantaneously while there is experimental evidence that the passage from closed to open
crack and vice versa happens in a smoother way. This was demonstrated by Clark et al. [19]
during some studies on the e!ect of crack closure on the accuracy of di!erent
non-destructive testing predictions of crack size. By using four-point bending specimens
and measuring the crack opening, they obtained the relation opening}closing displacement



Figure 1. Clark's relation for opening}closing displacement versus applied load (after reference [2]).

RESPONSE OF A BEAM WITH BREATHING CRACKS 751
versus applied load shown in Figure 1, which highlights that it should be necessary to pay
great attention to the crack closure e!ect.

1.2. PROJECT SCOPE

Starting from this body of previous studies, research was initiated using the work by
Ostachowicz and Krawczuk [18] as a basis for considering a beam with one continuously
open crack, i.e., where sti!ness varies linearly between two extremes assumed with the crack
fully open and with the beam undamaged. In reference [16] it was shown that higher order
harmonics arise in the frequency response which highlight the structure's non-linear
behaviour.

In the literature surveyed, relatively few studies have dealt with the direct and/or the
inverse problem of multi-cracked structures with always open cracks, for example references
[20}25]; moreover, there is apparently a complete lack of documented research regarding
multi-cracked structures with breathing cracks.

In order to address this aspect, the aim of the work documented in this article has been to
extend the method discussed in reference [16], to the general case of several breathing
cracks and, subsequently, by introducing a smooth crack closure.

As in reference [16], the dynamic response of the beam under analysis is determined by
applying a numerical technique based on the harmonic balance, this being considerably
more rapid to compute than by using direct numerical integration to solve a non-linear
system of algebraic equations iteratively. The article is completed by numerical examples
which permit the comparison of the dynamic response evaluated through the numerical
integration with that obtained by applying the method presented.

The method proposed can be considered applicable to systems such as the cracked beam
in which the extent of non-linear dynamic behaviour, which is related to both the
characteristics of the system and the level of excitation applied, is relatively weak; as
a consequence the vibrational response spectrum to harmonic forcing is assumed to contain
only super-harmonic and not sub-harmonic components. In this context, despite the fact
that in reference [26] the authors have reported the occurrence of period doubling albeit &&a
relatively rare phenomenon'', the existence of sub-harmonics in the response spectrum
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would indicate an excitation level so high as to promote relatively strong non-linear
behaviour which the method presented in this article does not attempt to address.
Correspondingly, a simple model which takes into account only #exural motion and can
deal with super-harmonics has been used, as in most of the articles cited previously.

2. EQUATION OF MOTION

2.1. DETERMINATION OF THE CRACK FUNCTION

In the analysis described in this section, a cantilever beam with M breathing cracks is
considered. Discretizing the structure by using Euler-type "nite elements with two nodes
and two degrees of freedom per node, the following equation of motion is obtained:

[M]MqK N#[D]Mq5 N#[K]MqN#
M
+

m/1

[DK(m)] f (m) (MqN)MqN"MPN, (1)

where [M] is the mass matrix, [D] the damping matrix, [K]#+M
m/1

[DK(m)] the sti!ness
matrix of the undamaged beam and [DK(m)] is half of the variation in sti!ness introduced
when the mth crack is fully open; the sti!ness matrix for a cracked element can be evaluated
according to references [6, 27]. Moreover, MPN is the vector of the applied forces, MqN is
the vector containing the generalized displacements of the various nodes (translations
and rotations) and f (m) (MqN), which can be called crack function, assumes values in the range
!1 to 1.

With the approach followed, the crack function has the important role of representing the
transition from closed to open crack and vice versa. By assuming that this transition is
instantaneous and hence discontinuous, f (m)(MqN) corresponds to a step function and has
the sign of the curvature of the mth cracked element. When all cracks are fully closed, this
function is positive for each element, f (m) (MqN)"1 for every crack, and the global sti!ness
matrix of the structure corresponds to that of the undamaged beam, i.e., to
[K]#+M

m/1
[DK(m)]. With the opposite curvature, the mth crack is considered to be fully

open, f (m) (MqN)"!1 and the global sti!ness matrix is [K]!+M
m/1

[DK(m)]. As
a consequence, it is clear that being the sti!ness matrix of the system

[K@(MqN)]"[K]#
M
+

m/1

[DK(m)] f (m) (MqN),

a function of the generalized displacements of the beam, equation (1) is non-linear.
Under these assumptions, it can be observed that the crack function will have

a square-wave form versus time with frequency u, and the procedure proposed by
Ostachowicz and Krawczuk in reference [18] can be derived.

According to this model, in which the transition from open to closed crack and vice-versa
takes place instantaneously, the applied force and displacement of the free end have
a piecewise linear relation. However, since Clark et al. [19] demonstrated with experiments
that this relation tends to be smooth rather than discontinuous, the assumption that a crack
is either completely open or completely closed is probably somewhat of a slight
over-simpli"cation. Consequently, in this investigation the relation between applied force
and displacement of the free end is assumed to be parabolic, such that the crack function
depends linearly on the curvature of the cracked element, i.e., the crack is not considered to
be only either fully open or fully closed, but the intermediate con"gurations with partial
opening can also be taken into account.
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The simplest way to de"ne the crack function such that it ranges from !1 to #1 during
the oscillation of the beam is to de"ne it as the ratio between the instantaneous curvature
and the maximum curvature on the cracked element during the motion.

The curvature is proportional to the di!erence between the rotations at the ends of
a cracked element:

D/(m)"q
mk
!q

mh
, (2)

where m
k
and m

h
denote, respectively, the rotations at the right and the left ends of the mth

cracked element. As a consequence, the crack function has the following expression:

f (m)(MqN)"
D/(m)

max DD/(m) D
"K

m
(q

mk
!q

mh
). (3)

It is important to note that the denominator depends on the properties of the excitation
force such that it cannot be set a priori.

2.2. SOLUTION OF THE EQUATION OF MOTION

The di$culty in solving the di!erential equation (1) is mainly due to the dependence of
function f (m) on MqN that makes this equation non-linear.

Assuming that the dynamic response is periodic, the well-known method of harmonic
balance can be employed to solve equation (1). Correspondingly, the solution of each ith
degree of freedom of the beam can be approximated by

q
i
"

R
+
j/1

(A
ij
sin jut#B

ij
cos jut), (4)

where R is the number of harmonics taken into consideration. To apply harmonic balance,
it is necessary to express as a Fourier series both the solution, represented by equation (4),
and the non-linear term Mg(m) (MqN)N"f (m)(MqN)MqN in equation (1). In this way, the
coe$cients of cos jut and sin jut can be equated and the di!erential equation (1) can be
transformed into a set of non-linear algebraic equations which can be solved using an
iterative procedure.

Accordingly, from equation (3), the generic element of Mg(m)(MqN)N can be written as

g(m)
i

(MqN)"K
m
(q

mk
!q

mh
)q

i
. (5)

Since the terms of MqN are of period ¹"2n/u and the components of g(m)
i

(MqN) will also have
the same period, the following expression is valid:

P
T

0

Dg(m)
i

(t) D dt(#R, (6)

ensuring that the components of Mg(m) (MqN)N can be developed in a Fourier series and
approximated by

g(m)
i

(MqN)"
R
+
j/1

(C(m)
ij

sin jut#D(m)
ij

cos jut), (7)
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with

C(m)
ij

"

2

¹ P
T

0

g(m)
i

sin( jut) dt, (8)

D(m)
ij

"

2

¹ P
T

0

g(m)
i

cos( jut) dt. (9)

Introducing equations (4) and (5) into equations (8) and (9) the following relations hold:

C(m)
ij

"

2

¹ P
T

0

K
mA

R
+
l/1

(A
mkl

sin lut#B
mkl

cos lut)!
R
+
l/1

(A
mhl

sin lut#B
mhl

cos lut)B]

]
R
+
l/1

(A
il
sin lut#B

il
cos lut)sin jutdt (10)

and

D(m)
ij

"

2

¹ P
T

0

K
mA

R
+
l/1

(A
mkl

sin lut#B
mkl

cos lut)!
R
+
l/1

(A
mhl

sin lut#B
mhl

cos lut)B]

]
R
+
l/1

(A
il
sin lut#B

il
cos lut)cos jutdt. (11)

This expression can be simpli"ed by using the product-to-sum trigonometric formulas and
by considering the properties of orthogonality between trigonometric functions, thus
enabling a more compact expression for both C(m)

ij
and D(m)

ij
to be obtained:

C(m)
ij

"

K
m

2 A +
j1,j2:j1`j2/j

(z
1
#z

2
)# +

j1, j2:j1~j2/$j

$(z
1
!z

2
)B, (12)

D(m)
ij

"

K
m

2 A +
j1,j2:j1`j2/j

(!z
3
#z

4
)# +

j1, j2:j1~j2/$j

$(z
3
!z

4
)B, (13)

where

z
1
"(A

mkj1
!A

mhj1
)B

ij2
,

z
2
"(B

mkj1
!B

mhj1
)A

ij2
,

z
3
"(A

mkj1
!A

mhj1
)A

ij2
,

z
4
"(B

mkj1
!B

mhj1
)B

ij2
. (14)

At this stage, it is possible to apply the harmonic balance procedure to equation (1): on
both sides of the equation, the corresponding sine and cosine terms for each one of the
R harmonics taken into consideration can be &&balanced'', such that R systems of algebraic
equations are obtained:

C
[K]!j2u2[M]

ju[D]

!ju[D]

[K]!j2u2[M]DG
MA

j
N

MB
j
NH#

M
+

m/1
C
[DK(m)]

[0]

[0]

[DK(m)]DG
MC(m)N

j
MD(m)

j
NH

"MF
j
N, j"1,2,R, (15)
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where

MA
j
NT"MA

1j
,2,A

nj
NT,

MB
j
NT"MB

1j
,2,B

nj
NT,

MC(m)
j

NT"MC(m)
1j

,2,C(m)
nj

NT,

MD(m)
j

NT"MD(m)
1j

,2,D(m)
nj

NT. (16)

and MF
j
N is a null vector when j'1.

It can be observed that coe$cients C
ij

and D
ij

of equation (15) are non-linearly related to
A

ij
and B

ij
through equations (12) and (13), making the entire system of equations

non-linear: as a consequence, the problem cannot be solved through a simple inversion
procedure. Instead, it is possible to use an appropriately converging iterative procedure
which consists in:

1. determining a "rst estimate for variables A
ij

and B
ij
. In order to determine the

response at just one excitation frequency, the estimate can be obtained by evaluating
coe$cients A

ij
and B

ij
related to the undamaged beam. Otherwise, to evaluate the

dynamic response over a range of excitation frequencies, a "rst estimate at frequency
u

k
can be obtained as the value of the coe$cients for the frequency u

k~1
;

2. using coe$cients A
ij

and B
ij

to determine K
m

(see equation (3)) and coe$cients
C(m)

ij
and D(m)

ij
through equations (12) and (13);

3. determining a new value for unknowns A
ij

and B
ij

from equation (15);
4. repeating steps (2) and (3) until the desired precision is achieved and coe$cients A

ij
and B

ij
are determined;

5. applying equation (4) to determine the components of the approximate vector which
satis"es the non-linear equation (1).

3. NUMERICAL RESULTS

For numerical simulation the beam considered is 0)7 m long with square cross-section
0)02 m]0)02 m, discretized into 10 "nite elements, of steel with a Young's modulus of
2)06]1011 N/m2 and a density of 7850 kg/m3. Modal damping f

n
of 0)02 was considered

and the excitation is a concentrated harmonic force at the free end.
Table 1 lists three cases analyzed for two cracks with di!erent depth and position

(distance from the clamped end) present. In correspondence with the dependence on the size
and position of the cracks, the e!ective non-linear behaviour of the beam increases from
cases 1 to 3.

In order to demonstrate that the method presented is capable of determining a good
approximation of the dynamic response of the beam with several breathing cracks,
a comparative analysis was performed with results obtained through direct numerical
integration (this second solution was obtained extending the code described in reference
[11] to deal with, at least, two cracks).

Nevertheless, it should be borne in mind that, whereas direct integration [11] would
permit the dynamic response to be simulated when each crack in the beam introduces
a bilinear sti!ness, the main assumption of this work is that the transition from closed to
open crack, and vice versa, is smooth rather than discontinuous and therefore the results
obtained using the two approaches are likely to be slightly di!erent.



TABLE 1

¹he three considered cracked beams

1st Crack 2nd Crack

Case no. Size (mm) Pos. (mm) Size (mm) Pos. (mm)

1 4 50 8 500
2 6 50 8 500
3 6 50 8 350

Figure 2. Comparison of the free-end dynamic response for case no. 3 obtained with 1, 2, 3 and 4 terms in the
series: ) ) ) ) ) , R"1; ) } ) }, R"2; } }, R"3; **, R"4.
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The harmonic balance approach has the advantage that the stationary, periodic
component of the dynamic response is identi"ed directly, while for direct numerical
integration it is necessary to compute, and then e!ectively discard, the initial transient part
of the response.

In all these simulations the sinusoidal forcing is of 10 N amplitude with frequency,

u"

1

2
u

0
"

1

2

2u
u
u(i)

d
(u

u
#u(i)

d
)
, (17)

i.e., one-half of the bilinear frequency of the beam, evaluated according to reference [4] and
where u

u
is the "rst natural frequency of the undamaged beam and u(i)

d
is the "rst natural

frequency of the beam damaged according to the ith case. In several investigations it has
been shown that u

0
/2 is the frequency at which the non-linear behaviour of the beam with

breathing crack is clearer.
Figure 2 allows one to determine the appropriate number R of terms in the series given in

equation (4), with the conclusion that three or maximum four terms are su$cient to obtain
an accurate evaluation of the dynamic response at the free-end of the beam for case 3.



Figure 3. Comparison of the free-end dynamic response obtained with numerical integration and with harmonic
balance for case no 1: **, harmonic balance; )} ), numerical integration.

Figure 4. Comparison of the free-end dynamic response obtained with numerical integration and with harmonic
balance for case no 2: **, harmonic balance; )} ), numerical integration.
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Figures 3}5 show the comparison between time histories of the displacement of the
free-end evaluated through numerical integration (dash}dot line) and the method proposed
in this study (continuous line). These "gures highlight that the technique proposed in
this study provides very accurate results, particularly for the case with the least



Figure 5. Comparison of the free-end dynamic response obtained with numerical integration and with harmonic
balance for case no 3: **, harmonic balance; )} ), numerical integration.

Figure 6. Normalized error for all the harmonics considered in the response for case no 1:**, "rst order; }s},
second order; , third order; , fourth order.
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signi"cant non-linear behaviour corresponding to a crack-depth/beam-height ratio of 20%,
nevertheless considerable in terms of sti!ness reduction.

Figures 6}8 are related to each one of the previous comparisons and demonstrate that
the normalized error decreases quickly by increasing the number of iterations, i.e., the
proposed procedure is convergent. The normalized error for the jth harmonic of the



Figure 7. Normalized error for all the harmonics considered in the response for case no 2:**, "rst order; }s},
second order; , third order; , fourth order.

Figure 8. Normalized error for all the harmonics considered in the response for case no 3:**, "rst order; }s},
second order; , third order; , fourth order.
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excitation frequency and at the kth iteration was evaluated as

D(k)
j
"

KKG
MA

j
N

MB
j
NH

k

!G
MA

j
N

MB
j
NH

k~1
KK

KKG
MA

j
N

MB
j
NHKK

k~1

. (18)



Figure 9. Comparison of results for step-sine simulation obtained with numerical integration and with
harmonic balance for case no 1: **, harmonic balance; } ) } )}, numerical integration.

Figure 10. Comparison of results for step-sine simulation obtained with numerical integration and with
harmonic balance for case no 2: **, harmonic balance; } ) } )}, numerical integration.
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In order to illustrate the good agreement between results obtained through numerical
integration and the new procedure proposed, over the excitation frequency range
[u

12
u

P
], a step-sine test was simulated: for each of the test cases, a simulation was

performed to determine the harmonic component of the steady dynamic response at the
free-end of the beam at each excitation frequency u3[u

12
u

P
] and calculating the



Figure 11. Comparison of results for step-sine simulation obtained with numerical integration and with
harmonic balance for case no 3: **, harmonic balance; } ) } )}, numerical integration.
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response envelope function de"ned as ratio between the maximum steady-state levels
attained by the displacement response and excitation force signals.

Results of simulated step-sine are shown in Figure 9}11 for all the considered cases,
demonstrating that the procedure gives good results over an extended range of excitation
frequencies.

4. CONCLUSIONS

This article presents a technique aimed to evaluate the dynamic response of a beam with
multiple breathing cracks to an applied sinusoidal force. The approach used makes it
possible to reach a closely approximate solution for the beam equation of motion while
a signi"cant reduction (by approximately 100 times) of the computation times is obtained in
comparison with direct numerical integration.

The obtained results clearly demonstrate that the presence of breathing cracks in a beam
results in non-linear dynamic behaviour which gives rise to superharmonics in the spectrum
of the response signals, the amplitude of which depends on the number, location and depth
of any cracks present.

As a consequence, the fast evaluation of the dynamic response of the structure under
analysis permitted by the proposed method opens new possibilities in the development of
an appropriate damage detection method of level 2 and/or 3 (according to Rytter's
classi"cation [2]).
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