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DE NOVO CARBON NANOMATERIALS: OPPORTUNITIES AND
CHALLENGES IN A FLAT WORLD
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This Focus Issue of the Journal of Materials Research
contains articles in the broad area of de novo carbon
nanomaterials. As an emerging area of research, the exploi-
tation of this class of materials has set off enormous
opportunities for innovation.1 More than 20 years ago, in
the 1990s, carbon nanotubes were studied for their remark-
able material properties (optical and mechanical, and
others).2–5 More recently, the field has exploded to in-
corporate numerous applications for graphene,6–11 which
can now be fabricated in large scales.12 Similarly, additional
two-dimensional carbon allotropes, such as graphdiyne,
and three dimensional nanocarbon architectures, such as
graphene-nanotube architectures and graphene foam, have
emerged and invoke remarkable properties of their
own,13–15,21 several of which have been manufac-
tured.16,22–24 In the past, controlling the architecture of
a material was limited to the macroscale, but we are
beginning to see the merger of the concepts of material and
structure.

Carbon nanomaterials are exciting because of their
remarkable diversity of mechanical, physical and chem-
ical properties, which derive from the different allotropes
including nanotubes, fullerenes, diamond, as well as
graphene and its allotropes, with consequent applications
in different fields such as nanoelectronics, optoelectronics,
biosensors, drug delivery, energy conversion and storage.
The paradigm of building complexity from a single type of
atom (carbon with a variety of chemical bonds/structures it
can form) by creating structural diversity at different scales
is reminiscent of the means by which biological systems
create functional materials, where the paradigm is to rely
on simple amino acids to create a stunning diversity of
proteins and related materials17 (Fig. 1). The systematic
exploitation of this concept of “hierarchical structuring” in

the world of carbon materials is only at its beginning, but
holds great promise.
A specific challenge is the linking of scales from the

nano to the macro via the creation of hierarchical
architectures using carbon nanomaterials as building
blocks. Here, novel material properties emerge because
of the synergistic interaction across the scales, where the
properties of the union is more than the sum of its
parts.17–20 This strategy provides access to a very broad
set of functional properties that include switchability,
tunability and mutability in the design of de novo carbon
nanomaterials. Applications of such multi-scale engi-
neered materials range from nanoelectronics to medicine
to novel construction materials and could have wide
implications to facilitate new technological innovations
at the interface of materials science, engineering and
biology.25–30 This Focus Issue offers a snapshot of the
state of the art in the manufacturing, synthesis, and
modeling of carbon nanomaterials and related hierarchical
architectures with understanding of energy, mechanical
and physical properties.
Overall, twelve articles are featured in this Focus Issue,

representing both experimentation and modeling. Topics
include the growth of novel carbon nanostructures com-
prising hierarchical architectures of graphene flower-like
morphologies of graphene sheets, and the presentation
of new carbon nanotube materials. Such de novo carbon
materials facilitate new technological innovations at the
interface of materials science, engineering, and biology.
Innovative approaches are described for fabricating energy
storage devices such as supercapacitors, which are designed
for very high power density applications. Supercapacitors
offer a broad spectrum of applications for various power
and energy requirements, and they are designed for large
numbers of rapid charge and discharge cycles.
The combination of mechanical, thermal and physical

properties for three-dimensional nanocarbon architectures
is presented and discussed in several articles. Hierarchical
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architectures based on carbon nanomaterials are used in
an application of pillared graphene nanostructures that
provide exceptional thermal transport characteristics, show-
casing a possible realization of this concept. These and
other examples demonstrate that the manufacturing of such
materials is not merely a theoretical concept, but holds real
promise to change the way we think about materials design
and incorporates a true bottom-up approach.

This collection of papers can only provide a brief
overview of current materials innovations and issues being
addressed, but will hopefully stimulate much further re-
search activity. We are thankful to all authors and reviewers
who contributed in the development of this Focus Issue,

and hope that readers will enjoy the research and discussion
presented. We also acknowledge the staff at the Materials
Research Society and Cambridge University Press for their
dedication and support.
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