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It is well known that hierarchical structure is an important feature in biological materials to

optimise various properties, including mechanical ones. It is however still unclear how these

hierarchical architectures can improve material characteristics, for example strength. Also,

the transposition of these structures from natural to artificial bioinspired materials remains to

be perfected. In this paper, we introduce a numerical method to evaluate the strength of fibre-

based heterogeneous biological materials and systematically investigate the role of hierarchy.

Results show that hierarchy indeed plays an important role and that it is possible to ‘‘tune’’ the

strength of bio-inspired materials in a wide range of values, in some cases improving the

strength of non-hierarchical structures considerably.
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1. Introduction

It is known that many biological materials and organisms

display fascinating physical and mechanical properties, which

have up to now been hard to replicate in artificial materials

and systems. One of these is the ability to combine excep-

tional strength and toughness, which occurs for example in

nacre, bone and dentine (Espinosa et al., 2011; Pugno, 2006;

Wegst and Ashby, 2004), or the smart adhesion which is found

in spiders and geckos (Autumn et al., 2000; Autumn and

Peattie, 2002; Foelix, 1996; Tian et al., 2006). An important

feature underlying these properties is thought to be material

structure and hierarchy (Fratzl and Weinkamer, 2007; Lakes,

1993). A prime example of this is spider silk, whose
hierarchical structure ranges from nanostructure to macro-

structure and consists of an amorphous network of chains and

b-sheet crystals constituted by poly-(Gly–Ala) and poly-Ala

domains (Ackbarow et al., 2007; Keten et al., 2010). Molecular

dynamics and atomistic simulations have shown how the

specific structure and bonding at molecular level affects

macroscopic properties like strength and toughness (Bratzel

and Buehler, 2012; Keten et al., 2010; Nova et al., 2010).

Aside from spider silk, a great number of biological materials

are inherently structurally hierarchical. The hierarchical struc-

ture of tendon, taken from Riley (2005) is shown in Fig. 1a.

Another example is the case of bone, where variability at the

nanometre level lies in the shape and size of mineral particles,

at the micron level in the arrangement of mineralised collagen
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fibres into lamellar structures, and beyond in the inner archi-

tecture, the porosity and the shape of the bone. Various studies

show the dependence of the mechanical properties of bone on

all these parameters (Currey, 2002; Gibson et al., 1995; Launey

et al., 2010; Rho et al., 1998; Weiner and Wagner, 1998). Other

biological systems that have been studied to assess the role of

hierarchy are tendons (Puxkandl et al., 2002), protein materials

(Gao, 2006), Gecko adhesion (Yao and Gao, 2006), tissue growth

(Cranford and Buehler, 2011).

Given a hierarchical organisation, various designs are possi-

ble, by altering the type and arrangement of the components at

different levels. Hierarchy and functional grading frequently

lead to variable mechanical properties at different length scales,

i.e. overall mechanical properties are often quite different from

those of the constituents (Lakes, 1993; Pugno, 2006), and many

natural materials can be considered as an equivalent of

artificial composite materials. For example, stiff biological

materials are often composites with the smallest components

mostly in the nanometre range (Gao and Ji, 2004). In the case of

plants or insect cuticles, a polymeric matrix is reinforced by

stiff polymer fibres, such as cellulose or keratin (Vincent, 1999),

and in the case of bone or dentin even stiffer structures are

obtained using a fibrous polymeric matrix reinforced by hard

carbonated hydroxylapatite particles (Currey, 1999).

One possible hypothesis is therefore that the exceptional

mechanical behaviour of biological materials is due to two

essential elements: hierarchy and material heterogeneity. To

verify this conjecture, a number of theoretical models which

include both these elements have been formulated, including

molecular dynamics or atomistic simulations (Buehler et al.,

2009; Currey, 1999, 2003; Gao and Ji, 2004; Pugno, 2006). A

simplified numerical approach is the fibre bundle model (FBM)

which has been extensively studied during the past years

(Pradhan et al., 2010). This model consists of a set of parallel

fibres having statistically distributed strengths. The sample is

loaded parallel to the fibre direction, and the fibres fail if the

load exceeds their threshold value, with the load carried by the

broken fibre being redistributed among the intact ones. The

equal load sharing (ELS) formulation is most often adopted,
Fig. 1 – (a) Hierarchical structure of tendon (from Riley (2005

multiscale simulations.
whereby after each fibre break the stress is equally distributed

on the intact fibres, neglecting stress concentrations in the

vicinity of failed regions. Based on this model, we developed a

hierarchical formulation of the FBM (‘‘HFBM’’) and used it to

calculate the space elevator cable strength including the role of

defects (Pugno et al., 2008). With this model we also studied the

strength and toughness of nanotube-based composites, starting

from the properties and volume fractions of the fragile and

ductile constituents (Bosia et al., 2010). In recent work, we

addressed the issue of the synergy between hierarchy and

material mixing to enhance the mechanical performance of

composites, finding evidence that some hierarchical configura-

tions lead to an improvement with respect to the non-

hierarchical case (Pugno et al., 2012; Bosia et al., 2012) An

important numerical study of damage evolution in hierarchical

FBMs was also recently carried out by Mishnaevsky (2011).

However, despite the recent advances in this field, a systema-

tic study addressing the role of pure hierarchy (independent of

the specific material system it refers to), its interaction with

material heterogeneity, and their effect on macroscopic

mechanical properties is still missing. In this paper, we there-

fore wish to begin such a systematic study, and investigate the

possibility of tuning and optimising the strength of hierarchical

fibre bundles composed of different fibre types as a function of

hierarchy and distribution of different fibre types.

The paper is structured as follows: in Section 2, we

introduce the numerical model used to calculate the strength

of hierarchical fibre bundle architectures in composite mate-

rials and the evaluation procedure; in Section 3, we present

the results of calculations and their discussion; finally, con-

clusions and outlook are given.
2. Hierarchical fibre bundle model

2.1. Model implementation

As mentioned above, a hierarchical fibre bundle model

(HFBM) was adopted for simulations. The model used here
)) and (b) schematisation of the hierarchical procedure in
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is related to that proposed by Bosia et al. (2008) and Pugno

et al. (2008). As with all FBMs, the individual fibres have

randomly-assigned statistically-distributed strengths, in

our case according to the 2-parameter Weibull distribution

(see Fig. 2), which is described by the following equation

(Weibull, 1939, 1951):

P sð Þ ¼ 1�e
� s

s0

� �m

ð1Þ

The model is based on an equal-load-sharing (ELS) FBM

approach, replicated in a hierarchical scheme at various length

scales (‘‘levels’’) to predict from statistical considerations the

mechanical behaviour of different hierarchical architectures.

Also, in order to model heterogeneous fibrous media, the fibres

of each bundle can assume different mechanical properties.

The k-th fibre type is characterised by a Young’s modulus Ek,

length lk, cross-sectional area Ak, and Weibull-distributed frac-

ture strengths, the latter characterised by a scale parameter s0k

and shape parameter mk. The various types of fibres combine in

forming bundles, with complex mechanical behaviour emer-

ging from the mechanical properties and arrangement of the

constituent fibres. The specimen’s stress–strain behaviour is

determined by imposing an increasing displacement and ‘‘rup-

turing’’ individual fibres in the bundle (i.e. setting their stiffness

to zero) when their statistically assigned strength is exceeded.

After each fracture event, the load is redistributed uniformly

among the fibres in the same bundle as the fractured one (ELS).

The bundle strength is obtained as the maximum stress value

reached in the simulation before failure, i.e. when all parallel

fibres of the bundle have failed. Since the fibre strengths are

assigned randomly according to the Weibull distribution, results

differ for each simulation, and average trends can be derived

from repeated simulations.

Hierarchy is implemented as described by Pugno et al. (2008)

and Bosia et al. (2008), schematically illustrated in Fig. 3, i.e. the

input mechanical behaviour of a level i¼h�1 ‘‘fibre’’ or sub-

volume is statistically inferred from the output deriving from

hundreds of level h simulations, that of a level i¼h�2 sub-

volume from level i¼h�1 simulations, and so on, down to the

lowest hierarchical level i¼1. Overall, the specimen is modelled

as an ensemble of N1 subvolumes arranged in a bundle. Each of

these subvolumes is in turn constituted by N2 subvolumes,

arranged in a bundle as before. This scheme is applied for h
Fig. 2 – Two-parameter Weibull distribution p(r) for the

strength distribution of level-0 fibres in the FBM: r0 is the

scale parameter and m is the shape parameter (in this case

m¼2).
‘‘generations’’, up to a level h subvolume, which is constituted

Na type ‘‘a’’ fibres, Nb type ‘‘b’’ fibres, and so on.

Since at every single fibre failure the load is only redistributed

among parallel fibres in the ‘‘local’’ bundle, fibre failures in

different bundles ‘‘interact’’ only at the next hierarchical level.

Thus, comparing hierarchical bundles with the same overall

number of fibres and fibre-type percentages, but different

hierarchical architectures, amounts to considering different

stress redistribution schemes in the material. To simplify the

problem, we initially consider only 2 fibre types (a and b,

basically a ‘‘matrix’’ and a ‘‘reinforcement’’ as in composites)

and symmetrical structures (each bundle is split into identical

bundles at each hierarchical level). Thus, to define the overall

bundle, we require the following parameters:

(i): Fixed parameters

N (integer): total number of fibres

Ea and Eb (real number): stiffnesses for fibres a and b

sa and sb (real number): Weibull scale parameters for fibres

a and b

ma and mb (real number): Weibull shape parameters for

fibres a and b

(real number): Fraction of type a fibres, so that (1�a) is the

fraction of type b fibres. 0oao1

(ii): Variable parameters

h (integer): number of hierarchical levels

n1, n2ynh�1 (integers): number of parallel bundles at

hierarchical levels i¼1,2y(h�1)

na (integer): number of parallel bundles of type a fibres at

the last hierarchical level i¼h

nb (integer): number of parallel bundles of type b fibres at

the last hierarchical level i¼h

Clearly, for h41, any configuration with ni¼1 corresponds

to a (h�1) architecture, e.g. a h¼3 configuration with n1¼1,

n2¼2, na¼5, and nb¼10 is identical to h¼2, n1¼2, na¼5, and

nb¼10. Therefore, for h41, only configurations with ni41 are

considered.

The number of free parameters depends on the number of

hierarchical levels of the considered structures. Two equivalent

parameters are the number of type a and b fibres in each bundle

at level h, i.e. Na ¼ aN=n1n2:::ni�1na and Nb ¼ 1�að ÞN=n1n2:::ni�1nb,

respectively. The only constraints on the variable parameters are

thus that Na and Nb must be integers. To be able to satisfy this

constraint, N needs to be sufficiently large, however this

increases computational time, so a compromise is required

(typically N¼102/104). To avoid excessively time-consuming pro-

blems, we can consider initially ho4. Each simulation is repeated

typically 102 times to obtain a mean strength for the considered

structure.

To illustrate the procedure, let us consider an example of a

3-level hierarchical structure (h¼3) with N¼3600 and a¼0.2. The

chosen mechanical parameters are Ea¼1000 GPa and Eb¼10 GPa

for the Young’s moduli, and sa¼100 GPa sb¼1 GPa, ma¼2, mb¼3

for the Weibull scale and shape parameters, respectively. One

possible structure with these parameters is shown in Fig. 3a.



Fig. 3 – (a) Schematisation of an example of a 3-level

hierarchical structure and (b) schematisation of the

corresponding reference non-hierarchical structure.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 1 9 ( 2 0 1 3 ) 3 4 – 4 2 37
Each ‘‘box’’ in the figure represents a fibre bundle. Ni indicates

the number of fibres in each bundle at hierarchical level i. A fibre

bundle at hierarchical level i is equivalent to a single fibre at

hierarchical level i�1. The distinction between fibres a and b

occurs only at the highest hierarchical level i¼h. We observe

here that a rule of mixtures (Gibson, 2007) for this non-

hierarchical configuration yields a strength value of 18.44 GPa.

This is because the rule of mixtures is strictly be valid only in the

case of simultaneous failure of all fibres in the bundle, which

does not occur because of the statistical distribution of the

fibre strengths. Typically, in this study the non-hierarchical

bundle reaches its maximum stress (i.e. strength value) when

about 50% of its constituent fibres (both a and b) have failed,

leading to the cited strength value of about 9.1 GPa. Conse-

quently, the rule of mixtures is only an upper bound for the

mean strength, and does not provide a reliable estimation

method in this case.

The strength of hierarchical structures with the same fixed

parameters (specified above) is thus compared to the non-

hierarchical (h¼0) fibre bundle (Fig. 3b), the ‘‘default config-

uration’’, where all fibres are in parallel (N¼3600, Na¼720,

and Nb¼2880). The latter configuration has a mean strength

of 9.1 GPa. In order to evaluate the variation of bundle

strength with hierarchy level and type, all possible config-

urations are systematically considered for h¼1, 2 and 3. The

number of possible configurations for the given parameters

are 1260 for h¼1, 4690 for h¼2, and 8641 for h¼3. These

numbers are calculated numerically for by determining

all n1 (and n2 if h¼3), na and nb values that give rise

to integer values for Na and Nb. Since single-fibre strengths

are randomly assigned based on a Weibull distribution,

there is some variability in results for each given configura-

tion. Thus, simulations are repeated 102 times for each

configuration and a mean value and standard deviation are

calculated.
2.2. Hierarchical configuration analysis

Regarding the number of possible configurations for given N

and a parameters, some general considerations can be made.

Given an even number N of springs, if we denote by ĥ the

maximum number of levels allowed for N, this number is at

most the total number of prime factors (distinct or not) of N.

On the other hand, the total number T(N) of different

configurations must take into account the number of levels

l¼2yĥ and for each level l all related configurations. As

explained above, at least two fibres must be present in each

bundle at every level, or else the configuration must be

considered as belonging to the lower hierarchical level. T(N)

is significantly larger than N already for a limited value of ĥ.

Indeed, if we consider the case where N is a power of 2

(namely N¼2ĥ) and a¼0.5, then we have ĥ prime factors all

equal to 2 and aN¼ (1�a)N¼2ĥ-1. Hence, as Na and Nb must be

integers, we have a feasible configuration if the product

n1 �n2 �y(nl�1)¼2j for any integer j¼1,y, ĥ�1, where

l¼1,y, j denotes the number of levels of this configuration.

Notice that, as n1 �n2 �y(nl�1) are all integers, they are also a

power of 2. Correspondingly, the total number of different

combinations such that n1 �n2 �y(nl-1)¼2j summed on all

values of l¼1,y, j is exactly 2j. On the other hand, given j,

Na ¼ 2ĥ�j�1=na and Nb ¼ 2ĥ�j�1=nb. Hence na and nb can each

have any value 2x with x¼0, 1,y, ĥ�j�1. That is, for any given j

the number of different combinations of na and nb is given by

(ĥ�j)2. Overall, by summing upon all j¼1,y, hn
�1, we have

that, for N¼2ĥ, T Nð Þ ¼
Pĥ�1

j ¼ 1 2j ĥ�j
� �2

. For instance, for

N¼4096¼213, we have T Nð Þ ¼
P12

j ¼ 1 2j 13�j
� �2

¼48756. When

N is not a power of 2, the analysis becomes more tedious while

the combinatorial explosion is even larger. Just to give a rough

idea on the matter, suppose if one wants to compute the number

of different configurations with a¼0.5, na¼nb¼1 and number of

levels t¼ ĥ: then, when the prime factors of N are all identical

(as for N¼2ĥ), there is just one configuration. On the other hand,

when the prime factors of N are all distinct, for any t-uple of

these different factors assigned to t different levels, there are t!

different assignments of such factors to the levels (namely all

possible permutations of a string with length t) correspondingly

inducing t! different combinations.

Based on these observations, for the chosen value of N, the

required calculation time for hZ4 becomes unacceptable, so that

in further studies global optimisation techniques have to be

implemented to maximise strength or other required properties.
3. Results

3.1. Influence of hierarchy

First, we consider the case where only one type of fibre is

present, i.e. a¼1, to evaluate the influence of hierarchy only.

The mean strength in the non-hierarchical case here is

43.1 GPa. The allowable configurations are evaluated numeri-

cally for the chosen N and h parameters by determining all n1

and na values that give rise to integer values for Na. The

numbering of the configurations is chosen so as to have
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increasing n1 values as first criterion, and increasing na values

as second. Fig. 4 illustrates the calculations for the mean

strength of the various hierarchical configurations for h¼2.

A quasi-periodic behaviour is found, related to the n1 value

(as highlighted in Fig. 4b). Maximum strength is obtained when

maximising na values, for given n1 values, and the overall

maximum strength value is obtained when maximising both n1

and na (49.7 GPa). This corresponds to hierarchical architec-

tures where bundles constituted of a minimal number of fibres

are present, i.e. where minimum stress redistribution occurs in

the material in the fracture process. In 9 cases the non-

hierarchical mean strength is exceeded, although values are

affected by some fluctuations, due to the statistical nature of

the simulations.

3.2. Influence of hierarchy and fibre mixing

Next, to additionally evaluate the influence of material

heterogeneity together with hierarchy, let us consider a

‘‘mixed’’ bundle with N¼3600 and a¼0.2. As explained above,

the strength of various different hierarchical structures is

evaluated for h¼1, 2, 3. It is important to remember that

some statistical variability remains in these data, as simulations

are based on randomly assigned single-fibre strengths for fibre

types a and b. Thus, while calculation results do not provide an

absolute comparison between different configurations, results

are strongly indicative of the relative strength classification.

Mean strength results for h¼1 structures are shown in Fig. 5.

The x-axis represents the considered configurations (again
Fig. 4 – (a) Simulations results for the mean strength of different

first 250 configurations, highlighting the quasi-periodic depend

strength value for the non-hierarchical case.
ordered according to increasing na), whilst the corresponding

strength is plotted on the y-axis in log scale. In this case, the

parameters na and nb are sufficient to define the structure, i.e.

the different configurations are obtained by simply changing the

number of bundles of fibres of type a and b, since only a single

level of hierarchy is present. It is found that in this case hierarchy

does not favour maximal strength, because the maximum value

(8.71 GPa) is obtained for [na¼1, nb¼1] (configuration number

1260 in Fig. 5), which corresponds to the non-hierarchical case.

However, many other ‘‘hierarchical’’ configurations generate

similar strength values, and appear as local maxima in the plot

in Fig. 5. These favourable configurations are those where the

number of parallel fibres is maximised, both for type a and type b

fibres, i.e. when na and nb are small and/or not too dissimilar in

value. Conversely, the minima appear for large values of na or nb,

especially if one of the two exceeds a limiting value (e.g. na or

nb4720). This is highlighted more clearly in Fig. 6, where

strength values are plotted vs. na and nb in a 3-D plot.

From Figs. 5 and 6 it is apparent that the choice of hierarchical

arrangement can lead to a variation in strength of more than an

order of magnitude. These observations lead to the consideration

that appropriate choice of fibre arrangements can provide the

means to obtain tailor-made strength properties, starting from

the same constituents. No strength improvement is obtained

with respect to the non-hierarchical arrangement, proving that

higher-level hierarchy is a key factor in this respect.

Results for h¼2 are shown in Fig. 7. Here, the number of

available configurations is greater (a total of 4690), as a

function of the additional parameter n1. For each given n1
fibre arrangements for h¼2 and a¼1 and (b) close-up on the

ency on the n1 index. The dotted line indicates the mean



Fig. 5 – Simulations results for the mean strength of different fibre arrangements for h¼1 and a¼0.2. The dotted line

indicates the mean strength value for the non-hierarchical case.

Fig. 6 – 3-D plot of mean strength simulations results for

h¼1 and a¼0.2
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value, the same quasi-periodic behaviour as in Figs. 4 and 5 is

observed as a function of n1, with maximum strength values

obtained for simultaneous large values of na and nb and a

similar excursion between maxima and minima. Thus, these

results are consistent with those for a¼1 (single fibre type)

and h¼2, and are in contrast with those for a¼0.2 and h¼1.

This once again proves the importance of hierarchy in

determining a qualitatively different behaviour. Here, for

increasing n1 values, the number of available (na and nb) pairs

decreases, so that the number of evaluated configurations

also decreases and with it the ‘‘period’’ of the oscillations.

The number of configurations with a mean strength greater

than the non-hierarchical case is 28, with a maximum value

of 10.1 GPa, so the introduction of fibre mixing improves the

situation with respect to the single-fibre case.

The results obtained with the chosen fibre fraction a¼0.2

are qualitatively confirmed for different a values. For exam-

ple, the case a¼0.5 is considered (Fig. 8). Clearly, for this a
value, the overall mean strength increases because of the

larger fraction of ‘‘strong’’ fibres (type a), and the mean

strength in the non-hierarchical case is 21.8 GPa. Again, a

quasi-periodic behaviour is obtained in the configuration

space, with the best configurations occurring for various n1

values when maximising na and nb values, which corresponds

to the cases of greatest of ‘‘local’’ stress redistributions. Some

variability remains, due to the statistical nature of the

simulations. A greater number of configurations (66) provide

an improvement with respect to the non-hierarchical case,

with a maximum mean strength value of 26.4 GPa (21%

improvement). Results are compared in Tables 1 and 2 for

h¼2 and a¼0.2 and a¼0.5, respectively.

As shown in Fig. 9, results are more complicated for h¼3.

There remains an oscillating quasi-periodic behaviour as a

function of the hierarchical configuration, with local maxima

and minima, as a function of the n1, n2, na and nb values. As

seen in Table 3, where the 10 most favourable configurations

are reported, the maxima in mean strength can be found in

configurations where at least one of these numbers is max-

imised, in particular the na value, relative to the ‘‘strong’’ type a

fibres, so the analysis for h¼2 is confirmed. Similar to lower-

order hierarchies, maximal attained strength values exceed the

non-hierarchical case (9.1 GPa) in 34 cases, i.e. a smaller

number of cases with respect to h¼2 and a¼0.5. This seems

to indicate that hierarchical structure is all the more effective

for greater high-strength fibre content percentage.
To better analyse these qualitative indications, a systematic

study for higher hierarchical levels needs to be carried out.

For h43, it is not possible to analyse all configurations, due to

computational time, but preliminary data (not reported)

shows that the overall tendency highlighted at h¼1, 2, 3

seems to continue, with a greater span between minimal

and maximal strength values, and the more favourable

configurations being close to those where the number of

parallel fibres at level h is maximised.
4. Conclusions

We have presented a systematic procedure to evaluate the

influence of heterogeneity and hierarchy in fibre bundle

architectures using a Hierarchical Fibre Bundle Model. The

first three hierarchical levels have been investigated and a

considerable strength variability as a function of hierarchical

configuration has been highlighted, with a mean strength

improvement of up to 21% with respect to the non-

hierarchical case. The hierarchical configurations with better

strength characteristics are those favouring the more spa-

tially confined stress redistributions during fracture. The



Fig. 7 – Mean strength simulations results for h¼2 and a¼0.2. The dotted line indicates the mean strength value for the non-

hierarchical case.

Fig. 8 – Mean strength simulations results for h¼2 and a¼0.5.

Table 1 – Examples of configurations providing maxima in mean strength for h¼2 simulations, with a¼0.2.

n1 na nb Strength (GPa)

5 144 144 10.07

2 360 720 10.07

2 360 20 9.81

3 240 12 9.78

2 360 10 9.76

4 180 2 9.75

3 240 192 9.64

3 240 6 9.63

3 240 64 9.57

720 1 1 9.57
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results in this paper are promising for the improvement of

the performance of artificial bio-inspired architectures and

the design of materials with tailor made properties. To derive
more specific and quantitative conclusions, in future a wider

investigation of the parameter space will be carried out. A

greater number of hierarchical levels will be assessed, using



Table 2 – Examples of configurations providing local maxima in mean strength for h¼2 simulations, with a¼0.5.

n1 na nb Mean strength (GPa)

4 450 9 26.4

4 450 2 25.2

6 300 100 24.6

8 225 75 24.4

4 450 45 24.2

6 300 60 24.0

2 900 12 23.9

6 300 300 23.6

6 300 3 23.6

4 450 450 23.5

Table 3 – Maxima in mean strength for h¼3 simulations, with a¼0.2.

Configuration n. n1 n2 na nb Mean strength (GPa)

1192 2 4 90 4 10.8

3020 3 2 120 480 10.3

527 2 2 180 36 10.0

6582 6 2 60 6 9.9

6354 5 144 1 1 9.9

7704 8 90 1 4 9.8

5480 4 180 1 2 9.8

10359 360 2 1 2 9.8

3393 3 4 60 24 9.7

2634 2 360 1 1 9.6

Fig. 9 – Mean strength simulations results for h¼3 and a¼0.2.
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global optimisation techniques to avoid exceedingly cumber-

some calculations and the emphasis will be particularly on

metaheuristics based on local improvement techniques

(Gendreau and Potvin, 2010). Also, other properties will be

investigated, including stiffness and energy dissipation, in

order to address the problem of the simultaneous optimisa-

tion of different material properties (e.g. strength and tough-

ness), which is a commonplace feature in nature but remains

to be effectively achieved in artificial materials.
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Ingeniörsvetenskapsakademiens Handlingar 151, 1–45.

Weibull, W., 1951. A statistical distribution function of wide
applicability. Journal of Applied Mechanics -Transactions
ASME 18, 293–297.

Weiner, S., Wagner, H.D., 1998. The material bone: structure
mechanical function relations. Annual Review of Materials
Science 28, 271–298.

Yao, H., Gao, H., 2006. Mechanics of robust and releasable
adhesion in biology: bottom-up designed hierarchical struc-
tures of gecko. Journal of the Mechanics and Physics of Solids
54, 1120–1146.


	Systematic numerical investigation of the role of hierarchy in heterogeneous bio-inspired materials
	Introduction
	Hierarchical fibre bundle model
	Model implementation
	Hierarchical configuration analysis

	Results
	Influence of hierarchy
	Influence of hierarchy and fibre mixing

	Conclusions
	Acknowledgements
	References




