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Hook-like surface structures, observed in some plant species, play an impor-

tant role in the process of plant growth and seed dispersal. In this study, we

developed an elastic model and further used it to investigate the mechanical

behaviour of fruit hooks in four plant species, previously measured in an

experimental study. Based on Euler–Bernoulli beam theory, the force–

displacement relationship is derived, and its Young’s modulus is obtained.

The result agrees well with the experimental data. The model aids in under-

standing the mechanics of hooks, and could be used in the development of

new bioinspired Velcro-like materials.

1. Introduction
Recently studied hook-like structures on different plant organs, which enhance

their attachment ability, serve two main functions: (i) to support stems in a den-

sely occupied environment [1], and (ii) to interlock with animal fur and feathers

for fruit and seed dispersal [2]. To separate hooks from their supports, a large

force per unit area has to be applied.

Bauer et al. [1] have investigated the structure and mechanical properties of

the climbing plant Galium aparine, which attaches to host plants using its leaves.

In this experimental study, sets of tensile experiments were performed to esti-

mate the contact separation force of single hooks in different load directions.

Additionally, sliding friction of leaves was evaluated, to demonstrate difference

in frictional properties between hooks situated on abaxial and adaxial sides of

leaves. The authors found that differences in the hook position on the leaf sur-

face, their orientations, shapes and sizes resulted in variable friction properties

and pronounced friction anisotropy of both leaf sides. Owing to this, the plant

can hold supports tightly, and thus climb successfully to obtain more sunshine

needed for photosynthesis.

On the surface of some fruits and seeds (later called fruits), hooks are

involved in epizoochorous dispersal [2]. Such fruits can detach easily from

their parental plants and attach to animals by interlocking with the animal

hair or feathers. Using animals as vectors, they are carried to other places

located at distances ranging from tens of metres to tens of kilometres [3,4]

from the parent plant. The dispersal distance depends on the particular

animal vector, hook geometry, density of hooks, properties of hook material

and fruit mass. With such interesting phenomenon, recently, mechanical

measurements on single hooks of Geum urbanum, Agrimonia eupatoria,

Ga. aparine and Circea lutetiana were carried out [2] (figure 1). It was revealed

that the hook size and shape had a great influence on the contact separation

force, generated by hooks during interlocking.

However, addressing how the material properties of fruit hooks influence

their mechanical behaviour, the relationship between them was not defined

quantitatively in theory. In this study, we developed a geometrical model

aiming at prediction of mechanical behaviours of the hooks. First, the entire

hook geometry is subdivided into two parts; for each part, geometry was simpli-

fied and determined by several parameters taken from Gorb & Gorb [2]. Second,

Euler–Bernoulli beam theory was used to derive the force–displacement

relationship and to predict Young’s moduli of hook materials, which describes

hook materials’ stiffness and is an important parameter in the design of

man-made hook fastener materials.

& 2013 The Author(s) Published by the Royal Society. All rights reserved.
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2. Mechanical measurements on single hooks

2.1. Geometrical description of hooks
Fruits of A. eupatoria, C. lutetiana, Ga. aparine and Ge. urbanum

were collected in Tübingen (Germany), and examined using a

light microscopy (Mitutoyo MF U-510 TH) in order to quan-

tify the geometrical parameters of the hooks, such as the total

hook length (ls), the diameter in basal (db) and distal parts

(dd) of a nearly straight rod part, the diameter (dh) and

length (lh) of a curved part as well as its span (sh). These par-

ameters, together with the hook number per fruit, are

reported in table 1 (data from Gorb & Gorb [2]).

2.2. Testing method and results
To study the mechanical properties of fruit hooks, exper-

iments were conducted with individual hooks of each plant

species. A single hook was cut off from the fresh fruits, and

its basal part was glued to a platform P using universal glue

GL (figure 2). The upper (curved) part of the hook was inter-

locked to a steel-wire loop LP with a diameter of 50 mm,

which was attached to a glass spring G with a spring constant

of 290 N m21. The hook slowly moved down driven by a

motor on a force tester (Tetra GmbH, Ilmenau, Germany)

during the experimental process until the contact between

the hook and the loop was broken. The force tester included

three main parts, a platform P, a glass spring G and a fibre

optical sensor FOS, which monitored the spring deflection

by a mirror M, and was connected to a computer used for

data acquisition (figure 2). The recorded force–displacement

curves are presented in figure 3 (data from Gorb & Gorb [2]).

It is found that the displacement is very large compared

with the overall hook length. On the one hand, when the

hook is subjected to a force, the pulling-straight effect contrib-

utes to the large deformation. On the other hand, because

hook samples contain some residual water, their mechanical

behaviours are rather ductile, thus, their deformations are

large compared with the hooks’ size. As for the sliding of

the metal hook during testing, it has weak influence on the

results obtained, because we have used only the linear part

of the force–displacement curve.

Additionally, the number of burrs per fruit is in the

approximate range from 73 for A. eupatoria to 183 for

Ga. aparine (table 1); thus, if the twist between hooks and

animal hairs, which improves their interlocking effects, is

not considered, then the force required to detach a fruit

from an animal is from 646.1 mN for C. lutetiana to

4511.4 mN for A. eupatoria according to the breaking force

in figure 3. The detaching force is much larger than the

fruits’ mass [2]. In biological sense, the dispersal distance

relying on different hook geometry, density of hooks and

properties of hook materials seems to be illustrated, even

though the relevant data are still unavailable.

3. Geometrical model of the hook
We used combinational curves to construct the hook model

(figure 4a), according to the scanning electronic microscope
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Figure 1. Fruit hooks of four plant species: (a) Ge. urbanum; (b) A. eupatoria; (c) Ga. aparine and (d ) C. lutetiana. Reprinted with permission from Gorb & Gorb [2]

(Copyright 2002 Elsevier).
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images in figure 1. The model is considered as a combina-

tion of two parts: a trapezoid cylinder with upper diameter

dd, and lower diameter db and a semicircle on the top

(figure 4a). The plane section of the semicircle is composed

of three circles sharing a centre O, and their radii are deno-

ted by R1, R2, R3, respectively. The radii are determined

by the hook span sh and the upper diameter dd, i.e.

R1 ¼
1
2ðshÿ

1
2ddÞ; R2 ¼

1
2ðshþ

1
2ddÞ and R3 ¼

1
2ðshþ

3
2ddÞ: Here,

we do not consider lh and dh in determining the radii, but

they are used to calculated the length of the trapezoid cylinder,

i.e. ls2 lh2 dh, where lh and dh are hook length and diameter

of the middle part in the semicircle, respectively. Based on the

model, we derive two important parameters by geometrical

analyses, i.e. the cross-sectional radii of the two parts that

determine the cross-sectional properties, e.g. moment of iner-

tia. For the trapezoid cylinder, the radius is expressed as

r1(y) ¼ (dd/2)(1þ Py) with P ¼ (12 db/dd)/(ls2 lh2 dh).

For the semicircle, we assume that cross sections are uniform

with a diameter dd; thus, we derive the following radius:

r2(u) ¼ dd/2. Using our basic model of hooks and mean geo-

metrical parameters listed in table 1, the four geometrical

models for hooks of the four plant species can be obtained.Ta
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Figure 2. Schematic of force tester. B, FOS G, GL, LP, M and P indicate

hook, fibre optical sensor, glass spring, glue, steel-wire loop, mirror and

platform, respectively. Reprinted with permission from Gorb & Gorb [2]

(Copyright 2002 Elsevier).
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Figure 3. Force–displacement curves measures for single hooks of four plant

species. Data from Gorb & Gorb [2]. A, B, C and D are separation points of the

hooks, when the critical forces arrive. A. eu, C. lu, G. ap, G. ur indicate

Agrimonia eupatoria, Circea lutetiana, Galium aparine, Geum urbanum,

respectively. (Online version in colour.)
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4. Displacement of the hook
If the interaction between the hook and animal hair or feather

is strong, then fruits could be dropped at a more remote

place. The information on the mechanical properties of hook

materials is necessary to better understand the underlying

dispersal mechanism. In the following sections, the Euler–

Bernoulli beam theory was used to calculate hook mechanics.

4.1. Trapezoid cylinder part
For the trapezoid cylinder part (figure 4a), the displacement

includes the axial displacement u1(y), induced by the axial

force F, which contacts with the top of the inner semicircle

with radius R1. The horizontal displacement w1(y) is imposed

by the bending moment M1(y) ¼ 2 FR2, which is considered

as a constant during the hook deformation. By neglecting the

axial compliance and thus displacement u1(y), the displacement

w1(y) must satisfy the classical elastic line equation:

d2w1ðyÞ

dy2
¼ ÿ

M1ðyÞ

EIðyÞ
¼

4FR2

pE
�

1

r1ðyÞ
4
: ð4:1Þ

Substituting r1(y) into equation (4.1) and integrating

it with boundary conditions w0
1ðÿðlsÿ lhÿ dhÞÞ ¼ 0;

w1ðÿðlsÿ lhÿ dhÞÞ ¼ 0; we have

w0
1ðyÞ ¼ ÿ

64FR2

3pEPdd4
�

1

ð1þ PyÞ3
ÿ

dd

db

� �3
" #

and

w1ðyÞ ¼ ÿ
32FR2

3pEP2dd4

� ÿ
1

ð1þ PyÞ2
ÿ 2

dd

db

� �3

ð1þ PyÞ þ 3
dd

db

� �2
" #

:

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

ð4:2Þ

In the case of y¼ 0, we can find the rotation angle a ¼w1
0(0)

and the horizontal displacement w1(0) at the distal end, i.e.

a ¼ w0
1ð0Þ ¼ ÿ

64FR2

3pEPdd4
� 1ÿ

dd

db

� �3
" #

and

w1ð0Þ ¼ ÿ
32FR2

3pEP2dd4
� ÿ1þ 3

dd

db

� �2

ÿ 2
dd

db

� �3
" #

:

4.2. Semicircle part
In this part (figure 4a), we decompose the displacement into

two steps: one is the rigid displacement, caused by both the

rotation and translation of the distal end, and the other one

is deformation displacement (figure 4b). Note that the displa-

cement trajectory of the hook tip resembles the centroid line

(dashed line in figure 4a).

4.2.1. Rigid movement
In the case of rigid movement, the semicircle moves to pos-

ition II from its original position I. In position II, the

coordinate vector of the semicircle is expressed as

rII ¼ NrI þw1; ð4:3Þ

with

N ¼
cosa sina
ÿ sina cosa

� �

;

rI ¼ ðÿR2 þ R2 cos u;R2 sin uÞ
T

and

w1 ¼ ðw1ð0Þ; 0Þ
T
;
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Figure 4. Schematic of hooks. (a) Geometrical model. (b) Deformation under tensile load. See §§2.1 and 3 for abbreviations in (a) and §5 for abbreviations in (b).
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where r I is the original position vector, w1 is the translational

vector of the coordinate transformation, N is the rotation

matrix of the coordinate transformation. Correspondingly,

due to the rigid movement, the point, on which the applied

forceFacts,maintains the same rotation anglea from its original

position: at the beginning, the forceFacts on the semicircle at the

point with an angle coordinate of u0 ¼ 908, and the coordinate

vector is expressed as (X0, Y0) ¼ (2R2þ R2 cos u0, R2 sin u0).

4.2.2. Deformation displacement
The displacement v(u) can be calculated in the same way as

that in §4.1, but the coordinate should be replaced by the

arc length s, which is the function of u (i.e. s ¼ uR2) as pre-

viously suggested in the nonlinear Velcro mechanics [5].

The moment M2(u) acting on the semicircle part is expressed

as M2(u) ¼ 2 F[r II(u) 2 rII(u0 þ a)] . ex, when u, u0 þ a,

where ex ¼ (1,0)T is the unit vector along the x-axis. Thus,

the displacement is expressed as

d2vðuÞ

ds2
¼

d2vðuÞ

R2
2du

2 ¼ ÿ
M2ðuÞ

EIðuÞ
¼

4FR2

pE
�
cosðuÿ aÞ

r2ðuÞ
4 : ð4:4Þ

Plugging r2(u) into equation (4.4), we obtain

d2vðuÞ

du2
¼

64FR3
2

pEdd4
� cosðuÿ aÞ: ð4:5Þ

Integrating equation (4.5)withboundary conditionsv0(0)¼ 0

and v(0)¼ 0, we obtain the expressions of the cross-section

rotation angle and displacement as

v0ðuÞ ¼
64FR3

2

pEdd4
� [sinðuÿ aÞ þ sina]

and

vðuÞ ¼
64FR3

2

pEdd4
� [ÿ cosðuÿ aÞ þ u sinaþ cosa]:

9

>

>

>

>

=

>

>

>

>

;

ð4:6Þ

Furthermore, the deformation displacement vector is

v ¼ (v(u)cos(u2 a), v(u)sin(u2 a))T. Thus, the final position

coordinate of the semicircle part can be determined as

rIII ¼
rII þ v; if u ,u0 þ a

rII þ vðu0 þ aÞ; if u .u0 þ a

�

. ð4:7Þ

In particular, for the part u, u0 þ a, the new position in

the coordinate is expressed as

XðuÞ ¼ ÿR2 cosaþ R2 cosðuÿ aÞ þ w1ð0Þ þ vðuÞ cosðuÿ aÞ
YðuÞ ¼ R2 sinaþ R2 sinðuÿ aÞ þ vðuÞ sinðuÿ aÞ:

�

ð4:8Þ

5. Force–displacement relationship
By comparing the positions before and after deformation of

the points, on which the external force is applied, the total

displacement experienced by the force F can be described

by two components under the conditions of u0 ¼ 908 and

(X0, Y0) ¼ (2R2 þ R2 cos u0, R2 sin u0):

Dx ¼ Xðu0 þ aÞ ÿ X0 ¼ ÿR2 cosaþ w1ð0Þ þ R2

Dy ¼ Yðu0 þ aÞ ÿ Y0 ¼ R2 sinaþ vðu0 þ aÞ:

�

ð5:1Þ

5.1. Comparison between experimental and prediction

force–displacement curves
Using equation (5.1), the theoretical force–displacement

curves of hooks of the four plant species are obtained by fit-

ting the experimental curves (figure 5). These curves reflect

the typical constitutive behaviours of plant hooks. We

found that the relationships are almost linear and are consist-

ent with the experimental curves obtained by the same

experimental design but used in estimating the ultimate

load [6]. From these fits, Young’s moduli were predicted

(figure 6a). By taking the A. eupatoria hook as an example,

we plotted the deformation, when the external force F

equals 20 mN (figure 6b).
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Values of Young’s moduli obtained for four plant species

studies are comparable to those reported for the grass hedge

stems (2.6–8.5 GPa) [7], lignin (2.0 GPa) [8] and plant cell

wall (7.0–15.0 GPa) [9]. Young’s modulus of the Ga. aparine

hook is the highest (�9.5 GPa; figure 6a) and corresponds

well to the range of values 2.02–23.2 GPa, previously calcu-

lated for different individual hooks of this plant species [6].

Young’s modulus of the C. luteriana hook is the lowest

among plant species studied (figure 6a). This also verifies

previous experimental results [2]: although the size of the

Ga. aparine hooks was the smallest, the load at contact separ-

ation was larger than that of C. luteriana (figure 3). The latter

has a lower material stiffness, which induces a slip off instead

of hook fracture observed previously [2]. Compared with

Ga. aparine, the Ge. urbanum hook has a lower Young’s mod-

ulus (figure 6a), but a relative high load at contact separation

(figure 3). This may be interpreted by the larger size of

Ge. urbanum hooks.

5.2 Mechanical behaviours of hooks
It is worth saying that the composite structure and material

properties of fruit hooks were previously studied only in

Ga. aparine. Staining of resin-embedded semithin sections

with safranin and fast green showed that the hook wall

contains cellulose and lignin [6]. Using force–distance

curves obtained in contact separation experiments [2,6],

Young’s moduli of the hooks with and without a base were

calculated in a different way. Moreover, hooks with and

without the base showed significantly different values of

the elastic moduli: 2.02 GPa and 23.20 GPa, respectively

(H ¼ 755.44, d.f. ¼ 1, p, 0.001, Kruskal–Wallis one-way

ANOVA on ranks).

Moreover, from the viewpoint of mechanical design, in

order to construct a desirable hook-based fastening device,

it would be of importance to know how geometrical

parameters of hooks influence the mechanical behaviour of

hooks independently of the composition of the materials
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used. Therefore, we studied four parameters, namely the hook

length (ls), hook span (lh), the diameter in distal end (dd) and

the diameter in basal end (db), respectively, based on the data

obtained for Ge. urbanum hooks. The results of such an analyti-

cal study, where one of the geometrical parameters was varied

and the others were kept constant, are reported in figure 7.

We can see that increasing hook length (ls) and hook

span (lh) results in a greater displacement under identical

external forces, which indicates a more compliant hook;

while under identical external forces, increasing the diameter

in the distal end (dd) and in the basal end (db) produces a

smaller displacement, which suggests a stiffer hook.

6. Conclusion
We have developed a theoretical model with the aim of

explaining the mechanical behaviour of plant hooks and to

obtain the force–displacement relationship, degree of hook

deformation and Young’s modulus. The influences on the

mechanical behaviour of hooks are discussed and thus,

the present theory can potentially be used for understanding

the mechanics of natural hooks and related structures.

Additionally, the model could help in designing new

bioinspired Velcro-like mechanical adhesives [5,6,10].
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