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In this paper a new extension of the Daniels’ theory, which account for multiple modes of failure, is
presented and applied to carbon nanotube (CNT) bundles. We developed a hierarchical statistical model
for treating CNT twisted strands. The analysis allow us to rigorously characterize for the first time the
weakest link, that is the CNT–CNT joint, in terms of Weibull size and shape parameter.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Research on carbon nanotube (CNT) synthesis and on CNT fibers
are interdependent, and drive new discoveries in CNT catalysis and
growth. Many of the key advances in CNT synthesis led
immediately to new results in fiber production. Various synthesis
techniques can produce either shorter nanotubes (including arc-
discharge, laser oven, high-pressure CO conversion (HiPco),
fluidized bed Chemical Vapor Deposition (CVD)) or longer nano-
tubes (substrate growth CVD, catalytic gas flow CVD).

The Weibull distribution has been widely used to describe the
strength of brittle materials [1–5]. It is now well-known that a
Weibull distribution of strength values necessarily arises, if the dis-
tribution of defects obeys the following three conditions [1,6]: (1)
the defects are independent from each other, i.e. they are not inter-
acting; (2) the material obeys the weakest-link hypothesis; i.e. the
weakest link causes failure of the whole structure and (3) a critical
defect density can be defined and the size of a critical defect is
uniquely related to the strength.

The strength of a fiber is an extreme-value property, depending
only on the strength of the weakest link. This is the basis of the so-
called weakest link theory of brittle materials, which has been
extensively discussed in the literature [7–9]. The most well-known
one is due to Weibull [10]. The importance of weakest link theories
is twofold: first, the theories are experimentally statistically pre-
dictive and verifiable and secondly, they provide a mechanism
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for extrapolating fiber strength to experimentally inaccessible
gauge lengths.

Carbon fiber strength distributions have been analyzed with
single modal distributions, even though in many cases the mea-
sured distributions were clearly multimodal. Accordingly, we here
extend the Daniels’ theory [11] to multi-modal failure. As an exam-
ple, we apply the theory to predict the strength of CNT twisted
strands and of the related CNT–CNT junctions, complementary to
previous analyses [12–16].
2. Multimodal Daniels’ theory

Daniels [11] considered Z parallel fibers with given cross-sec-
tional area, linear elastic constitutive law and single modal Weibull
distribution. Tensile strength distributions having more than one
mode of failure are now considered in extending the Daniels’ the-
ory. The presence of several modes in the strength distribution im-
plies the existence of several distinct types of strength-limiting
defects in the fiber structure. Accordingly, we consider a multi-
modal Weibull distribution for each fiber. For a multi-modal distri-
bution, the probability function is given by:

FðrÞ ¼ 1� ð½1� F1ðrÞ�½1� F2ðrÞ� . . . ½1� FnðrÞ�Þ ð1Þ

where F1(r), F2(r) . . ., Fn(r) are the statistical probabilities of each
modal failure.

The probability density for the strength of a fiber is illustrated in
Fig. 1a. In a bundle, the fibers with strength larger than the applied
stress, P, sustain the stress. On other hand, the fibers with the
strength lower than P, will break and the stress of broken elements
becomes zero.
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Fig. 1. (a) Probability density for the strength of each fiber in the bundle. (b) Stress condition of the bundle. (c) Hierarchical twisted strand CNT model.
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Assuming Fi(r) of Weibull type, the cumulative probability
function is thus given by:

FðrÞ ¼ 1� exp
Xn

i¼1

� l
l0i

r
ri

� �mi
 !

ð2Þ

where l is the fiber length, l0i is the characteristic length, r is the
stress applied in the longitudinal direction, whereas ri and mi are
the scale and shape parameters respectively.

Accordingly, the probability density is

f ðrÞ ¼
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Fig. 1b shows the stress condition of the bundle. If R is the cur-
rent number of surviving fibers in the bundle, then assuming the
Equal Load Sharing (ELS), the average stress of the bundle is de-
fined as
�r ¼ R
Z

P ð4Þ

where P is the stress sustained by the survival fibers.
The maximum value of �r gives the strength of the bundle.

Hence the strength of the bundle is obtained from d�r
dP ¼ 0.

The ratio of the number of sustain fibers R to the total number
of fibers Z, when Z is high and when fiber failures are equally prob-
able events, is (Fig. 1a and b)

R
Z
¼
Z 1

P
f ðrÞdr ð5Þ

and, considering Eq. (3), becomes:

R
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¼ exp
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ð6Þ
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Fig. 2. Variation of CNT yarn (a) shape parameter, (b) scale parameter, (c) mean strength and (d) standard deviation, versus shape parameter of the connection between CNTs
in the yarn.
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Fig. 3. Variation of CNT yarn (a) shape parameter, (b) scale parameter, (c) mean strength and (d) standard deviation, versus scale parameter of the connection between CNTs
in the yarn.
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Thus:

�r ¼ P exp
Xn

i¼1

� l
l0i
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� �mi
 !

ð7Þ

The maximum value of r is given by:

d�r
dP
¼ 0 ð8Þ

namely:

exp
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¼ 0 ð9Þ
This equation can be solved numerically yielding Pf, which gives
the mean strength of the bundle as:

�r ¼ Pf exp
Xn

i¼1

� l
l0i
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ri

� �mi
 !

ð10Þ

The standard deviation of the strength is predicted to be:

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Eqs. (10) and (11) for n = 1 correspond to the results of the clas-
sical single modal Daniels’ theory.
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3. An application to carbon nanotube ropes

CNTs are an extremely interesting type of material due to their
unique one dimensional structure, and their excellent mechanical
properties [17,18]. To exploit their excellent physical properties
at a macroscopic level, it is desirable to create CNTs with macro-
scopic length. However, it has been very challenging to grow arbi-
trarily long CNTs [19]. An alternative approach is to create long
nanotube structures with many of them aligned into continuous
yarns or ropes [20–25].

Due to the high-strength constituent CNTs and their twisted
nanostructure, CNT yarns can potentially be made much stronger
and tougher than Kevlar. When the twisted yarn is pulled, the CNTs
attempt to straighten, invoking a locking mechanism used to make
ropes stronger. CNTs have a finite length, l, but twisting prevents a
bundle of CNTs (much longer than l) from falling apart. Like most
advanced fibers, it has been shown that CNT strength can also be
described by a Weibull distribution [26,12,13]:

FðrÞ ¼ 1� exp � l
l0

r
r0

� �m� �
ð12Þ

where l0 is the length of the individual CNT, r is the applied fiber
axial stress, m and r0 are the Weibull shape and scale parameter,
for a given fiber length l.

The mean strength hrWi is given by:

hrWi ¼
l
l0

� ��1
m

r0C 1þ 1
m

� �
ð13Þ

whereas the standard deviation is:

hW ¼ hrWi
C 1þ 2

m

� �
C2 1þ 1

m

� �� 1

 !1=2

ð14Þ

The situation can additionally turn out to be still more complex,
if the strength distribution is not unimodal. Moreover, bimodal
Weibull distributions were observed for carbon [27] and silicon
carbide fibers [28] and for certain ceramics [29].

Experimentally [22,30], CNT yarns are peeled off from the
super-aligned arrays, thanks to a strong binding force between
the fibers. Also, the bundles were joined end to end forming a con-
tinuous yarn, Fig. 1c. Intrinsic nanotube fracture, and nanotube
sliding at the fronts suggest a bimodal failure. Accordingly, Eq.
(12) becomes:

FðrÞ ¼ 1� exp �NCNT
r

rCNT

� �mCNT

� Np
r
rp

� �mp
� �

ð15Þ

where rCNT, mCNT are the scale and shape parameter of single carbon
nanotube whereas rp, mp are the scale and shape parameters of the
peeling joint failure.

The hierarchical structure of CNT strand is shown in Fig. 1c. It
starts from level 0, a CNT fiber; this fiber consists of carbon nano-
tubes connected together end by end. We consider level 1 as a bun-
dle of parallel CNT fibers. In level 2, a CNT strand, is a twisted
bundle of CNT yarns. We model this complex hierarchical structure
with our theory.

By differentiating Eq. (13), the probability density function is
derived as

f ðrÞ ¼ ½NCNTaCNTmCNTrmCNT�1 þ Npapmprmp�1�
� expð�ðNCNTaCNTrmCNT þ Npaprmp ÞÞ ð16Þ

where aCNT ¼ ð1=rCNTÞmCNT and ap ¼ ð1=rpÞmp .
Accordingly,

R
Z
¼ expð�ðNCNTaCNT PmCNT þ NpapPmp ÞÞ ð17Þ
By substituting Eq. (15) into (4), the average stress of CNT yarn is
calculated as

�r ¼ expð�ðNCNTaCNT PmCNT þ NpapPmp ÞÞP ð18Þ

The maximum value of �r is given by:

d�r
dP
¼ 0 ð19Þ

namely:

exp �ðNCNTaCNTPmCNT þ NpapPmp Þ
�
� NCNTaCNTmCNT PmCNT�1 þ NpapmpPmp�1
h i
� exp � NCNTaCNT PmCNT þ NpapPmp

� �� ��
¼ 0 ð20Þ

i.e.:

1� ½NCNTaCNT mCNT PmCNT þ NpapmpPmp � ¼ 0 ð21Þ

Eq. (21) can be solved numerically to obtain Pf; by substituting
Pf into Eq. (18), the strength of CNT yarn, ryD, is finally calculated:

ryD ¼ expð�ðNCNTaCNT PmCNT
f þ NpapPmp

f ÞÞPf ð22Þ

whereas the standard deviation, hyD, of the strength is

hyD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðryDÞ2Z�1

exp � NCNTaCNT PmCNT
f þNpapPmp

f

� �� � 1�exp � NCNTaCNT PmCNT
f þNpapPmp

f

� �� �� �vuut
ð23Þ

where Z is the number of the CNT fibers in the CNT yarn, level 1.
In the case of a hierarchical rope [31] we can use our recently

developed theory [32], implying:

ryW ¼ ryD ð24Þ

hyW ¼ hyD ð25Þ

where ryW and hyW are the mean strength and standard deviation of
the CNT yarn in the Weibull form; ryD and hyD are the mean and
standard deviation of CNT yarn in Daniels’ form.

From Eqs. (22) and (23), we deduce:

C 1þ 2
my

� �
C2 1þ 1

my

� � ¼ hyd

ryd

� �2

þ 1 ð26Þ

where my is the shape parameter of the CNT yarn and can be calcu-
lated numerically. Then r0y, the scale parameter of the CNT yarn,
can be calculated as:

r0y ¼
< ryD > ðlyÞ

1
my

C 1þ 1
my

� � ð27Þ

where ly is the length of the CNT yarn.
According to Daniels’ theory, the mean strength and standard

deviation, rst and hst, of the CNT strand (level. 2), based on the
shape and scale parameter of the CNT yarn, are predicted to be:

rst ¼ ðlymyÞ�1=myðr0yÞ exp
�1
my

� �
ð28Þ

hst ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< rst>2

exp �1
my

� �h i 1� exp
�1
my

� �	 

K�1

vuut ð29Þ

where K is the number of yarns inside the CNT strand.
The most commonly analyzed geometry of a twisted strand is

the one in which the yarns lie in concentric cylindrical layers.
Within each layer, yarns follow ideal helical paths with the same
helix angle but the angle differs from layer to layer. In this ideali-
zation, yarns in different layers necessarily must have different
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lengths to be strain-free yet without slack. This implies that
between two strand cross-sections, yarns will have lengths when
straight equal to their helical path lengths, and thus, will be longer
than the distance between these cross-sections.

Here, we model the twisting with the approach by Porwal et al.
[33] averaging the yarn helical paths across the strand. In doing so,
a mean helix angle for the ideal helical structure is given as:

�w ¼ cos�1

Pz
i zk cos wk

z

� �
ð30Þ

where zk is the number of elements in the k concentric layer, so that
�w is weighted by the fraction of all the yarns in each layer with re-
spect to the total zk/z, which increases when traveling from the cen-
ter to the surface of the strand.

Let us consider that any level of the hierarchical structure of
CNT strand is made of a large number, K, of twisted CNT yarn of
Weibull type. Based on Porwal et al. [33], the mean strength,
rðwÞst ; is given by:

rðwÞst ¼ rst cos2 �w ð31Þ

whereas the standard deviation, hðwÞst , becomes:

hðwÞst ¼ hst cos2 �w ð32Þ
4. Characterizing the nanotube–nanotube joint

Now, we calculate the scale and shape parameters of the junc-
tions between carbon nanotubes in the yarn, shown in Fig. 1c. We
apply a reverse process, from the experimental data, which allow
us to extract these two values. The mean strength and standard
deviation of dry–draw CNT strand are 0.35 GPa and 0.023 GPa
respectively [34] (level 2). The scale and shape parameter of CNT
are rCNT = 34 GPa and mCNT � 2.7 [13]. The characteristic number
of CNT fibers in a yarn is of the order of 100 and NCNT � NP = 500.
Accordingly, solving Eqs. (21)–(23) we deduced mp = 3.86 and
rp = 3.36 GPa. These two parameters play a fundamental role in
characterizing the statistical properties of the CNT fiber, yarn and
strand. Figs. 2 and 3 show the effect of mp and rp on the overall
performances, suggesting that our model is a new useful tool for
design CNT strands.

5. Conclusions

In this paper, a new extension of the Daniels’ theory, which
account for multiple modes of failure, has been presented and
applied to carbon nanotube (CNT) bundles. We have developed a
hierarchical statistical model for treating CNT twisted strands.
The analysis allow us to rigorously characterize the weakest link,
that is the CNT–CNT joint, in terms of Weibull size and shape
parameter. These joints are defects because the intermolecular
interaction between CNTs at the joints is much weaker than the
chemical bonds within a single molecule. Decreasing the density
of joints should yield CNT yarn with higher tensile strength. Thus,
producing super long carbon nanotubes (with defect density less
than proportional to CNT length) is crucial in this context.
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