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In this paper, we analytically calculate the in-plane elastic properties (linear-elasticity and elastic

buckling) of a new class of bio-inspired nano-honeycomb materials possessing a hierarchical architec-

ture. Incorporating the surface effect, modifications to the classical results for macroscopic and nonhi-

erarchical honeycombs are proposed, and the results are compared with those in the literature. A

parametrical analysis reveals the influences of two key geometrical parameters on the overall elastic

properties. We discuss the relevant mechanical properties, e.g. stiffness efficiency (stiffness-to-density

ratio) and strength efficiency (strength-to-density ratio), which are indices reflecting the mechanical

efficiency of materials, and discover that the structural strength can be optimized. The developed theory

allows us to design a new class of nano materials with tailored mechanical properties at each hierarchical

level and could be useful for many applications.

� 2012 Published by Elsevier Masson SAS.

1. Introduction

Honeycomb-like structure can be often found in Nature, for

instance, the armadillo shell (Rhee et al., 2011), the beak of Tucan

birds (Seki et al., 2005), and the widely studied lobster claws of

lobsters (Raabe et al., 2005): the structure is low-weight but strong

and tough, that is to say, it is more efficient (Karam and Gibson,

1994). So far, it is well accepted that the structure of the natural

materials is an optimized result by ambient environment in the

evolutionary process (e.g. the armadillo shell can protects internal

organs from being attacked by predators). Thus, nature seems to

grant us a best solution to design more efficient materials. There-

fore, inspired by nature, honeycomb materials have been exten-

sively investigated for structural, mechanical and material design.

For example, in the field of material science, they are used as a core

material in sandwich structures for energy absorption (Wang,

2009; Wang et al., 2009); also, honeycomb scaffolds with

mechanical stability, biocompatibility and biodegradability are

used for tissue regeneration (George et al., 2008). With such

extensive applications, from the mechanical point of view, it is

important for materials scientists and engineers to characterize and

model the in-plane and out-of-plane mechanical behaviors (Gibson

et al., 1982; Warren and Kraynik, 1987; Zhang and Ashby, 1992;

Papka and Kyriakides, 1994) of honeycomb structures. For its

constitutive behavior, the stressestrain curves (Papka and

Kyriakides, 1994; Gibson and Ashby, 1997) are typically described

by three regimes (the linear elastic, pseudo plastic plateau and

pseudo hyper-elastic densification regions). Gibson and Ashby

(1997) summarized most of the works on the structural and

mechanical properties for 2D and 3D cellular solids, and system-

atically investigated the structure-solid mechanics. In recent years,

a variety of topological honeycombs is being studied for

multifunctional applications (Wadley, 2006), e.g. the thermal

conductivity properties of a rectangular-hexagonal honeycomb

structure (Bezazi et al., 2008). Even though many studies in this

field provide some methods to design new porous materials, and

enrich the existing ones, there is a lack of detailed investigations on

natural honeycombs. So, in order to mimic the natural honeycomb,

Zhang et al. (2010) revealed the sophisticated and hierarchical

structure of honeybee combs, and showed that the cell wall of the

natural honeycomb is a multi-layered structure, which is continu-

ously constructed by adding wax layers reinforced by silk as time

increases; the structure is strengthened and avoids the fragility, and

thus provides a mechanically safe place for storing honey and

brooding.
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On the other hand, as nanoscience and nanotechnology develop,

the material design also expands towards the nano-scale. If struc-

tures are nano-sized, the surface effect should be taken into account,

due to their high surface-to-volume ratio. Regarding the surface

effect, extensive works (Wang and Feng, 2009; Shankar and King,

2007; Wong et al., 1997; Chen and Pugno, 2012a) studied its influ-

ence on the linear elastic behaviors of nano-wires, since they hold

a promise for nano-device applications, e.g. sensors and actuators.

These works emphasized the vital role of the surface effect in

determining the mechanics of nano-systems. Duan et al. (2006,

2009) investigated the elastic constants of nanoporous materials

with unidirectional cylindrical nanochannels by considering the

surface effect, and the results demonstrated that a nanoporous

material could be stiffer or softer than its bulk counterpart. And

more, Duan et al. (2009) reviewed the elastic theory for nano-scale

systems, especially for the nanoscale inhomogeneities, discussing

different classical theories, e.g. Eshelby Formalism, and Levin’s

formulas. Theseworks are very useful for studying the fundamental

mechanical and physical properties of heterogeneous nanosystems.

In this paper, we construct a hierarchical nano-honeycomb

structure (Fig. 1), using a classical iterative approach (Lakes, 1993;

Pugno, 2006; Pugno et al., 2008; Chen and Pugno, 2012b,c), and

study its in-plane elastic properties. Starting from an orthotropic

constituent material and considering the influence of the surface

effect, we derived the effective longitudinal Young’s modulus and

buckling strength at the first level; then, the results of the n-level

structure (n ! 2) are obtained thanks to the iterative method.

Finally, a comparison between different theories and parametric

analyses reveal the influences of the geometrical parameters on the

overall elastic behaviors.

2. Surface effect

Due to the existence of surfaces in a solid, there is always

a competition between bulk and surface. In particular, when the

size of the solid comes down into dimensions smaller than 10 nm,

surface/interface effect becomes an important characteristic in

nanostructures, and determines their mechanical properties. A

classical expression for the surface stress is derived based on the

surface/interface energy (Cammarata, 1994), and it is composed by

two parts, i.e. surface free energy and surface free energy gradient

with respect to the surface strain: fij¼ gdijþ vg/v 3ij, where, fij and 3ij

are the surface stress and strain tensors, respectively, g is the

surface free energy, dij is the Kronecker delta.

For the elastic theory, according to Gurtin and Murdoch (1975),

the surface stress s is usually expressed as the summation of the

surface residual stress and surface elasticity (i.e. the two parts

corresponding to the two terms on the right-handed side of the fij
expression, respectively): s ¼ s

0 þ Si 3
i, where, s

0 is the surface

residual stress, Si is the surface stiffness tensor, 3
i is the surface

elastic strain tensor. Here, we only consider the influence of the

surface elasticity (one-dimension), i.e. the second term on the

right-handed side of the s expression.

3. Elastic constants of hierarchical nano-honeycombs

3.1. Deflection of an orthotropic beam with surface elasticity

The linear-elastic deformation mechanism of honeycombs is

mainly due to the bending of cell walls, and the standard beam

theory is employed here to investigate their elastic constants.

(Fig. 2); in particular, if the beam is nano-sized, the modification

induced by the surface effect should be taken into account, and the

maximum displacement of the Euler beam is expressed (Tolf, 1985;

Roark and Young, 1975; Gibson and Ashby, 1997; Wang and Feng,

2009) as:

dmax ¼
Fl3

12ðE1IÞeq
cos2 q if s

0 ¼ 0 (1)

with

ðE1IÞeq¼
1

12
E1bt

3 þ 1

2
Esbt

2 þ 1

6
Est

3 (2)

where, dmax is the vertical displacement of the guided end of the

orthotropic beam, F is the concentrated force acting on the guided

end, l is the beam length, q is the inclined angle between beam and

horizontal line; (E1I)
eq is the equivalent flexural rigidity considering

the surface effect; b, t are width and thickness of the beam,

respectively; Es, depending on the crystal orientation (Shenoy,

2005), is the surface Young’s modulus, which has the physical

dimensions of a surface tension.

3.1.1. One-level structure

First, we consider a one-level nano-honeycomb made by an

orthotropic material (level 0) and introduce a local coordinate

system 1(0)2(0) related to the global coordinate system 1(1)2(1). As

shown in Fig. 3, the structure has two perpendicular mirror planes,

i.e. the one-level structure remains orthotropic. The deformation is

caused by the bending of beams①,② and the compression of beam

③ (Fig. 3(b)) which is the beam parallel to the loading direction, but

Fig. 1. Two-level nano-honeycombs.
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the compressive deformation is neglected with respect to the

bending deflection. Thus, basing on equations (1) and (2) and

employing the classical approach (Gibson and Ashby,1997), we find

the elastic constants of the one-level nano-honeycomb:

E
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1

E
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1

¼ lð1Þs f
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1 f

ð1Þ
4
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where E
ð0Þ
1 and E

ð0Þ
s are the bulk and surface Young’s moduli in the

principal direction 1(0) (level 0), respectively; b and t(1) are width

and thickness of cross-sections of cell walls, respectively; l(1) and

h(1) are lengths of beams① and③, respectively; q(1) is the included

angle made by beam ① and horizontal line (Fig. 3).

From equations (3)e(7), we note that compared with the

Young’s moduli and shear modulus derived by Gibson and Ashby

(1997), here, the Young’s moduli and shear modulus of the one-

level structure are modified by a factor lð1Þs . If t
ð1Þ
1 =b %1 (plate),

equation (6) can be expressed as:

lð1Þs ¼ 1þ 6
E
ð0Þ
s

E
ð0Þ
1 tð1Þ

(8)

Expression (8) coincides with the result fromMiller and Shenoy

(2000), and it obeys the scaling law lð1Þs ¼ 1þ alin=t
ð1Þ (Wang et al.,

2006) with lin ¼ E
ð0Þ
s =E

ð0Þ
1 and a ¼ 6:0. Note that: lin represents

an intrinsic material length, under which surface effect plays an

important role; a is a dimensionless constant, which depends on

the structural geometry and loading methods. Besides, we can see

that the surface effect at level 0 makes the structure stiffer if

E
ð0Þ
s > 0; otherwise, it makes the structure softer.

Moreover, the geometry of Fig. 3 provides the relative density:

rð1Þ

rð0Þ
¼

$

hð1Þ=lð1Þ þ 2
%

2cos qð1Þ
"

hð1Þ=lð1Þ þ sin qð1Þ
#

tð1Þ

lð1Þ
(9)

where, r(1) and r(0) are densities of the one-level structure and its

constituent material, respectively.

Fig. 3. Schematic of the first-level nano-honeycomb. (a) Unit cell; (b) Three pairs of cell walls.

Fig. 2. An inclined orthotropic beam with one end guided and the other fixed.
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3.1.2. n-Level structure

Fig. 4 describes an n-level nano-honeycomb. Compared with the

one-level structure, the cell-wall dimensions at the second or above

levels are very large, so the surface effect could be neglected, i.e.

E
ðiÞ
s ¼ 0 ði ! 2Þ. However, in order to extend the theory to the

general case, we still consider the surface effect at each level, then,

iterating equation (3) we find:
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where, f
ðnÞ
1 , f

ðnÞ
2 , f

ðnÞ
3 and f

ðnÞ
4 can be obtained by replacing the

superscript (1) with (n) in equation (7). Note that, the reciprocal

theorem holds i.e., E
ðnÞ
1

m
ðnÞ
21 ¼ E

ðnÞ
2

m
ðnÞ
12 . Equations (10)e(12) show

that the transverse Young’s modulus and shear modulus can be

derived from the longitudinal Young’s modulus, and the two

Poisson’s ratios are only related to the geometry of the n-level

structure. Therefore, in essential, there are only two independent

elastic constants, i.e. the longitudinal Young’s modulus and one of

the Poisson’s ratios.

3.2. Stiffness efficiency

Structural efficiency is basing on the minimum-weight analysis,

and it is used to optimize structural design and thus, reduce cost. By

considering the maximum stress and maximum strain, Budiansky

(1999) investigated several types of compressive structures which

are hollow tubes with/without filling foam. Wegst and Ashby

(2004) summarized the mechanical efficiency of natural ceramics,

natural polymers, natural elastomers, natural cellular materials

under tensile and flexural loads and plotted the so-called “Ashby

maps” according to different material indices. Here, according to

Ashby (2010), we study the stiffness-to-density ratio for the

honeycomb structure under the uniaxially loading condition, which

is evaluated by Ps1 ¼ E/r. For the hierarchical honeycomb struc-

tures, E
ðnÞ
1 =rðnÞ can be derived from equations (9e11) as:

E
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1
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1
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Y
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12
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f
ðnÞ
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f
ðnÞ
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$

E
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1

rð0Þ

(14)

4. Elastic buckling of hierarchical honeycomb materials

Different from the linear-elastic deformation of honeycombs,

progressive buckling deformation of cell walls dominates the main

energy-absorbing mechanism. Therefore, it is significant to study

the buckling behavior of the hierarchical honeycomb in the design

of energy-absorbing materials. Regarding the buckling behavior of

the conventional honeycomb, Chen and Pugno (2012a) studied the

competition between the buckling of the beam① (or②) and beam

③, and they demonstrated that the buckling of the beam③ prevails

and there is a possibility for the buckling occurrence of beam① (or

②) at extreme conditions (e.g. the inclination angle approaches 90&

and the thickness-to-length ratio of the beam① (or②) approaches

zero). Therefore, we only consider the buckling of the beam ③ in

the following discussion.

4.1. Buckling load of the orthotropic beam with surface effect

Euler buckling equation is a simple but efficient way to describe

the buckling behavior for an isotropic beam or column. For an

Fig. 4. Top view of the schematic of the n-level nano-honeycomb.
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orthotropic nano-column, due to the standard beam theory (i.e.

Euler beam theory) and the surface effect, the buckling load Fcr is

obtained (Tolf, 1985; Timoshenko and Gere, 1961):

Fcr ¼
n2p2ðE1IÞeq

l2
1

2
' n ' 2 (15)

where, n is a numerical factor depending on the boundary condi-

tions. Equation (15) is the classical Euler buckling formula with

surface effect, in which the Young’s modulus of the isotropic

material is substituted by the longitudinal one of the orthotropic

beam.

4.1.1. One-level structure

For the one-level structure (Fig. 3), when the external stress s

acts on the structure (Fig. 1), the equivalent concentrated force

applied on beam ③ is:

Fð1Þ ¼ 2sbð1Þlð1Þcos qð1Þ (16)

Then, if the beam buckles, the force F should reach the critical

load Fcr. Substituting equation (16) into equation (15), we find:

s
ð1Þ
cr

E
ð0Þ
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¼ lð1Þs
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1
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Here, we define a new function with respect to h(1)/l(1) and q(1):

f
ð1Þ
5 ¼

$

pnð1Þ
%2

24
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hð1Þ

!2
1

cos qð1Þ
(18)

where, n(1) is related to h(1)/l(1) and equation (17) is concisely

written as:

s
ð1Þ
cr

E
ð0Þ
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¼ lð1Þs f
ð1Þ
4 f

ð1Þ
5

 

rð1Þ

rð0Þ

!3

(19)

4.1.2. Two-level structure

For the two-level structure, we have two objects in the analysis,

the vertical beams at the first and the second level. On one hand, for

the second level, the equivalent concentrated force acting on the

beam is:

Fð2Þ ¼ 2sbð2Þlð2Þcos qð2Þ (20)

According to equation (20), we find the buckling stress for the

beam:

sð2Þ

E
ð1Þ
1

¼ lð2Þs f
ð2Þ
4 f

ð2Þ
5

 

rð2Þ

rð1Þ

!3

(21)

E
ð1Þ
1 is calculated by equation (3), finally, equation (21) is

rewritten as:

sð2Þ

E
ð0Þ
1

¼
"

lð1Þs lð2Þs

#"

f
ð1Þ
1 f

ð1Þ
4

#"

f
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4 f
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5
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rð2Þ

rð0Þ

!3

(22)

On the other hand, based on load transfer and the equivalent

concentrated force acting on the beam at the second level, the

equivalent concentrated force acting on the beam at the first level

can be calculated, which is expressed as:

Fð1Þ ¼ 2

 

2s
lð2Þ

tð2Þ
cos qð2Þ

!

bð1Þlð1Þcos qð1Þ (23)

then, substituting the force into the buckling equation (15), the

buckling stress is immediately obtained as:

sð1Þ

E
ð0Þ
1

¼ lð1Þs f
ð2Þ
6

"

f
ð1Þ
4 f

ð1Þ
5

#

 

rð1Þ

rð0Þ

!2 

rð2Þ

rð0Þ

!

(24)

with

f
ð2Þ
6 ¼

"

hð2Þ=lð2Þ þ sin qð2Þ
#

$

hð2Þ=lð2Þ þ 2
% (25)

For the buckling stress of the two-level structure, it is derived as:

s
ð2Þ
cr ¼ min

"

sð2Þ; sð1Þ
#

(26)

4.1.3. n-Level structure

Like the analysis of the two-level structure, finding the

concentrated force acting on the beam at level i and substituting

the force into buckling equation (15), the dimensionless buckling

stress at each level is obtained as:

sðiÞ

E
ð0Þ
1

¼
Y

n

j¼ iþ1
f
ðjÞ
6 $

Y

i(1

k¼1

"

lðkÞs f
ðkÞ
1 f

ðkÞ
4

#

$

"

f
ðiÞ
4 f

ðiÞ
5

#

 

rðiÞ

rð0Þ

!2 

rðnÞ

rð0Þ

!

(27)

so, the buckling load of the n-level structure is obtained as:

s
ðnÞ
cr ¼ min

"

sðiÞ
#

(28)

Fig. 5. (a) Unit cell of the honeycomb structure with cylindrical nano-channel; (b) Unit cell of the honeycomb structure with hexagonal nano-channel.
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4.2. Strength efficiency

Like stiffness efficiency, the strength efficiency of the hierar-

chical structure is here deduced. And a for uniaxial loading struc-

ture, it is evaluated as Ps2 ¼ s/r. From equation (27), the evaluating

criterion, i.e. buckling stress to density, is expresed as:

sðiÞ

rðnÞ
¼
Y

n

j¼ iþ1
f
ðjÞ
6 $

Y

i(1

k¼1

"

lðkÞs f
ðkÞ
1 f

ðkÞ
4

#

$

"

f
ðiÞ
4 f

ðiÞ
5

#

 

rðiÞ

rð0Þ

!2 

E
ð0Þ
1

rð0Þ

!

(29)

thus, the buckling strength to density is finally obtained as:

s
ðnÞ
cr

rðnÞ
¼ min

$

sðiÞ
%

rðnÞ
(30)

5. Comparison between different methods

In this section, we compare our predictions on the one-level

structure (q(1) ¼ 30& and h(1)/l(1) ¼ 1) with other results presented

in the literature (Duan et al., 2006, 2009). In the literature, the unit

cell of the nano-structure is honeycomb with unidirectional cylin-

drical nano-channels, thus different from our unidirectional

hexagonal nano-channel (Fig. 5); the authors considered the cases

with porosity 0.2 and pore diameter from 1 nm to 30 nm. Here,

with the condition l ¼ l(1), we compares the different geometries

imposing the same pore area fractions.

Then, according to a porosity 0.2 and fixed geometry, see Fig. 5a,

we find the relationship between the side length of the unit cell and

pore diameter, i.e. l ¼ 2.4589R&. Similarly, considering the equal

pore-area, we find l(1) ¼ 2.4589R& and t(1) ¼ 2.3543R&. In order to

keep the self-consistency, we also employ the data of Al provided

Fig. 6. (a) The normalized bulk modulus vs beam size; (b) The normalized Young’s modulus vs beam size.

Fig. 7. (a) Influence of h/l on stiffness when q ¼ 30&; (b) Influence of h/l on stiffness-to-density ratio when q ¼ 30&; (c) Influence of q on stiffness when h/l ¼ 1.0; (d) Influence of q on

stiffness-to-density ratio when h/l ¼ 1.0.
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by Miller and Shenoy (2000); the bulk Young’s modulus is

E(0) ¼ 89.392 GPa, and surface Young’s modulus on the [100] and

[111] surface for plates are E
ð0Þ
s ¼ (7:9146 N=m and

E
ð0Þ
s ¼ 5:1811 N=m, respectively. The results are reported in Fig. 6,

in which the Young’s moduli and bulk modulus of the honeycombs

are normalized by those of the honeycombs without surface effect.

Fig. 6 shows, as the beam size increases, that the influence of the

surface effect on the elastic constants decreases. Also, we find that

generally our prediction is comparable with the result from the

literature, even though our result shows a slightly greater influ-

ence; besides the different geometries, the thickness-to-length

ratio t(1)/l(1) is 0.93 under the condition of the porosity 0.2, that is

to say, the shear effect should be taken into account.

6. Parametric analysis and discussion

Here, again, we consider Al as the constituent material and treat

different hierarchical nano-honeycomb structures with hierar-

chical level number from one to five and identical relative densities

(low relative density 0.1 is considered). We assume the size of the

cell wall is very large compared with that of the first level, so, the

surface effects at level i (i > 1) are negligible. The density of Al is

2.70 g/cm3; the surface elastic modulus on the [100] surface is

E
ð0Þ
s ¼ (7:9146 N=m; the thickness of the cell walls at the first

level is assumed to be t(1) ¼ 5 nm.

6.1. Linear-elastic deformation analysis

As we discussed in Section 3, the Young’s moduli and shear

modulus depend on the longitudinal Young’s modulus, thus, E
ðnÞ
1 is

only analyzed. We consider self-similar cases for n-level structures,

i.e. the relative density rðiþ1Þ=rðiÞ ¼
ffiffiffiffiffiffiffi

0:1n
p

and h(i)/l(i) ¼ h/l (or

q(i) ¼ q). The analytic results of the longitudinal Young’s modulus

and the stiffness-to-density ratio are reported in Fig. 7. It shows

that the longitudinal Young’s modulus increases as h/l or q

increase; we can also see that as the level number n increases, they

increase.

6.2. Buckling analysis

In this case, the parameters are the same as those described

above. The analytic results of the buckling strength and strength-

to-density ratio are reported in Fig. 8. Interestingly, it shows that

increasing h/l or q results in high strength and strength-to-density

ratio and as the level number n increases, the strength and

strength-to-density ratio reaches an optimal value in the three-

level structure (Fig. 8a and b) or in the four-level structure for

different parameters (Fig. 8c and d).

6.3. Discussion

Figs. 7 and 8 indicate that the mechanical behavior of the hier-

archical honeycomb can be tuned by changing the geometrical

configuration. Increasing h/l or q, the Young’s modulus, strength

and their corresponding mechanical efficiency increase; and as the

level number n increases, also, they increase. For the linear-elastic

analysis, this is because the structural deformation decreases

when h/l or q increases, then, the Young’s modulus increases. For

the buckling analysis, it can be understood that increasing h/l or q or

level number n results in a higher structural stiffness but, as level

Fig. 8. (a) Influence of h/l on buckling strength when q ¼ 30&; (b) Influence of h/l on strength-to-density ratio when q ¼ 30&; (c) Influence of q on buckling strength when h/l ¼ 1.0;

(d) Influence of q on strength-to-density ratio when h/l ¼ 1.0.
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number n increases, the relative density at each hierarchical r(i)/r(0)

decreases, thus an optimal value emerges.

7. Conclusions

We have calculated the in-plane elastic properties (linear-elastic

and buckling properties) of hierarchical nano-honeycombs. The

surface effect modifies the classical results of a non-hierarchical

honeycomb (or conventional honeycomb), which is considered

to be the first level (or one-level structure); the predictions are

compared with results from the literature, showing a good

agreement. Addressing the hierarchical nano-honeycomb struc-

tures, we have performed parametric analyses, and revealed the

influences of two key geometric parameters on the stiffness (or

stiffness-to-density ratio) and strength (or strength-to-density

ratio); the results show that increasing the two geometric

parameters can produce increasing mechanical properties; in

particular, an optimal strength or strength efficiency is obtained.

The presented theory may have many interesting applications, e.g.

for designing biomedical or energy-absorption nano materials.
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