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Abstract. The size effects on the mean values of the mechanical properties of condensed matter and on the related
variances are analysed by means of a unified approach based on the multiscale character of energy dissipation.
In particular, the scaling law for fragmentation energy density is obtained taking into account the self-similarity
of fragments. It is based on a generalization of the three classical comminution laws that has been performed
to evaluate the energy dissipation, computing volume and surface area of the particles for one- two- and three-
dimensional fragmented objects. The result is general and can be applied to different fractal energy dissipation
mechanisms, e.g., plasticity. Based on this approach, the scaling laws for mean and standard deviation values of
the main mechanical properties of materials can be derived, like Young’s and shear elastic moduli, ultimate normal
and shear stresses and strains, fracture energy and toughness.

1. Introduction

Self-similar objects at all scales are actually well known in Nature (Mandelbrot 1982; Feder
1988); hence the use – and sometimes the misuse – of fractals can be found in the most
diversified fields: energies, sizes and durations of solar flares, magnitudes of earthquakes, sizes
of lakes, sizes of impact craters on moons, frequencies of usage of words, fragments of coal,
size of asteroids, particles in the rings of Saturn, energy dissipation of warm-blooded animals,
distribution of scales of coastlines, etc. For instance, the problem concerning the measurement
of the length of Great Britain’s coastline (Mandelbrot, 1967) showed the fractal nature of the
coastline indentation. As a matter of fact, the Euclidean method for the measurement adopted
at the beginning led to conflicting results, since the more accurate the measurement was, the
more the coastline diverged. Likewise, objects with different dimensions, even belonging to
various size-scales (e.g., a microfracture caused by fatigue in a metal and a macrofracture
on the earth’s crust originating from an earthquake) seem to be topologically similar. In
other words, the morphology of a fracture appears self-similar at all scales: paradoxically,
this does not allow researchers to understand whether the photograph of a fracture was taken
with a microscope or a satellite. Therefore fractality is linked to Scale Relativity, making it
impossible to establish an absolute scale.

With a view to pursuing such analysis in the field of fracture, a further consideration of
fundamental interest is that at small scales the self-similarity phenomenon must fade away
owing to quantization. Namely, it is to be expected that the Continuum should die down and
be replaced by Fracture Quanta (Novozhilov, 1969). As far as a fracture is concerned, even if
such fracture is in an extreme condition (e.g. crushing processes), it is therefore impossible to
produce matter particles below a certain dimensional threshold (Material Quantum) because
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of a drastic energy increase to be spent in the process (Kendal, 1978). Hence, a serious techno-
logical difficulty derives in carrying out fine comminution, which is essential in a vast number
of processes (e.g. sintering, medicine production. . .).

By combining both concepts, i.e., Scale Relativity or fractal geometry on the one hand, and
the hypothesis of the existence of a Fracture Quantum on the other, this paper intends to derive
the scaling laws for the energy density dissipation and for other mechanical properties of
(quasi-brittle) materials, such as toughness, fracture energy, Young’s and shear elastic moduli,
and ultimate normal and shear stresses and strains.

2. Energy dissipations during fragmentation

Fragmentation involves particles at each scale. We assume a fractal (self-similar) particle
size distribution, satisfying the Maximum Entropy Principle (Engleman et al., 1988) for the
distribution in size of fragments (Carpinteri and Pugno, 2002a):

P(< r) = N(< r)

N0
= 1 −

(a

r

)D

(1)

where N(< r) is the number of fragments with size smaller than r, N0 is the total number
of fragments, a(� rmax) is the minimum fragment size (or material quantum), and D is the
so-called fractal exponent. Such a fractal exponent is theoretically positive. It is possible to
observe experimentally that, in the vast majority of cases involving the crushing of three di-
mensional objects, such an exponent is comprised between 2 and 3 (e.g. disaggregated gneiss
D = 2.13, disaggregated granite D = 2.22, broken coal D = 2.50, projectile fragmentation
of quartzite D = 2.55, projectile fragmentation of basalt D = 2.56, fault gauge D = 2.60,
sandy clays D = 2.61, terrace sands and gravels D = 2.82, glacial till D = 2.88) – see
Turcotte (1992). This is theoretically equivalent to a crushing in which the smallest fragments
provide the main contribution to the creation of the fracture surface, while the largest ones
contribute to defining their volume. As a consequence, the fractal exponent seems to be
close to a universal value, according to the universality observed by Bouchaud et al. (1990)
for fracture surfaces. Fractal exponents outside this interval can be detected in a few cases,
such as artificially crushed quartz (D = 1.89) or ash and pumice (D = 3.54). Usually for
2D-crushing, in which the smallest fragments provide the main contribution to the creation
of the fracture perimeter while the largest ones define the area, the two-dimensional fractal
exponent is comprised between 1 and 2. This is experimentally substantiated: in fact, several
texts regarding ice floe fragmentation set the values of D as 1.7–1.8, 1.36 and 1.56 (Weiss,
2001). Likewise, a value ranging from 0 to 1 can be expected for the one-dimensional fractal
exponent.

The probability density function p(r) times the interval amplitude dr represents the per-
centage of particles with size between r and r + dr. It is provided by derivation of the
cumulative distribution function (1):

p(r) = dP(< r)

dr
= D

aD

rD+1
(2)

During fragmentation, the energy dissipation due to fracture, dWF , is proportional to the
surface area of fragments, dA (Griffith, 1921):

dWF dA (3)
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During impact fragmentation (material in compression) the main energy dissipation dWC

is due to collisions and friction between particles (convertion into heat), and the effect is
proportional to the same quantity dA (Smekal, 1937):

dWC dA (4)

On the other hand, during explosion fragmentation (material in tension) the main energy
loss dWT is proportional to the kinetic energy of fragmented ejecta dK. The velocity of
fragmented ejecta is inversely proportional to the square root of fragment size as ν r−1/2

(Nakamura and Fujiwara, 1991), so that the energy loss (kinetic energy) is proportional also
in this case to the fragment surface dA:

dWT dK ν2dV dA (5)

The energy spent into wave propagation, contributing to the same fragmentation process,
will be a portion of the kinetic energy. An interesting and detailed analysis of this effect has
been recently proposed by Simonov (2002).

Summarising, the global energy dissipation in impacts (dWC +dWF ) or explosions (dWT +
dWF ), as well as in a mixed fragmentation (dWC + dWT + dWF ), surprisingly appears to be
proportional to the surface area dA of fragments.

3. Scaling law for fragmentation energy density: mean value

Based on Fracture Mechanics, we can make a statistical hypothesis of self-similarity, i.e.,
rmax R, with R the characteristic size of the object (the larger the fragmented object, the
larger the largest fragment, see Carpinteri and Pugno, 2002a). Let us consider one- (D = 1),
two- (D = 2) or three-dimensional (D = 3) self-similar objects (Figure 1).

The total surface area of fragments can be obtained by integration (

∫ rmax

rmin

=
∫ R

a

∫ R

a

):

A

∫ R

a

N0r
D−1p(r)dr ∼=




N0
D

D − D + 1
aD−1, D > D − 1

N0
D

D − D − 1
aDRD−D−1, D < D − 1.

(6)

On the other hand, the total volume of the particles, or total fragmented volume V , is:

V

∫ R

a

N0r
Dp(r)dr ∼=




N0
D

D − D
aDRD−D, D < D

N0
D

D − D
aD, D > D.

(7)

The energy per unit volume WC dissipated during fragmentation, which is proportional to
the total surface area A over the total fragmented volume V , can be obtained by eliminating
N0 from Equations (6) and (7):

WC A/RD R− 1
2 +δ, with




δ = −1/2, D < D − 1

δ ≡ D − D + 1/2, D − 1 � D � D

δ = +1/2, D > D.

(8)
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Figure 1. One-, two- and three-dimensional objects.

It is important to emphasize that WC Rα,−1 ≤ α ≤ 0, independently of the topological
dimension D. In Equation (8), we have extended the result also to the case of equalities, for
which only logarithmic corrections would appear.

The three-dimensional law for fragmentation in Equation (8) represents an extension of the
Third Comminution Theory (Bond, 1952) obtained for δ = 0, where energy V 2.5/3, as well
as its limit cases (δ = −1/2 and δ = 1/2), coincide respectively with the Surface Theory (von
Rittinger, 1867), when the dissipation really occurs on a surface (energy V 2/3), and with
the Volume Theory (Kick, 1885), when the dissipation occurs in a volume (energy V ) –
see Béla Beke (1964). Equation (8) shows, in its three-dimensional form, that the dissipation
occurs in a fractal domain always comprised between surface and volume. It has successfully
been applied by Carpinteri and Pugno (2002b,c and 2003) in different scientific areas.

The result of Equation (8) can be considered of wider validity and not only for fragment-
ation processes. For example, considering a bar under traction with self-similar distributed
plastic zones, the scaling of the energy dissipation, which is proportional to the total volume
of the plastic zones, can be obtained from Equation (8), in which D = 1. In general, fractal
dimensions of dislocation cell structures (i.e., where the energy is dissipated) have been ob-
served comprised between 2 and 3 (in [100]-oriented Cu single crystals; Hahner, Bay, Zaiser,
1998), as here discussed for the case of D = 3.

It is important to note that Equation (8) involves only the average value of the dissipation
energy density.

4. Scaling law for fragmentation energy density: standard deviation

Considering as previously done a = const � rmax R, the scaling law for the standard
deviation of the fragmentation energy density can be obtained as:

σW

1

V

√∫ R

a

N0(rD−1 − 〈rD−1〉)2p(r)dr (9)

where 〈rD−1〉 A/N0 is the mean value of rD−1, substantially the mean fragment surface
area. Introducing the expression for N0 obtained from Equation (7) into Equation (9), as well
as a = const � rmax R, we obtain the scaling for the standard deviation of the energy
density:
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σW R−1− ε
2 , with




ε = 0, D < D

ε ≡ D − D, D ≤ D ≤ D + 1

ε = 1, D > D + 1.

(10)

It is important to emphasize that σW Rα, − 3
2 ≤ α ≤ −1, independently of the topological

dimension D. Usually D < D, so that ε = 0 and σW R−1. Larger dispersions are predicted
for smaller structures.

Summarizing, the scaling for the average value of the energy density dissipated during
fragmentation is given by Equation (8), as well as the scaling for the related standard deviation
is given by Equation (10).

5. Scaling laws for elastic moduli: mean values

Let us assume a block of condensed matter containing several self-similar pre-existing defects
like cracks and pores (a three-dimensional deterministic idealization could be represented by
the well-known Menger sponge). According to the fractal hypothesis, the effective volume of
the block scales as RD−η, where 0 ≤ η ≤ 1 is connected to the fractal dimension of defects
(e.g., pores in the Menger sponge); a solid without pre-existing defects is described by η = 0,
as well as η = 1 describes the opposite limit case (maximum distribution of defects). As a
consequence, the volume fraction of matter (i.e., the effective volume of matter over the total)
scales as R−η, RD being proportional to the nominal volume of the solid. A classical rule of
mixture for the Young modulus E gives its scaling:

E = Emνm + Edνd R−η (11)

where the intrinsic Young modulus Em of the matter is a constant, the Young modulus Ed of
defects is equal to zero by definition and νm = 1 − νd R−η is the previously mentioned
volume fraction. The same conclusion could be obtained for the shear elastic modulus G. As
a consequence, the Poisson’s ratio is predicted to be size-independent. Summarizing:

E G R−η. (12)

It is important to emphasize that E G Rα, −1 ≤ α ≤ 0, independently of the
topological dimension D.

The result of this very simple model agrees with the experimental evidence that smaller is
stiffer (Treacy, Ebbesen and Gibson, 1996).

6. Scaling laws for the other mechanical properties: mean values

By applying the scaling law for the mean energy density of Equation (8), the scaling laws for
the average mechanical properties of condensed matter, like critical normal and shear stresses
σC, τC and strains εC, γC , fracture energy GC and toughness KIC , can be easily obtained by
expressing the energy density in the following different forms:

WC

σ 2
C

E

τ 2
C

G
Eε2

C Gγ 2
C

GC

R

K2
IC

ER
. (13)
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It is important to emphasize that Equation (13) should be verified also for nonlinear beha-
viours, the constants of proportionality for stresses and strains being in general different from
1/2. From Equations (8) and (12), by means of Equation (13), the scaling laws for the mean
mechanical properties can be obtained as:

GC R
1
2 +δ Rα, 0 ≤ α ≤ 1 (14)

KIC R
1
4 + δ

2 − η
2 Rα, −1

2
≤ α ≤ 1

2
(15)

σC τC R− 1
4 + δ

2 − η
2 Rα, −1 ≤ α ≤ 0 (16)

εC γC R− 1
4 + δ

2 + η
2 Rα, −1

2
≤ α ≤ 1

2
(17)

The results show us that the fracture energy increases by increasing the size R, as well as the
strengths increase by decreasing the size: ‘smaller is stronger’ is a well-known experimental
evidence. The classical size effect on strength predicted by Fracture Mechanics corresponds
to the intermediate case of σC R− 1

2 . The lowest power for strength is predicted to be −1.
On the other hand, both critical strain and fracture toughness could theoretically increase by
increasing or decreasing the structural size. In addition, these inversions of tendencies, for
fracture energy (as well as for the strength) are not allowed.

Furthermore, the Fractal Scaling Laws for σC, εC and GC , introduced by Carpinteri (Carpin-
teri 1994a,b and Carpinteri et al. 2002) in a different way (based on the order to disorder
transition), are:

Fractal Scaling Laws : GC RdG, σC R−dσ , εC R−dε,

with dG + dσ + dε = 1.
(18)

A comparison between Equations (14), (16), (17) and (18) shows that the relation dG+dσ +
dε = 1 is identically satisfied for each couple (δ, η). For these reasons, Equations (14), (16)
and (17) can be considered a generalization of the (mono) fractal scaling laws, Equation (18).

7. Scaling laws for the other mechanical properties: standard deviations

The scaling laws for the standard deviations of the critical mechanical properties can be
estimated for negligible elastic moduli dispersions:

σE = σG = 0. (19)

By derivation of Equation (13), we obtain the corresponding relationship on standard
deviations:

σW

σCσσ

E

τCστ

G
EεCσε GγCσγ

σG

R

KICσK

ER
. (20)

From the scaling laws of Equations (10) and (19), by means of Equation (20), the scaling
laws for the standard deviations of the mechanical properties can be obtained as:

σσ στ R− 3+2(δ+ε+η)
4 Rα, −2 ≤ α ≤ −1

2
(21)
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Table 1. Scaling Laws (−1/2 ≤ δ ≤ 1/2, 0 ≤ η, ε ≤ 1).

Property Mean Value Standard Deviation

Critical energy density WC R− 1
2 +δ σW R−1− ε

2

Fracture energy GC R
1
2 +δ σG R− ε

2

Fracture toughness KIC R
1
4 + δ

2 − η
2 σK R− 1

2 ( 1
2 +δ+ε+η)

Critical stresses σC τC R− 1
4 + δ

2 − η
2 σσ στ R− 3+2(δ+ε+η)

4

Critical strains εC γC R− 1
4 + δ

2 + η
2 σε σγ R− 3+2(δ+ε−η)

4

Elastic moduli R G R−η σE = σG = 0

Table 2. Scaling Laws (extreme cases).

Scaling Rα Mean Value Standard Deviation

Dissipated energy density −1 ≤ α ≤ 0 − 3
2 ≤ α ≤ −1

Fracture energy 0 ≤ α ≤ 1 − 1
2 ≤ α ≤ 0

Fracture toughness − 1
2 ≤ α ≤ 1

2 − 3
2 ≤ α ≤ 0

Critical stresses −1 ≤ α ≤ 0 −2 ≤ α ≤ − 1
2

Critical strains − 1
2 ≤ α ≤ 1

2 − 3
2 ≤ α ≤ 0

Elastic moduli −1 ≤ α ≤ 0 σE = σG = 0

σε σγ R− 3+2(δ+ε−η)
4 Rα, −3

2
≤ α ≤ 0 (22)

σG R− ε
2 Rα, −1

2
≤ α ≤ 0 (23)

σK R− 1
2 ( 1

2 +δ+ε+η) Rα, −3

2
≤ α ≤ 0. (24)

It is important to emphasize that they are independent of the topological dimension D and
that all the predictions are of larger dispersions for smaller structures. Obviously, the predicted
scaling of the standard deviations are based on the hypothesis of Equation (19).

8. Conclusions

Assuming a fractal statistical distribution for the energy dissipated into condensed matter, the
scaling laws for the mean values and for the standard deviations of the related mechanical
properties have been estimated. The scaling laws are summarized in Table 1. In Table 2
their extreme cases are emphasized. Reference values for the power-law exponents can be
considered assuming an energy dissipation arising over a fractal domain exactly intermedi-
ate between a surface and a volume (δ = 0), a material with negligible Young modulus
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Table 3. Scaling Laws (reference values: δ = η = ε = 0)

Scaling Rα Mean Value Standard Deviation

Dissipated energy density α = − 1
2 α = −1

Fracture energy α = 1
2 α = 0

Fracture toughness α = 1
4 α = − 1

4

Critical stresses α = − 1
4 α = − 3

4

Critical strains α = − 1
4 α = − 3

4

Elastic moduli α = 0 σE = σG = 0

scaling (η = 0), as well as the usual case of a fractal exponent lower than the correspond-
ing topological dimension (ε = 0). The corresponding reference values are summarized in
Table 3.
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