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c Nonlinear vibration of a double layered graphene sheet embedded in polymer medium is studied.
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a b s t r a c t

In the present article, nonlinear free and forced vibration of a bilayer graphene embedded in a polymer

medium is studied based on the nonlocal elasticity theory. As a nonlinear function of deflection of

graphene sheets, a refined pressure expression is established to describe the van der Waals (vdW)

interactions between graphene layers and polymer medium. Assuming the large displacements and

anisotropic model for graphene layers, the nonlinear couple partial differential equations of a double

layered graphene sheet (DLGS) are obtained. The in-phase and out of phase nonlinear to linear natural

frequencies are shown for both zigzag and armchair geometries. The effects of small scale parameter,

nonlinear coefficients of vdW between two layers, nonlinear factor of polymer matrix and geometric

properties on the nonlinear vibrational behavior of a DLGS are discussed in detail. It is found that the

nonlinear vdW coefficient has a significant effect on the out of phase frequencies while the nonlinear

polymer coefficient has considerable influence on in-phase frequencies.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Recently, researchers worldwide have engaged in fundamental
studies of graphene sheets and have investigated the potential of
their technological applications including graphene-based com-
posite structures. Remarkable and unique properties of graphene
sheets have attracted particular interest to serve them as excel-
lent reinforcements for high performance polymer composites
(see e.g. [1–2]). High stiffness and strength, superior fracture
toughness and enhanced electrical conductivity of the graphene
sheets produce composites with tailored physical and mechanical
properties. Due to exceptional properties of graphene sheets,
these two dimensional nano-structures become a suitable candi-
date as a reinforcement for polymers. It was shown that graphene
ll rights reserved.
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can significantly improve the physical properties of host polymers
such as stiffness, strength, thermal and electrical conductivities
and dimensional stability [3].

Due to difficulties in experimental analyses of nanostructures,
there are several articles in literature that carried out the mechan-
ical analysis of nanostructures such as nanotubes and graphene
sheets based on the continuum mechanics concepts. The vibration
analysis of multilayered graphene sheets using a continuum model
was reported by He et al. [4]. They derived an explicit formula to
predict the linear van der Waals (vdW) interaction between any
two sheets. Behfar and Naghdabadi [5] investigated the nanoscale
vibrational analysis of a multi-layered graphene sheet embedded
in an elastic medium and determined the corresponding natural
frequencies and the associated modes. Jiang et al. [6] established
the cohesive law for interfaces between a carbon and polymer
atoms which were not well bonded and were characterized by the
van der Waals force. Xu et al. [7] studied the vibration of a double
walled carbon nanotube in which the interlayer vdW forces was
described as a nonlinear function of displacement. Based on the
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continuum mechanics concept and a multiple-elastic beam model,
the nonlinear free vibration of embedded multiwall carbon
nanotubes was carried out by Fu et al. [8] using the incremental
harmonic balanced method. Liew et al. [9] proposed a continuum
based plate model to derive the natural frequencies and asso-
ciated vibration modes of multi-layered graphene sheets
embedded in an elastic matrix. He et al. [10] used an elastic,
multiple shell model for the vibration analysis of multi-walled
carbon nanotubes. They modeled the vdW interaction between
any two layers as the radius-dependent function. Duan and Wang
[11] developed a molecular mechanics simulation to investigate
the nonlinear deformation of a single layer, circular, graphene
sheet under a central point load. Lu et al. [12] projected the vdW
forces along the normal direction of the carbon nanotubes and
showed that the vdW pressures are not the same on the walls but
inversely proportional to wall radius. Mahdavi et al. [13] studied
the nonlinear vibration of a single walled carbon nanotube
embedded in a polymer matrix. The interfacial vdW forces were
described by a nonlinear function in terms of deflection of carbon
nanotubes. Murmu and Pradhan [14] used the nonlocal elasticity
theory to study the vibration response of single layered graphene
sheets embedded in an elastic medium. Ke et al. [15] considered
the nonlinear free vibration of embedded double walled carbon
nanotubes based on the Timoshenko beam model and von Karman
geometric nonlinearity. They employed the differential quadrature
method to solve the nonlinear governing equations.

Yang et al. [16] studied the nonlinear free vibration of single
walled carbon nanotubes based on von Karman geometric non-
linearity and Eringen’s nonlocal elasticity theory for different
boundary conditions. The elastic modulus was obtained through
molecular mechanics simulation. He et al. [17] derived a more
refined pressure distribution expression to describe the van der
Waals interaction between any two tubes of a multi-walled
carbon nanotube to study the buckling and post-buckling of such
materials. Shen et al. [18] presented nonlinear vibration behavior
of a simply supported, rectangular, single layer graphene sheet in
thermal environments and obtained the value of nonlocal para-
meter. The nonlocal 3-D Navier equations of motion were refor-
mulated and decoupled by Jomehzadeh and Saidi [19] to study
the vibration behavior of nano-plates. They [20] investigated the
large amplitude vibration of multi-layered graphene sheets by
considering linear vdW interactions between any two layers. Shen
et al. [21] studied the nonlinear bending behavior of a single layer
rectangular graphene sheet subjected to a transverse uniform
load in thermal environments. Nonlinear bending, vibration and
postbuckling analyses were investigated for a simply supported
single thin film resting on a two-parameter elastic foundation by
Shen [22]. Farajpour et al. [23] considered the small scale effect
on buckling analysis of circular graphene sheets. Pradhan and
Kumar [24] studied the small scale effect on the vibration analysis
of orthotropic single layered graphene sheets. Ansari and Rame-
zannezhad [25] presented nonlinear vibrations of embedded
multiwalled carbon nanotubes in thermal environments. Effects
of nonlinear van der Waals interaction forces from both surround-
ing medium and adjacent tubes on nonlinear vibration of an
embedded double-walled carbon nanotube were studied by
Mahdavi et al. [26]. Recently, Wang et al. [27] developed a
nonlinear continuum model for nonlinear vibration analysis of
multi-layered isotropic graphene sheets without considering the
small scale effect.

In most conditions of nano environments, the large displace-
ments incessantly occur for nano devices including graphene
sheets. The large amplitude vibration of graphene sheets is a
key role in the design of resonator structural components. Also, in
order to fully achieve the more accurate results, the van der
Waals (vdW) interaction and polymer pressure should be refined
and the small length scale parameter should be considered.
Moreover, the mechanical properties of graphene sheets are
directionally dependent and the orthotropic material properties
should be used to describe the mechanical properties of graphene
layers. In this paper, the nonlinear free and forced vibrations of
double layered orthotropic graphene sheets embedded in a
polymer medium are presented by considering the nonlinear
terms for both layers and polymer interactions. Based on the
von Karman and nonlocal elasticity theory, the governing equa-
tions of motion are obtained for a double layered graphene sheet
(DLGS) with arbitrary direction of chiral angle. The Galerkin’s
approximate method is used to reduce the governing nonlinear
partial differential equations to ordinary differential equations
and the harmonic balance method is employed to determine
nonlinear frequencies of DLGS’s. The effects of small length scale,
nonlinear vdW interaction, nonlinear coefficient of polymer
matrix, geometrical and anisotropic material properties on the
nonlinear vibration behavior of DLGS’s are studied in detail.
2. Modeling of nonlinear expression for vdW pressure

For a DLGS in a polymer medium, the interaction between
layers is governed by the van der Waals force, which is char-
acterized by the Lennard–Jones’s pair potential. The vdW pressure
between each layer of graphene and the surrounding medium can
also be expressed by the Lennard–Jones potential. The Lennard–
Jones 6–12 model is given as [28]

ULJ ¼ 4e s
d

� �12
�

s
d

� �6
� �

ð1Þ

where e is the bond energy at the equilibrium distance, and it
takes the values eC–C¼0.002390 eV for carbon atoms of the
graphene sheets and eC2CH2

¼ 0:004656 eV for carbon atoms and
the –CH2– units of polyethylene [29]. s is a parameter which is
determined by the equilibrium distance and its value is 0.3825 nm
for carbon-polyethylene. Also, d is the distance between interacting
atoms. Depending on the positions of atoms of the top layer
relative to those on the bottom layer, there are two different
stacking modes for the bilayer graphene (BLG), AA- and AB-
stacking graphite, as their geometrical structures are shown in
Fig. 1. Two graphene layers stacked directly on top of each other
in AA-stacking while carbon atoms of one layer are placed in
the center of Brillouin zone of other layer in the AB-stacking.
Although the C–C bond length is the same for both of them, the
equilibrium distance between two layers is different in both of
them, which is nearly 3.59 Å for AA-stacking BG and 3.31 Å for the
AB-stacking one [30].

The vdW force can be obtained by taking the derivative of the
Lennard–Jones pair potential with respect to distance d as
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It can be seen that the van der Waals force is a highly
nonlinear function of distance. Therefore, it is not reasonable to
model it by a linear function. Expressing the Taylor expansion of
the vdW force around the equilibrium position d, and taking into
account that the vdW force is an odd function of the interlayer
spacing, one can easily obtain:
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Fig. 2. Schematic diagram for direction of forces of graphene layers.

Fig. 1. Two different geometrical configurations of a bilayer graphene. (a) AA-stacking (b) AB-stacking.
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The Taylor expansion of the vdW force between atoms is
truncated to third term in order to obtain the more precise result.
As it can be seen from Fig. 2, this vdW force is along the atoms
direction. In order to find the interaction pressure between two
layers of the graphene sheets in z direction, the vdW force should
be projected along the z direction and then integrated over the
entire sheet as

qgr�gr ¼ r2
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where rC ¼ 4=3
ffiffiffi
3
p

l2C is the area density of the carbon atoms and
lC is the carbon–carbon bond length. By considering relation
between the distance difference of two atoms and transverse
displacements of the graphene layers (d�d¼ ðw1�w2Þd=z), the
vdW pressure between two layers of graphene in Eq. (4) can be
expressed as
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where _ is the distance between two layers, w1 and w2 are
transverse displacements of bottom and top layers, respectively.
It can be seen that the pressure at a point between two layers is a
nonlinear function of their deflections at that point and the vdW
force is also projected in transverse direction to obtain more
accurate results.

The interaction force between the carbon atoms of a graphene
layer and polymer medium is also van der Waals force. In order to
find the interaction pressure between a layer of graphene and the
polymer matrix in z direction, the vdW force in Eq. (3) should be
projected in transverse direction and integrated over the entire
volume of the polymer medium. By considering the distance
difference of two atoms in terms of transverse displacements of
the bottom or top layers wi (i¼1,2), the vdW interaction between
the graphene layer and polymer matrix can be expressed as

qgr�pol ¼ rCrCH2
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where rC�CH2
is the volume density of polymer molecules

(number of polymer molecules per unit volume) which is equal
to 3.1�1028 1/m3 for the –CH2– unit in polyethylene and _i is the
distance between polymer medium and each layer of graphene
sheets. Also, subscript i represents layer number which is 1 for
bottom layer and 2 for top layer. The interaction pressure between
a layer of graphene and polymer matrix can be simplified as

qgr�pol ¼�rCrCH2
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In this model, unlike the previous models, the vdW pressure of
the polymer medium has been expanded to the third order of
Taylor’s series. Therefore, this model is capable to capture the
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nonlinear effect of polymer matrix on vibrational behavior of
DLGS’s and is more accurate than the previous models.

For a specific model of DLGS in a polyethylene medium where
the equilibrium distances are _1 ¼ 0:858sC�CH2

and _2�_1 ¼

0:341 nm [31], the numerical values of the vdW coefficients can
be obtained as

c1 ¼�84:1593 GPa=nm c3 ¼�44621:4053 GPa=nm3

k11 ¼ 28:4941 GPa=nm k31 ¼ 12825:3287 GPa=nm3

k12 ¼�0:7720 GPa=nm k32 ¼�0:1407 GPa=nm3

ð8Þ

Also, the vdW coefficients can be obtained as c1¼�27.3546 GPa/
nm, c3¼�2041.1352 GPa/nm3 and c1¼�146.8247 GPa/nm, c3¼

�7176.3890 GPa/nm3 for AA- and AB-stacking bilayer graphenes,
respectively.

Note that the negative and positive signs represent an attrac-
tion and repulsion between the atoms, respectively. It can be seen
that the effects of polymer matrix on top layer is negligible with
respect to its effect on bottom layer.
3. Nonlocal equations of motion for a DLGS

Consider a double layered orthotropic graphene sheet resting
on an elastic foundation as a polymer medium (Fig. 3). The length
of each sheet is a in x-direction, the width is b in y-direction and
the thickness is h. Also, the coordinate system is assumed to be at
the middle of each layer. Based on the classical plate theory, the
displacement components of an arbitrary point of the sheet can
be expressed as

u1i ¼ uiðx,y,tÞ�z
@wiðx,y,tÞ

@x

u2i ¼ viðx,y,tÞ�z
@wiðx,y,tÞ

@y

u3i ¼wiðx,y,tÞ ð9Þ

where ui(x,y,t), vi(x,y,t) and wi(x,y,t) are displacement components
of the midplane of each layer in the x, y and z directions, respectively
and t is time. Also, subscript i represents layer number. Since the
graphene sheet is assumed to have large amplitude deformation,
the nonlinear von Karman type strain–displacement relations are
used as

exi ¼ ex0iþzkxi

eyi ¼ ey0iþzkyi

gxyi ¼ gxy0iþzkxyi, ð10Þ

where in-plane strains and curvature parameters are defined as

ex0i

ey0i

gxy0i

8><
>:

9>=
>;¼

@ui
@x þ

1
2

@wi
@x

	 
2

@vi

@y þ
1
2

@wi

@y

� �2

@ui

@y þ
@vi

@x þ
@wi

@x
@wi

@y

8>>>><
>>>>:

9>>>>=
>>>>;

,

kxi

kyi

kxyi

8><
>:

9>=
>;¼

�
@2wi

@x2

�
@2wi

@y2

�2 @2wi

@x@y

8>>>><
>>>>:

9>>>>=
>>>>;

ð11Þ
Interaction
between two layers 

Interaction between
polymer matrix
and bottom layer  

Polymer M

Gra

Fig. 3. Double layered graphene shee
The equations of motion for a DLGS can be obtained by using
the Hamilton’s principle. The Hamilton’s principle states thatZ t

0
ðdT�dUþdVÞdt¼ 0 ð12Þ

where T, U and V are kinetic energy, strain energy of the graphene
layers and potential energy of the external loads, respectively.
Expressing these parameters based on the von Karman theory, the
nonlinear equations of motion for a DLGS can be obtained as
follows [20]:
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where a dot denotes differentiation with respect to time and Pi is
the external load in which involves two parts, first due to external
pressure exerted by the van der Waals forces and second due to
the applied force or disturbance in the forced vibration analysis.
Ij’s(j¼0,1,2) are the inertia parameters which are expressed in
term of the mass density of the graphene sheets (ri) as

ðI0i,I1i,I2iÞ ¼

Z h=2

�h=2
rið1,z,z2Þdz ð14Þ

In order to obtain the nonlocal governing equations of motion,
the resultant forces and moments in Eq. (13) should be described
based on the nonlocal elasticity theory. According to nonlocal
elasticity theory, the stress at a definite point in a body depends
not only on the strain at that point but also on those at all other
points of the body. Nonlocal continuum mechanics allows one to
account for the small length scale effect that becomes significant
when dealing with microstructures or nanostructures. Eringen
[32] showed that the nonlocal stress tensor can be related to local
stress tensor as

½1�ðe0lÞ2r2
�s¼ s0 ð15Þ

where e0l is a small scale parameter, e0 is a constant to adjust the
model to match the reliable experimental results, l is an internal
characteristic length such as C–C bond length and r2 is the
Laplacian operator.

Due to the hexagonal structure of the unit cells in graphene
sheets, the mechanical properties of these structures are aniso-
tropic. The directionally dependent properties of the graphene
sheets depend on the direction of chiral angle. Obtaining the force
and moments resultants for an anisotropic graphene sheet and
atrix 
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t embedded in a polymer matrix.
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introducing the stress function j as

Nxi ¼
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,Nxyi ¼�
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@x@y
; ð16Þ

and considering the small scale effect, the nonlocal nonlinear
governing equations of motion for a double layered orthotropic
graphene sheet in a polymer matrix can be obtained as
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where the parameters Ajk and Djk (jk¼11, 12, 22 and 33) are the
constant coefficients which are defined in terms of mechanical
properties of graphene sheets in Appendix A, also, the local force
moments are considered as (N0 ¼

P
n¼0(e0li)

2nr2nN).
It can be seen that the governing equations of motion of a

DLGS embedded in a polymer matrix based on the von Karman
assumptions are four nonlinear coupled partial differential equa-
tions with total degree of sixteen in each direction in terms of
transverse displacement and stress function. It is assumed that
the properties of both layers are the same. The nonlinear terms in
these equations occur due to three issues as large displacement
assumption for graphene sheets, nonlinear behavior of vdW
interaction between two layers and nonlinear coefficients in
pressure interaction of the polymer matrix.

Also, by the help of strain–displacement relations, the in-plane
displacement components can be expressed in terms of the
transverse deflection wi and stress function ji as

ui ¼
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Hence, by defining the transverse displacement and stress
function, the in-plane displacements of the graphene sheets can
be also obtained.
4. Free vibration analysis

Let us consider the large amplitude free vibration analysis
of double layered graphene sheets with all edges movable simply
supported or totally clamped boundary conditions. In this
case, the external loads due to applied forces on graphene layers
are considered to be zero. For the movable simply supported
edges, which are kept straight by a distribution of normal
stresses, and clamped edges, the following boundary conditions
require:
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a

2

wi ¼ 0, Myi ¼ 0,
@2ji

@x@y
¼ 0,

Z a=2

�a=2

@2ji

@x2
dx¼ 0 at y¼ 7

b

2
ð19aÞ

Clamped:

wi ¼
@wi

@x ¼
@2ji

@x@y ¼
R b=2
�b=2

@2ji

@y2 dy¼ 0 at x¼ 7 a
2

wi ¼
@wi
@y ¼

@2ji
@x@y ¼

R a=2
�a=2

@2ji

@x2 dx¼ 0 at y¼ 7 b
2

ð19bÞ

In view of the boundary conditions given in Eq. (19), the
vibration mode of each layer in transverse direction is assumed to
be

For simply supported graphene sheet:

wi ¼ hWiðtÞcos
npx

a

� �
cos

mpy

b

� �
ð20aÞ

For clamped graphene sheet:

wi ¼ hWiðtÞcos2 npx

a

� �
cos2 mpy

b

� �
ð20bÞ

where n and m are the numbers of half waves in x and y

directions, respectively and Wi(t) is the nondimensional trans-
verse displacement (amplitude). It can be found that the admis-
sible function (20) satisfies the first two boundary conditions in
Eq. (19). Substituting Eq. (20) into the right side of Eqs. (17b and
d), the general solutions for the stress function fi of simply
supported bilayer graphene can be obtained as

j1 ¼
h2

32n2m2a2b2

m4a4cosð2npx=aÞ

A22
þ

n4b4cosð2mpy=bÞ

A11

 !
W2

1ðtÞ

ð21aÞ

j2 ¼
h2

32n2m2a2b2

m4a4cosð2npx=aÞ

A22
þ

n4b4cosð2mpy=bÞ

A11

 !
W2

2ðtÞ

ð21bÞ

These functions exactly satisfy two last boundary conditions
in Eq. (19) (the in-plane boundary conditions). Substituting
the transverse displacement wi for i¼1 and 2 and the stress
function from Eqs. (20) and (21) into the basic Eqs. (17a and c)
and then using the Galerkin method, two modal equations are
obtained as

d2W1ðtÞ

dt2
þa1W1ðtÞþb1W3

1ðtÞþgW2ðtÞ

þlW3
2ðtÞþZW1ðtÞW

2
2ðtÞþdW2

1ðtÞW2ðtÞ ¼ 0 ð22aÞ

d2W2ðtÞ

dt2
þa2W2ðtÞþb2W3

2ðtÞþgW1ðtÞþlW3
1ðtÞþZW2

1ðtÞW2ðtÞ

þdW1ðtÞW
2
2ðtÞ ¼ 0 ð22bÞ



where the modal coefficients for a bilayer graphene are defined as

a1 ¼�
12a2b2

½a2b2
þp2ðe0lÞ2a2þp2ðe0lÞ2b2

�ðc1�k11Þ�p4½2a2b2
ðQ12þ2Q33ÞþQ22a4þQ11b4

�h3

ð12a2b2
þa2h2p2þb2h2p2Þða2b2

þa2mp2þb2mp2Þrh
ð23aÞ
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b1 ¼
3p4h2

ða4Q22þb4Q11ÞðQ11Q22�Q2
12Þ�9a4b4Q11Q22ðc3�k31Þ

4rQ11Q22a2b2
ð12a2b2

þa2h2p2þb2h2p2Þ

ð23cÞ

b2 ¼
3p4h2

ða4Q22þb4Q11ÞðQ11Q22�Q2
12Þ�9a4b4Q11Q22ðc3�k32Þ

4rQ11Q22a2b2
ð12a2b2

þa2h2p2þb2h2p2Þ

ð23dÞ

g¼ 12c1a2b2

rhð12a2b2
þa2h2p2þb2h2p2Þ

ð23eÞ

l¼
27c3a2b2h

4rð12a2b2
þa2h2p2þb2h2p2Þ

ð23fÞ

Z¼�d¼� 81c3a2b2h

4rð12a2b2
þa2h2p2þb2h2p2Þ

ð23gÞ

It is noted that when the nonlinear terms and elastic founda-
tion are neglected, i.e., c3¼k11¼k31¼k21¼k31¼0, all of the above
relations can be reduced to the corresponding equations in
Ref. [20].

For linear vibration of the graphene sheets in which the non-
linear terms are neglected, two distinct linear natural frequencies
are obtained as

o2
L,1 ¼

a1þa2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þa2
2�2a1a1þ4g2

q
2

ð24aÞ

o2
L,2 ¼

a1þa2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þa2
2�2a1a1þ4g2

q
2

ð24bÞ

where oL,1 and oL,2 stand for the lowest linear natural frequencies
corresponding to the in-phase and out of phase vibrational modes,
respectively. It can be found that the linear vibration analysis
cannot consider the amplitude of the free vibrational modes. In
fact, the deflection amplitude depends on the frequency which is
determined by nonlinear vibration analysis.

In order to find the nonlinear natural frequencies of DLGS’s,
the Harmonic Balance (HB) method is employed. The HB method
is an analytical approach for solving nonlinear oscillators, in
which the initial conditions are generally simplified by setting
velocity or displacement equal to zero [33].

Here, the periodic solutions are considered for Eq. (22), and the
following two algebraic equations are obtained by applying the
HB method

o2
NL ¼ a1þ

3b1

4
W2

1þg
W2

W1
þ

3l
4

W3
2

W1
þ

3Z
4

W2
2þ

3d
4

W1W2 ð25aÞ
Table 1
Material properties of graphene layers.

Type of

grapheme

sheet

Small scale e0l

(nm)

Thickness h

(nm)

Density r (Kg/

m3)

Armchair 0.27 0.156 5295

Zigzag 0.22 0.154 5363
o2
NL ¼ a2þ

3b2

4
W2

2þg
W1

W2
þ

3l
4

W3
1

W2
þ

3Z
4

W2
1þ

3d
4

W1W2 ð25bÞ

From the above two equations, the nonlinear frequency (oNL)
and amplitude ratio (W1/W2) of the double layered graphene sheet
embedded in a nonlinear elastic medium can be determined.
5. Forced vibration analysis

Consider now the motion which results when a periodic external
force p2 ¼ p0 cosðotÞ is applied to the top layer of graphene sheet.
In this case, the modal equations can be obtained in the following
nonlinear forms:

d2W1ðtÞ

dt2
þa1W1ðtÞþb1W3

1ðtÞþgW2ðtÞþlW3
2ðtÞ

þZW1ðtÞW
2
2ðtÞþdW2

1ðtÞW2ðtÞ ¼ 0 ð26aÞ

d2W2ðtÞ

dt2
þa2W2ðtÞþb2W3

2ðtÞþgW1ðtÞþlW3
1ðtÞ

þZW2
1ðtÞW2ðtÞþdW1ðtÞW

2
2ðtÞ ¼ P cosðotÞ ð26bÞ

As it can be seen, because of the external force on the top layer,
the second modal equation is a non-homogeneous equation. The
coefficient P in this equation is defined as

P¼
192a4b4

rh2p2ð12a2b2
þp2h2b2

þp2h2a2Þðp2mb2
þp2ma2þa2b2

Þ
p0

ð27Þ

We consider the harmonic oscillations in which the period is
the same as the period 2p/o of the external force p0 cosðotÞ. Using
the HB method, the relation between amplitude and oscillation
frequency of a double layered graphene sheet can be determined.
6. Numerical results

In the following section, numerical results are presented for
the vibrational frequencies of double layered graphene sheets
(DLGS’s). The material properties of graphene sheets are pre-
sented in Table 1. They were obtained by Shen et al. [18] by
comparing the continuum and molecular dynamic results.

In order to verify the accuracy of the results, the obtained
natural frequencies for a clamped zigzag single layer graphene
sheet are compared with molecular simulation using the REBO
potential in Table 2. It can be seen that the results have a good
agreement with ones in literature especially in the nonlinear case.

The numerical results are presented for simply supported
graphene sheets and dimensions of the layers are assumed to be
4.888 nm�4.855 nm for armchair and 1.987 nm�1.974 nm for
�x Young

modulus E11

(TPa)

�y Young

modulus E22

(TPa)

Shear modulus

G12 (TPa)

Poisson’s

ratio n12

1.949 1.962 0.846 0.201

1.987 1.974 0.857 0.205



Table 2
Comparison of the natural frequencies (GHz) of a clamped single layer graphene sheet.

Dimensions

10 nm�10 nm 20 nm�10 nm 10 nm�20 nm 20 nm�20 nm

Molecular Simulation [34] 27.28 18.86 18.47 6.94

Present oNL 27.52, W¼0 nm 18.86, W¼0.75 nm 18.47, W¼0.66 nm 6.94, W¼0.2 nm

oL 27.52 17.20 17.16 6.90
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Fig. 4. In-phase nonlinear frequency ratio versus the amplitude of the top

graphene sheet for various small scale parameters.
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zigzag grapheme sheets. In all figures, the amplitude indicates the
nondimensional displacement of the top graphene sheet (W¼W2(t)).

In order to study the effect of the small scale parameter (e0l)
on the nonlinear frequency ratio oNL/oL (nonlinear to linear
frequencies), the backbone curves are depicted in Fig. 4 for a
double layered zigzag graphene sheet without polymer medium
for various small scale parameters. The nonlinear frequency ratio
in this figure is in-phase frequency. It can be seen that the
nonlinear frequency ratio increases by increasing the small scale
parameter while the linear frequency will decrease. This effect is
more significant for higher values of amplitude.

The out of phase nonlinear frequency is depicted in Fig. 5 for
the above case. It can be concluded that the small scale parameter
does not have a significant effect on the out of phase frequency of
the double layered graphene sheet. Also, since there is no polymer
matrix in this case, the amplitude ratio (W1/W2) is 1 and �1 for
in-phase and out of phase frequencies, respectively.

To study the effect of nonlinear coefficient of the van der
Waals (vdW) interaction between two layers of graphene sheet
(c3), the backbone curves are shown in Fig. 6 for double layered
zigzag graphene sheets embedded in polymer matrix for both
nonlinear and linear vdW cases. The values are obtained for in-
phase frequencies. It can be seen that the effect of nonlinear vdW
pressure is significant for higher amplitude and the nonlinear
coefficient of the vdW pressure should be considered for ampli-
tudes more than 0.4. Also, the backbone curves are shown for
in-phase and out of phase modes in Figs. 7 and 8, respectively, for
various values of c3. It can be concluded that the effect of
nonlinear vdW coefficient for out of phase mode is higher than
that for in-phase mode. Therefore, in order to obtain accurate
results, the nonlinear vdW coefficient should be considered
especially for out of phase modes. Besides, it can be seen that
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this coefficient increases the nonlinear frequencies of the embedded
DLGS.

To study the effects of nonlinear coefficient of the polymer
matrix on natural frequency of double layered graphene sheets
embedded in a polymer matrix, the backbone curves are depicted
for out of phase natural frequencies in Fig. 9. It can be seen that
unlike the vdW interaction, the nonlinear coefficient of polymer
matrix has an inconsiderable influence on out of phase frequen-
cies. If the amplitude ratios of two layers (W1/W2) are obtained for
both linear and nonlinear polymer interactions, it can be found
that they are very close to each other for out of phase modes (for
linear polymer foundation: �1.15oW1/W2o�1 and for non-
linear polymer foundation: �1.16oW1/W2o�1.04).

Also, the backbone curves of in-phase frequencies are plotted
for double layered armchair graphene sheets with different non-
linear polymer coefficients in Fig. 10. It can be seen that the effect
of nonlinear polymer interaction on in-phase frequencies is
considerable even for small amplitudes.

Variation of nonlinear frequency of a single layered armchair
graphene sheet versus the aspect ratio (a/b) is shown in Fig. 11.
Although the small scale parameter may depend on the aspect
ratio, it has been considered constant (e0l¼0.2 nm) in this figure
to study the effect of aspect ratio. It can be seen that nonlinear
frequency has a sharp variation for aspect ratios close to unity.
This effect is the same for a graphene sheet with linear and
nonlinear polymer medium.

For forced vibration results, the response curves (oscillation
amplitude of top layer versus the frequency ratio) of a zigzag
DLGS without a polymer matrix are shown in Fig. 12 for different
values of nonlocal parameters. The value of nondimensional
external loads ðP¼ p0a4=E11h4

Þ is assumed to be unit. It can be
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seen that the effect of nonlinearity increases as the nonlocal
parameter increases. Also, the response curves of a DLGS on a
polymer matrix are depicted in Fig. 13 for several values of
external loads. It can be concluded that because of the existence
of polymer matrix, the changes of vibrational behavior with
respect to external force is not considerable.
7. Conclusion

The nonlinear free and forced vibration analyses of double
layered orthotropic graphene sheets embedded in a polymer
medium have been presented. Explicit formulations have been
defined for linear and nonlinear coefficients of van der Waals
interactions between graphene layers and polymer matrix. Con-
sidering the small scale effect, the nonlinear governing equations
of motion have been obtained based on the von Karman hypoth-
esis. The harmonic balance method has been employed to study
the large amplitude vibration of a double layered graphene sheet
with nonlinear vdW interactions.

It is seen that the nonlinear coefficient of vdW interaction
between two layers has significant effect on out of phase non-
linear frequencies while the nonlinear coefficient of polymer
matrix has considerable influence on in-phase frequencies. Also,
the small scale parameter does not change the nonlinear out of
phase frequencies whereas it increases the in-phase nonlinear
frequency ratio.
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Appendix A

The coefficients of the governing equations of motion are
obtained in terms of mechanical properties of graphene sheets as

A11 ¼
Q22

hðQ11Q22�Q2
12Þ

A12 ¼�
Q12

hðQ11Q22�Q2
12Þ

A22 ¼
Q11

hðQ11Q22�Q2
12Þ

A33 ¼
1

hQ33

D11 ¼
h3Q11

12
D12 ¼

h3Q12

12
D22 ¼

h3Q22

12
D33 ¼

h3Q33

12
ðA:1Þ

where

Q11 ¼
E11ðcos4yþ2n21 sin2y cos2 yÞþE22 sin4 y

1�n12n21
þ4G12 sin2 y cos2 y

Q12 ¼
E11ðsin2y cos2 yþn21 sin4 yþn21 cos4 yÞþE22 sin2 y cos2 y

1

�n12n21�4G12 sin2 y cos2 y

Q22 ¼
E11ðsin4 yþ2n21 sin2 y cos2 yÞþE22 cos4 y

1�n12n21

þ4G12 sin2 y cos2 y
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Q33 ¼
E11ðsin2 y cos2 y�2n21 sin2 ycos2 yÞþE22 sin2 y cos2 y

1�n12n21

þG12ðcos2 y�sin2 yÞ: ðA:2Þ

where y denotes the chiral angle (i.e. y¼0 and 901 represent
armchair and zigzag configurations, respectively), E11 and E22 are
Young’s modulus in the direction and perpendicular of chiral
vector, respectively. Also, G12 and n are the shear modulus and
Poisson’s ratio of the graphene sheet, respectively.
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