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Natural stiffening increases flaw tolerance of biological fibers
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Many fibers in biomaterials such as tendon, elastin, or silk feature a nonlinear stiffening behavior of the
stress-strain relationship, where the rigidity of the material increases severely as the material is being stretched.
Here we show that such nonlinear stiffening is beneficial for a fiber’s ability to withstand cracks, leading to a flaw
tolerant state in which stress concentrations around cracks are diminished. Our findings, established by molecular
mechanics and the derivation of a theoretical scaling law, explain experimentally observed fiber sizes in a range
of biomaterials and point to the importance of nonlinear stiffening to enhance their fracture properties. Our study
suggests that nonlinear stiffening provides a mechanism by which nanoscale mechanical properties can be scaled
up, providing a means towards bioinspired fibrous material and structural design.
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I. INTRODUCTION

Biomaterials such as collagen, silk, elastin, or spectrin
feature complex hierarchical architectures that are critical
for their ability to achieve high strength and toughness [1].
Notably, they are often based on fibrous structures that display
a nonlinear stiffening constitutive material behavior, where the
stiffness increases severely as the material is being stretched.
In many cases the nonlinear stiffening has been shown to
result from entropic effects in protein molecules, which unfold
and successively align and stiffen [2–7]. In this study, by
means of a scaling law, we connect the universal nonlinear
stiffening material behavior seen in a very broad class of
fibrous biomaterials to their intrinsic fracture properties.

The concept of size effects in damaged materials, i.e., the
scaling of fracture strength, dates back to Griffith’s work in
the 1920s, and since then has been thoroughly studied for
metals, ceramics, and many other materials [8–11]. In flawed
materials, e.g., a fiber with a preexisting crack, the strength
is reduced due to stress concentrations that develop around
defects, which compromise the mechanical integrity as they
induce the propagation of fractures. Classical theory predicts
that the strength of the crack-free material can only be reached
by confining its dimension to a “critical size,” here denoted
by H ∗ [12,13]. When a flawed material is confined to H ∗, it
exhibits no stress concentration at the tip of a crack and reaches
a homogeneous deformation state, indicating flaw tolerance.

For many materials including graphene and nanotubes
the critical size tends to be close to the size of the atomic
spacing (or the unit cell of a crystal) [14], suggesting that the
flaw tolerant state is very difficult to achieve. Recent work
showed that the critical size additionally depends on boundary
conditions and other material properties [15–17]. The flaw
tolerance mechanism has been experimentally confirmed for
thin steel sheets and for notched nanoscale thin films, where
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no stress concentration could be observed and failure initiated
far away from the crack tip [18,19].

Here, we hypothesize that the nonlinear stiffening behavior,
i.e., the increasing elastic modulus during deformation as
universally observed in many biological fibers, contributes to
an increase of the critical size and therefore allowing them
to perform well in spite of the presence of cracks (the larger
the critical size, the larger the fiber diameter can be and still
feature a flaw tolerant behavior). In order to gain insight into
this mechanism, we use a simple bead-spring model with a
power-law potential to systematically model stiffening and
softening constitutive material behaviors (Sec. II). We then
determine the critical size H ∗ at which the fiber performs as
if it were unflawed (Sec. III). Additionally, we use nonlinear
fracture mechanics to derive a scaling law that predicts the
dependence of the critical size on the magnitude of the
stiffening (Sec. IV). In Sec. V we use the results of the general
study (Secs. II–IV) to determine the critical size for a set of
materials with simple constitutive behaviors and show that
fibrous biomaterials with stronger stiffening behavior often
display larger fibril diameters. We conclude that a stiffening
behavior may be advantageous for the fracture resistance of
fibers.

II. COARSE-GRAINED FIBER MODEL
AND PARAMETERS

In this section, we introduce the computational model used
to determine the critical size of the fibers with varying material
properties. Coarse-grained bead-spring models (also called
the internal bond method) provide a simple but appropriate
description of materials under axial tension [20,21], and
have been successfully applied to predict various size effects
[17,22–24]. This modeling technique applies to all systems
where a characteristic size can be identified (the microstructure
of the material) [21]. In this study, we set up a thin film
with a face centered cubic lattice consisting of two unit
cells in the out-of-plane direction [Fig. 1(a)]. A power-law
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FIG. 1. (Color online) Geometry of the plane strain fiber model
and constitutive behavior. (a) The fiber with length L, width H , and
crack size a consists of a face centered cubic lattice with nearest
neighbor interactions only. The fiber length is much larger than
the width. The model contains two periodic layers of beads in the
out-of-plane direction to enforce plane strain boundary conditions.
The fiber is subjected to uniaxial tension. (b) The bond behavior for
uniaxial tension is described by a nonlinear potential with controlling
parameter N , a constant failure force F ∗ = k0 = 2.5 kcal/(mol Å) and
failure strain of ε∗ = 5%. Note that the actual values are irrelevant as
this study is of comparative quality for the parameter N . The upper
line refers to the lowest value of N studied here and the lower line
to the highest value of N . During the computational experiments the
width H is varied while keeping L, ζ = a/H , and N constant. The
simulations are motivated by experimental tensile stress-strain curves
for, e.g., collagen (green [upper] line, σ ∗ ≈ 60 MPa, ε∗ ≈ 12%) [53];
polycaprolactone (PCL) microfibers (blue [upper] line, σ ∗ ≈ 25 MPa,
ε∗ ≈ 4%) [5]; tropoelastin molecules (black [lower] line, σ ∗ ≈ 5 MPa,
ε∗ ≈ 800%) [51]; elastin fibers (red [upper] line, σ ∗ ≈
1.3 MPa, ε∗ ≈ 190%) [54]; and viscid silk (orange [lower] line,
σ ∗ ≈ 450 MPa, ε∗ ≈ 3%) [2].

potential for the bonds with controlling parameter N serves as
a model for the constitutive behavior of axially loaded fibers
[Fig. 1(b)]. Under plane strain conditions this structure has
properties similar to those of a cracked fiber with diameter
H [25] (the characteristic dimension H typically denotes the
fiber’s diameter). Earlier studies suggested that it is adequate to
model composite fibers with a power-law material constitutive
behavior in plane strain [26–28].

In order to set up the molecular mechanics model, we define
a potential between the particles that captures the physics of
this problem and has a minimum number of parameters. A
general description of a bond force-extension power law that
comprises stiffening, softening, and linear behavior is given
by

F (r) = k0

[
ε(r)

ε∗

]N

, (1)

where k0 is the force at which the bond fails, ε(r) = (r − r0)/r0

with r0 as equilibrium bond distance, ε∗ is the failure strain
of the bond, and N > 0 is a stiffening parameter. Bond force
and bond potential are related by F (r) = −Fbond = ∂�/∂r

(tension). Hence, the pair potential between particles is

�(r) = k0r0ε
∗

(N + 1)

[
ε(r)

ε∗

]N+1

. (2)

Because we normalize the critical size by the equilibrium
bond distance r0, the choice of k0 and ε∗ are somewhat arbitrary
and the results maintain maximum generality. Furthermore, ε∗
is not a controlling parameter of the solution [see Eq. (10) in
Sec. IV] and k0 ∼ σ ∗. For further details and discussion, see
Secs. IV and V.

The parameter N controls the nature of the stress-
strain behavior, including softening (N < 1), linear
elasticity (N = 1), and stiffening (N > 1). For N ∈
[0.5,1.0,2.0,3.0,5.0,7.0,10.0] the bond behaviors are shown
in Fig. 1(b) with F ∗ = k0, such that all constitutive behaviors
studied vary only in their shape and lead to the same maximum
attainable force (respectively, maximum stress σ ∗ in the
lattice) and strain at the breaking point ε∗. All simulations are
carried out using a conjugate gradient energy minimization
approach implemented in the molecular simulation package
LAMMPS [29].

The coarse-grained simulation parameters are chosen as
reasonable values for the microstructure of many fibrous
biomaterials, where r0 = 10 nm (reflecting the characteristic
size of structural domains), k0 = 2.5 kcal/(mol Å), and ε∗ =
5% [30,31]. Each specimen has an out-of-plane thickness of
two unit cells, a length of 100 unit cells, and a width H that is
varied to examine size effects. A surface crack of initial size
a is introduced in the middle of the slab by deleting the bonds
along the crack surface [Fig. 1(a)]. An out-of-plane periodicity
enforces plane strain boundary conditions. The slab is axially
strained with strain increments of 0.3%. Energy minimization
is applied after each increment and convergence is ensured.
The maximum stress σ ∗ can be calculated for the cubic lattice
under plane strain by [32,33] as

σ ∗ = 4r2
0 kε∗

3�0
= 4r0k0

3�0
= 8k0

3
√

2r2
0

, (3)

where k = k0/(r0ε
∗) is the bond stiffness and �0 is the volume

of a bead in the unit cell, for the present crystal given by
�0 = a3

0/4 = (
√

2r0)3/4 (where a0 is the lattice spacing; in a
cubic crystal a0 = √

2r0).

III. COARSE-GRAINED SIMULATION RESULTS

We perform a computational study to assess the effect of
the constitutive law on flaw tolerance. We record the tensile
failure stress and strain for the specimen with dimensions
L × H × t and crack size a. H is varied from 2a0 = 28 nm
up to 50a0 = 700 nm. The dimension L is kept constant
at 100a0 = 1410 nm and t is 2a0 = 28 nm. The tensile
failure stress, calculated by the virial stress, is normalized
by the failure stress of the perfect crystal unit cell σ ∗. The
critical size H ∗, reflecting flaw tolerance in a homogeneous
deformation state, is determined for varied material parameters
N and crack size ratios ζ = a/H ∈ [0.075,0.15,0.25,0.5] by
fitting the failure stress of a slab with fiber-like geometries
(H � L = 1.5 μm) for varying H . We perform a linear
regression in the stress-1/

√
H plot [Fig. 2(a)]. We base this
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FIG. 2. (Color online) Normalized tensile failure stress versus
inverse square root of the fiber width for ζ = a/H = 0.15 and
N = 0.5, 1.0, 10.0 and stress contour plots. (a) By decreasing the
width (corresponding to the diameter) in the plane strain fiber model,
the maximum attainable stress increases. For N = 0.5 and N = 1.0
classical fracture theory approximately predicts the size effects in the
fiber (increasing failure stress versus decreasing diameter, full lines
indicate linear fit and dotted lines indicate the α = 0.1 confidence
upper and lower bound for the linear regression). For N = 10.0
classical fracture theory breaks down at H = 10r0 ≈ 100 nm as the
theoretical stress of the perfect crystal is reached. (b) Stress contour
plots for N = 0.5 (i.), N = 1.0 (ii.), and N = 10.0 (iii.) indicate the
reason for the observed behavior (same fiber diameter in all cases
depicted). For H ≈ 100 nm an enhanced delocalization of stress
away from the crack tip can be observed for increasing N . The stress
becomes almost perfectly homogeneous within the fiber (iii.) and
thus the fiber reaches the failure stress of the perfect crystal despite
the presence of a crack. These results confirm that by changing the
nature of the nonlinear behavior of the material, at constant size, a
flaw tolerant state can be achieved.

on the assumption that the strength scales approximately with
1/

√
H , which reflects a prediction from linear elastic fracture

mechanics. This assumption also holds true in our analysis, as
discussed in Sec. IV. The classical scaling breaks down when
the failure stress reaches the maximum attainable stress σ ∗, as
seen in Fig. 2(a).

An example of the analysis procedure used to determine
the critical size is shown in Fig. 2(a) for ζ = 0.15 and
N = 0.5,1.0,10.0. Upper and lower bounds are shown for
the linear regression for a confidence of α = 0.1. Despite the
crack, the failure stress approximately reaches the theoretical
limit for H = H ∗ ≈ 6r0 ≈ 60 nm and N = 10.0. The stress
contour plots (for a constant fiber diameter H ≈ 100 nm)
depicted in Fig. 2(b) (N = 0.5 in i., N = 1.0 in ii., and

FIG. 3. (Color online) Comparison of simulation and analytical
model predictions for the normalized critical size H ∗/r0 as a function
of the material parameter N for varying crack dimensions ζ = a/H .
The critical size H ∗ increases with increasing stiffening behavior
controlled by the parameter N . Smaller crack ratios ζ lead to an
increasing critical size. The data show average values and their
variance due to linear regression (see Fig. 2). A comparison of the
simulation to the fracture mechanics prediction for τ = r0 nm show
fairly good agreement and confirm a scaling law of the critical size
H ∗ ∼ 1/(1 + 1/N ). For increasing N the flaw tolerant behavior is
reached at multiples of the characteristic system size, denoting a
mechanism to upscale the perfect lattice behavior to significantly
larger scales.

N = 10.0 in iii.) directly confirm how the increase of the
stiffening parameter N leads to a pronounced delocalization
of the stress away from the crack tip, and eventually to
a homogeneous deformation state. Notably, these results
confirm that by changing the nonlinear behavior of the material
(at constant size), a flaw tolerant state can be achieved.

Additional results for H ∗ for various crack size ratios ζ

and stiffness parameters N are shown in Fig. 3, including
mean values as well as error bars for the variance from linear
regression. Here, we normalize H ∗ by the characteristic size
of the system r0, a procedure that becomes clear in view of the
discussion reported in Sec. IV. It can be seen that increasing
N leads to larger critical sizes H ∗, significantly exceeding the
length scale parameter of the crystal r0 (in our simulations that
is 10 nm). We observe a saturation for the critical size H ∗
that is especially pronounced at smaller crack size ratios ζ .
This indicates that a stronger stiffening does lead to larger
critical sizes rendering fibers more resistant to flaws and
damage.

IV. FRACTURE MECHANICS ANALYSIS

We derive a scaling law to confirm the dependence
of increasing flaw tolerance length scales with increasing
stiffening from fracture mechanics. We start our analysis of
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the model from the small-scale yielding solution of the plane
strain deformation of a material with nonlinear power-law
constitutive behavior [26]. For the isotropic crystal the stress
field singularity is on the order of the linear elastic solution
supporting the strength scaling analysis in Sec. III [27]. For
the given boundary conditions, the critical energy release rate
is equal to the solution of the J integral,

J = Gc = σ 2πaF 2(ζ )

E′ , (4)

where σ is the far-field stress, a is the crack size, ζ = a/H

with H as the width (respectively the diameter), and F (ζ ) is
a geometry dependent function [25]. For a nonlinear (elastic)
material behavior the existence of the critical energy release
rate is ensured, and in the case that σ = σ ∗ where σ ∗ is the
failure stress of the perfect crystal reached at H = H ∗, this
can be rewritten as

H ∗ = 2γsE
′

πζQσ ∗2 , (5)

where E′ is the equivalent Young’s modulus and Q is a factor
that includes F (ζ ), as well as other geometric and material
nonlinearities accounting for the fact that the stress field in
a confined specimen is probably not J dominated. We are
primarily interested in the general scaling behavior of the
strength in such materials, and not in the details of the stress
field. We determine γs , the surface energy set free during crack
propagation, from the molecular mechanics setup according
to [33]

γs(N ) = ��(N )

2dt
= 4��(N )

r2
0

. (6)

The parameter t = 2a0 = 2
√

2r0 is the slab thickness and
d = r0/(8

√
2) is the average distance that the crack propagates

in the model per broken bond while dissipating the energy ��

with

��(N ) =
∫ r∗

0
F (r)dr = k0r0ε

∗

N + 1
. (7)

When the homogeneous deformation state is reached, the
material at the crack tip features the equivalent Young’s
modulus of cubic lattices under plane strain,

E′(N ) = Ef cc(N )(1 − ν)

1 − ν − 2ν2
, (8)

with [33]

Ef cc(N ) = 4(a0/2)4

(a0/
√

2)2

∂2�/∂r2

�0
= 16k0√

2
3
r2

0 ε∗
N. (9)

The evaluation of E′(N ) and γs(N ) at ε = ε∗ is motivated
by the fact that localized failure is controlled by the asymptotic
bond behavior at the crack tip reaching the failure strain ε∗,
which spreads over the entire fiber in the limit of the flaw
tolerant state.

Combining Eqs. (3), (5), (6), and (8) yields

H ∗ = 9√
2π

(1 − ν)r0

Q(1 − ν − 2ν2)

N

ζ (N + 1)
= τ

N

ζ (N + 1)
, (10)

such that

τ = 9√
2π

(1 − ν)r0

Q(1 − ν − 2ν2)
, (11)

and

H ∗ ∼ 1

(1 + 1/N )
. (12)

Equation (10) is a key result of this analysis and provides
important insights into the physics of the size effect problem.
Notably, the critical size is a function only of the shape of the
material law (incorporated in N ), the geometry of the specimen
(incorporated in r0, ζ , and Q), and the loading condition.
Specifically, it is not a function of the specifics of the material’s
failure strength and extensibility.

We can determine the parameter τ by means of linear
elastic fracture mechanics. Using Eq. (11) with the simulation
parameters given in Sec. II, Q = F 2 (analytical expression for
linear elastic fracture mechanics given in [25]), and ν = 1/3,
we find that 0.38r0 � τLEFM � 2.21r0.

A comparison with the simulation results yields τSim =
0.65a0 ≈ a0/

√
2 = r0 (solid lines in Fig. 3), in good agree-

ment with the linear elastic fracture analysis. Hence,

H ∗ ∼ r0

(1 + 1/N )
. (13)

This value also agrees with the prediction of quantized
fracture mechanics that accounts for the discrete nature of the
problem [34]. In the linear elastic case N = 1, Eq. (10) yields
τ as fracture quantum, a characteristic system or material size
(for crystals on the order of the lattice size or the bond spacing,
i.e., q = O(r0,a0), or for granular materials on the order of the
grain size, etc.).

From the scaling law in Eq. (12) it can also be concluded
that the maximum critical size is achieved at the asymptotic
limit N → ∞. A strongly stiffening power-law material
constitutive behavior can thus increase the critical size H ∗
by a multiple, assuming a constant crack ratio ζ , and in
comparison to a softening behavior (N � 1) as seen in many
engineering materials like metals (for instance, many metals
could be modeled by a softening behavior, N = 0.05−0.5).
Our analysis confirms the prediction made in Eq. (13), in which
a strain softening will severely reduce the critical size H ∗.

V. GENERALIZATION TO FIBROUS BIOMATERIALS

Many materials display a complex behavior and cannot be
modeled with a one-parameter power law as given by Eq. (2).
As a general representation, we propose a power-law series of
the form

�(r) = k0r0ε
∗ ∑

i

ai

(Ni + 1)

[
ε(r)

ε∗

]Ni+1

. (14)

With the results of Sec. IV the critical size of a material
with complex constitutive behavior reads as

H ∗ = 9√
2π

∑
i

ai(1 − ν)r0

Q(1 − ν − 2ν2)

Ni

ζ (Ni + 1)

= τ

ζ

∑
i

ai

Ni

(Ni + 1)
. (15)
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TABLE I. Coefficients ai of the power-law potential series for
MaSp1 spider silk dragline material.

Ni 0.1 0.6 10

ai,MaSp1 0.002679 0.229 0.7666

A prominent and well-studied example of a biomaterial that
cannot be modeled by one parameter is spider dragline silk.
The molecular structure and mechanical performance has been
recently elucidated by molecular dynamics, as reported in [35].
Based on the results for the stress-strain behavior of MaSp1
dragline silk obtained from an atomistic simulation of a silk
protein repeat, we derive a least-squares fit for the power-law
series with positive coefficients. The only nonvanishing terms
are Ni = 0.1,0.6,10.0. The series coefficients ai are shown in
Table I and the fit is shown in Fig. 4(a).

We note that r0 is a length scale related to the dominating
substructure of the material, e.g., the grain size or in the case of
spider silk the size of the crystalline unit cell. In this analysis
we set r0 ≈ 10 nm. It is reasonable to use the determined
parameter τ = r0, although σ ∗ is approximately 1400 MPa and
ε∗ is approximately 62%, as the results for τ are independent
of the actual strength [Eq. (10)]. The results for the critical
size H ∗

MaSp1 are shown in Table II and agree remarkably well
with experimental observations in the range of 20−150 nm
[36,37].

Table III lists various fibrous biomaterials as well as their
respective parameters N , which are then used to approximate
their critical size H ∗ using Eq. (10) for ζ = 0.5–0.15 and
r0 = 10 nm. It is notable that materials with a more pronounced
stiffening behavior also seem to exhibit larger fibril diameters,
as shown in Fig. 4(b), in support of the hypothesis put forth in
our study. An exception is egg sack silk produced by the B. mori
larva. This type of silk has an intrinsic softening behavior (N =
0.3–0.5) and displays fibril diameters of 8–100 nm [38]. This is
clearly underestimated by our model, which predicts a critical
size of only a few nanometers. As a protective hull, this type
of silk is designed to absorb a large amount of energy and the
cocoon design is highly redundant, such that a strain softening
may be advantageous for this case. In contrast, dragline silk
or elastin need to be resilient but also highly reliable, e.g.,
one dragline silk fiber has to carry the weight of a spider.
Therefore, a robust and reliable design of the fibrils in the
fibers is of higher importance.

We emphasize that the knowledge of the characteristic
structural length scale r0 is crucial. Therefore, while providing
insights into potential trends, the compilation of data reported
in Table III is only a rough estimate. For example, poly-
caprolactone fibers (PCL) display crystallite sizes of almost
10 nm, such that r0 is likely larger than 10 nm. In that case,
H ∗ increases in accordance with the observed fibril sizes

TABLE II. Flaw tolerance length scale in spider dragline silk
MaSp1 for various crack size ratios ζ .

ζ 0.5 0.25 0.15 0.075

H ∗
MaSp1 (nm) 15.7 31.32 52.20 104.40
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FIG. 4. (Color online) Power series fit to a biomaterial and
comparison of the critical size to fibrous biomaterials. (a) Power
series fit of a more complex material behavior, here spider dragline
silk MaSp1. The parameters of the series are presented in Table I
and the resulting critical size H ∗ is 16–105 nm for ζ = 0.15–0.5,
in good agreement with the measured diameters of spider silk fibrils
(20–150 nm). (b) Critical size determined in this study (blue [left]
bar), with a direct comparison to experimentally determined fibril
diameters (red [right] bar) arranged in the order of increasing stiffness
(from left to right). Confirming our hypothesis, materials with more
pronounced stiffening behavior tend to have larger fibrils in agreement
with the trend of the critical size.

in the fiber of 10–100 nm. Larger characteristic structural
length scales have also been identified in biomaterials such
as spectrin, where r0 ≈ 75 nm [39].

VI. DISCUSSION AND CONCLUSION

Our analysis suggests that a material’s nonlinear stiffening
behavior is a generic strategy that enhances a structure’s
flaw tolerance. Indeed, many biopolymers show a universal
stiffening behavior, caused by mechanisms such as backbone
stretching after molecular unfolding or even network reor-
ganization. The path to failure determines whether or not
such a behavior is beneficial to the flaw tolerance mechanism.
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TABLE III. Stiffness parameter N for various materials, the criti-
cal size H ∗ determined in this study and comparison to experimentally
determined fibril diameter,Hexpt.

Polymer material N H ∗
15%−50% (nm) Hexpt (nm)

Kevlar microfibrilsa 1 4–20 ∼3.5
Collagen microfibrilsb 1–2 4–30 ∼1.5
β-Amyloidc 1–2 4–30 3–5
Fibrin fibrilsd 1–2 4–30 ∼4.5
Tropoelastin microfibrilse 1–5 4–50 ∼5
PCLf 2 10–30 10–100
Collagen fibrilsg 2–3 10–50 20–70
Elastinh 2–5 10–50 50–200
Viscid silki 7 40–75 10–100
MaSp1 dragline silkj 0.1, 0.6, 10.0 16–105 20–150

aReference [47].
bReference [48].
cReference [49].
dReference [50].
eReference [51].
fReference [52].
gReferences [48,53].
hReference [54].
iReferences [2,55].
jReferences [36,37].

This leads to a trade-off between tangent stiffness and surface
energy, since H ∗ ∼ γsE

′.
It has been shown that it is possible to chemically engineer

polymeric materials with varying stiffening behavior, which
may enable the implementation and experimental testing of
the concepts put forth here [40–43]. An additional effect
contributes to the observed behavior depicted in Fig. 3.

A low initial stiffness, as induced by higher power-law
exponents N � 1, increases the crack tip blunting throughout
the deformation history and thus decreases the localization
of stress [44]. This process cannot take place in materials
with high initial stiffness. Furthermore, the size of the fracture
process zone has been generally derived to scale with ∼ GCE′
[44]. Equation (5) predicts the same scaling law for H ∗.

Flaw tolerance has been quantified in earlier studies to be
a powerful mechanism to maintain a material’s functionality
from the nanoscale up [15,23,45]. A recent study provides
evidence that the nonlinear stiffening behavior of a silk fiber
increases the robustness of the spider web [46]. A loaded
spider web structure localizes the web damage in only a
few fibers. On a smaller scale, the derived scaling law
H ∗ ∼ 1/(1 + 1/N ) indicates that stiffening silk fibers con-
sisting of nanoconfined fibrils of 20–150 nm (e.g., in dragline
silk) are capable of maintaining their full strength despite
possible flaws in the fiber material, as outlined in this paper.
By controlling E′ and γs at the scale of molecular bonds, the
translation of nanoscale mechanical features to larger scales
is enabled and leads to a synergistic interplay of effects at
different length scales.
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