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a b s t r a c t

In this paper, we study the elastic buckling of a new class of honeycomb materials with hierarchical
architecture, which is often observed in nature. Employing the topedown approach, the virtual buckling
stresses and corresponding strains for each cell wall at level n � 1 are calculated from those at level n;
then, comparing these virtual buckling stresses of all cell walls, the real local buckling stress is deduced;
also, the progressive failure of the hierarchical structure is studied. Finally, parametric analyses reveal
influences of some key parameters on the local buckling stress and strength-to-density ratio; meanwhile
the constitutive behaviors and energy-absorption properties, with increasing hierarchy n, are calculated.
The results show the possibility to tailor the elastic buckling properties at each hierarchical level, and
could thus have interesting applications, e.g., in the design of multiscale energy-absorption honeycomb
light materials.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Honeycomb materials are widely observed in nature materials,
such as the turtle shell (Krauss et al., 2009) or the lobster’s
exoskeleton (Fabritius et al., 2009), and they are very promising for
material design (Gibson et al., 1982; Warren and Kraynik, 1987;
Papka and Kyriakides, 1994, 1998a; Gibson and Ashby, 1997) due
to their specific structural properties. For example, in the field of
material science, they are used to be core materials in sandwich
structures (Foo et al., 2007) and employed as energy-absorption
materials to reduce loading impact and protect an object from
crushing (Xue and Hutchinson, 2006).

Many pioneering works focused on its in-plane and out-of-
plane mechanical behaviors (e.g., elastic buckling) (Papka and
Kyriakides, 1998b; Zhang and Ashby, 1992); for example, Papka
and Kyriakides (1994) explained the crushing process under
uniaxial compression in detail. Generally, the collapse behavior of
the honeycomb material is characterized by three regimes: (1) at
the initial loading stage, the material has a relatively high stiffness,
the deformation is caused by the bending of cell walls and it is
linear-elastic and stable; (2) as load increases, the material
collapses locally in a progressive but metastable way; (3) finally, the
whole structure collapses during densification, the stiffness
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increases and the deformation is uniform and very stable. The three
stages are shown in Fig. 1, in which our observations on a natural
honeycomb and Scanning Electron Microscopic (SEM) images of
the cell-wall constituent materials are reported.

It is well-known that Nature creates composite structures in
a hierarchical way, from nanoscale to macroscale (Launey and
Ritchie, 2009); the structures/materials at nanoscale and micro-
scale exhibit highly anisotropy (Ritchie et al., 2009; Yao et al., 2011);
e.g., in bioshells, they exhibit structural gradient (a so-called
functional graded material), for instance, the exoskeleton of
lobsters has three different layers from exterior to interior, with
decreasing densities, strength and hardness (Raabe et al., 2005).
Honeycomb structure enables these biological materials to exhibit
outstanding mechanical properties, e.g. low weight, high stiffness,
strength, and toughness (Smith et al., 1999; Munch et al., 2008). For
this reason, bio-inspired materials are becoming of great interest in
material science. Munch et al. (2008) recently synthesized a tough
bio-inspired hybrid material based on aluminum oxide and poly-
methyl methacrylate, and the toughness of the product was more
than 300 times higher than those of the constituent materials. The
synthesized structure was lamellar and similar to that of nacre,
which has two hierarchical levels. Theoretically, basing on the
principle of flow tolerance, Gao (2006) brought a tensile-shear
chain model forward to investigate the hierarchical mechanical
properties of bone and bone-like materials; Zhang et al. (2011)
reported that the hierarchy of load-bearing biological materials
-was dominated by a toughness optimization.
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Fig. 1. Natural honeycomb crushing process: (a) linear-elastic stable stage; (b) progressive metastable stage; (c) densification very stable stage; (d) schematic of a honeycomb
stressestrain curve; (e) silk (inclusion); (f) wax grain (matrix).
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As for the studies on hierarchical honeycombs, Côté et al. (2009)
studied the out-of-plane compressive properties of a composite
square honeycomb sandwich core with structural hierarchy, and
reported that the hierarchical topology substantially increased its
compressive strength. Taylor et al. (2011) introduced hierarchy into
honeycomb structures with different geometries (i.e., hexagonal,
triangular or squared), and investigated the in-plane elastic prop-
erties of honeycombs influenced by structural hierarchy; the results
showed that hierarchy generally deterred the mechanical behavior
of the hierarchical honeycomb, but interestingly, the negative
Poisson’s ratio substructure resulted in a higher density modulus.
Besides, Sen et al. (2011) studied the size-dependent mechanical
properties of a nano-sized honeycomb silica structure, and the
authors found that nano-sized honeycomb silica structure was
tougher than that at larger size.

In this paper, inspired by the hierarchical structure of natural
materials (Fig. 2) (Cai, 2007; Gibson, 2005) and starting from an
orthotropic material, we construct a new hierarchical honeycomb
material (Pugno, 2006; Pugno et al., 2008; Chen and Pugno, 2011,
2012; Pugno and Carpinteri, 2008), see Fig. 3. Extending the Euler
critical load of isotropic to orthotropic columns by pure bending
beam theory, the local buckling stress of the hierarchical honey-
comb material is formulated due to the significance in the energy-
absorption mechanism. Besides, we perform a parametric analysis
to investigate the influences of relevant parameters on local buck-
ling loads, strength-to-density ratio, virtual progressive failure,
constitutive law and energy-absorption behavior.

2. Elastic buckling of hierarchical honeycomb

Here, cell walls are treated as columns, as done in the classical
theory of non-hierarchical honeycomb (Gibson and Ashby, 1997).
For an orthotropic column, assuming the conservation of the plane
sections and neglecting the shear effect, the buckling load Pcr
becomes (Timoshenko and Gere, 1961; Tolf, 1985):

Pcr ¼ l2p2E1I
l2

(1)
where, l is the length of the column, l is a numerical factor
depending on boundary conditions, E1 is the Young’s modulus in
the longitudinal direction of the column and E1I is the bending
rigidity. Eq. (1) is the classical Euler buckling formula, in which the
Young’s modulus of an isotropic material is substituted by the
longitudinal one of the orthotropic column.

2.1. Elastic buckling of the nth hierarchical column

We treat the structure reported in Fig. 4a as the nth level
structure and each cell wall as the (n � 1)th level; the structure at
each level is considered as orthotropic due to the symmetric
configuration. In order to determine its buckling load at level n, we
need to calculate the applied loads acting on the six cell walls; then,
employing Eq. (1), we can find the buckling loads for each column.
Actually, three pairs are of our interest, i.e., ①, ②, ③ (Fig. 4);
moreover, only two of them (pair ①, ②) are treated because of the
symmetry. For the sake of the simplicity, the cell walls ① are
treated as inclined columns with one end clamped and the other
fixed, and the buckling loads of the pairs ①, ② are expressed as
(Chang, 2005; Gibson et al., 1982):

PðnÞ1 ¼ P

2sinqðnÞ

PðnÞ2 ¼ P

(2)

with

P ¼ 2sbðnÞlðnÞcosqðnÞ (3)

where, s is the external stress; b(n), l(n) and q(n) are, respectively, the
depth of the structure, the length of column① and the angle made
by column ① and the horizontal line at level n.

2.1.1. Buckling stress analysis
According to Eqs. (2) and (3), the axial loads acting on the two

columns are expressed as Pðn Þ
��!

¼ ðPðnÞ1 ; PðnÞ2 ÞT with:



Fig. 2. SEM image of pure aspen wood: (a) aspen wood (Cai, 2007); (b) grassy stem (Gibson, 2005).
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PðnÞ1 ¼ sbðnÞlðnÞcotqðnÞ
ðnÞ ðnÞ ðnÞ ðnÞ (4)
P2 ¼ 2sb l cosq

Elastic collapse occurs when one of the components in the force

vector Pðn Þ
��!

reaches the corresponding one in the critical force

vector Pðn Þcr

��!
¼ ðPðnÞcr;1; P

ðnÞ
cr;2ÞT , namely:

Pðn Þ
��!

¼ Pðn Þcr

��!
(5)

Combining Eqs. (1), (4) and (5), we find the external critical

stress vector sðn Þcr

��!
¼ ðsðnÞcr;1; s

ðnÞ
cr;2ÞT :

sðnÞcr;1 ¼
p2
�
lðnÞ1

�2
Eðn�1Þ
1

12

 
tðnÞ

lðnÞ

!3

tanqðnÞ

sðnÞcr;2 ¼
p2
�
lðnÞ2

�2
Eðn�1Þ
1

24

 
tðnÞ

hðnÞ

!2 
tðnÞ

lðnÞ

!
secqðnÞ

(6)

where, h(n) is the length of column ②.
Regarding the numerical factors, lðnÞ1 and lðnÞ2 , theyare determined

in different ways. For the inclined cell walls, lðnÞ1 is calculated by
Fig. 3. Hierarchical
ððlðnÞ1 pÞ2=ðRðnÞÞ2Þcot2 qðnÞ þ 2ð1� cosðlðnÞ1 pÞ=ðlðnÞ1 pÞsinðlðnÞ1 pÞÞ � 1
¼ 0 (Chang, 2005), where, R(n) is the slenderness ratio; here, lðnÞ1 is
considered as a constant and equals to 2.76, because it has a minor
variation for q(n) between 15� and 75� and R(n) between 50 and 500;
moreover, lðnÞ1 ¼ 2:76, for q(n) ¼ 15�, is conservative, compared with
the value of 2.86, for q(n) ¼ 75�. For the vertical cell wall we use the
formula (Gibson and Ashby, 1997) lðnÞ2 tan lðnÞ2 ¼ 2hðnÞ=lðnÞ to calcu-
late lðnÞ2 ,which depends onh(n)/l(n). The secondexpression inEq. (6) is
the same as that reported by Gibson and Ashby (1997) for
non-hierarchical honeycomb. The Young’s modulus ðEðn�1Þ

1 Þ of the
cell walls is expressed as (Gibson and Ashby, 1997; Chen and Pugno,
2012):

Eðn�1Þ
1 ¼

Yn�1

i¼1

 
xðiÞ
 
tðiÞ

lðiÞ

!3!
$Eð0Þ1 (7)

with

xðiÞ ¼
�
hðiÞ=lðiÞ þ sinqðiÞ

�
cos3qðiÞ

(8)
honeycombs.



Fig. 4. Schematic of nth level hierarchical honeycombs.
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If we define a new pseudo-vector uðn Þ��!
¼ ðuðnÞ

1 ;u
ðnÞ
2 ÞT :

uðnÞ
1 ¼ cotqðnÞ

uðnÞ
2 ¼ 2cosqðnÞ

(9)

then, Eq. (4) can be rewritten as:

Pðn Þ
��!

¼
 
sAðnÞ lðnÞ

tðnÞ

!
5uðn Þ��!

(10)

where 5 is the Kronecker product and A(n) ¼ b(n)t(n) is the cross-
sectional area of the cell wall at the nth level.

Correspondingly, Eq. (6) is expressed as:

sðnÞcr;1 ¼
p2
�
lðnÞ1

�2
Eðn�1Þ
1

12

 
tðnÞ

lðnÞ

!3
1

uðnÞ
1

sðnÞcr;2 ¼
p2
�
lðnÞ2

�2
Eðn�1Þ
1

12

 
tðnÞ

hðnÞ

!2 
tðnÞ

lðnÞ

!
1

uðnÞ
2

(11)

Furthermore, Eq. (11) is expressed as:

sðn Þcr

��!
¼
h
KðnÞ
s

i�
uðn Þ��!��1

Eðn�1Þ
1 (12)
Fig. 5. Buckling collapse of nth hierarchical honeycomb: (a) initial configuration; (b) collapse
where,h
KðnÞ
s

i
¼ p2

12
diag

 �
lðnÞ1

�2 tðnÞ
lðnÞ

!3

;
�
lðnÞ2

�2 tðnÞ

hðnÞ

!2 
tðnÞ

lðnÞ

!!
�
uðn Þ��!��1 ¼

 
1

uðnÞ
1

;
1

uðnÞ
2

!T

Accordingly, the local buckling stress at level n is the minimum

one in the critical stress vector sðn Þcr

��!
, i.e.,

sðnÞcr ¼ min
�
sðn Þcr

��!�
(13)

2.1.2. Buckling strain analysis
In Section 2.1.1, we deduced the elastic buckling stress; whereas,

in this part, the corresponding buckling strain is derived. First, we
make an assumption: when one of the columns buckles, it collapses
immediately and completely (see Fig. 5). Then, the displacements

D dðn Þcr

���!
¼ ðDdðnÞcr;1;Dd

ðnÞ
cr;2ÞT of pair ①, ② at level n are obtained

through geometrical analysis in a unit cell:

DdðnÞcr;1 ¼ lðnÞsinqðnÞ

DdðnÞcr;2 ¼ hðnÞ
(14)

and the buckling strains of pair ①, ② are D 3
ðn Þ
cr

���!
¼ ðD 3

ðnÞ
cr;1;D 3

ðnÞ
cr;2ÞT :
of columns ①,③; (c) collapse of column②; (d) numbers of unit cells in columns ①, ②.
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D 3
ðnÞ
cr;1 ¼

DdðnÞcr;1

lðnÞsinqðnÞ þ hðnÞ

D 3
ðnÞ
cr;2 ¼

DdðnÞcr;2

lðnÞsinqðnÞ þ hðnÞ

(15)

Thus, in general:

D 3
ðn Þ
cr

���!
¼ 1

lðnÞsinqðnÞ þ hðnÞ
D dðn Þcr

���!
(16)

2.2. Elastic buckling of the (n � 1)th level structure

2.2.1. Buckling stress analysis
Here, the (n� 1)th level structure corresponds to the cell walls of

the nth level structure treated before, that is to say, each pair cell
walls of the nth level contains two pairs cell walls of the (n � 1)th

level structure. Thus, for the (n � 1)th level structure, we have four
pairs. Now we use the results of the nth level and find the loads on
the four pairs:

Pðn�1 Þ����!
¼
 
sAðn�1Þ lðn�1Þ

tðn�1Þ

!
5uðn Þ��!

5uðn�1 Þ����!
(17)

Following the previous procedure, we find the critical stresses
for the four pairs of cell wall at level (n � 1):

sðn�1 Þ
cr

����!
¼
�
uðn Þ��!��1

5
�h

Kðn�1Þ
i�

uðn�1 Þ����!��1�
Eðn�2Þ
1 (18)

Thus, the local buckling stress at level (n � 1) is derived as:

sðn�1Þ
cr ¼ min

�
sðn�1 Þ
cr

����!�
(19)

2.2.2. Buckling strain analysis
Like level n, the displacements D dðn�1 Þ

cr

������!
of pair ①, ② at level

(n � 1) can be calculated as:

Ddðn�1Þ
cr;1 ¼ lðn�1Þsinqðn�1Þ

Ddðn�1Þ
cr;2 ¼ hðn�1Þ (20)

If we define:

mðn�1 Þ�����!
¼
�
mðnÞ

1 sinqðnÞ;mðnÞ
2

�T
(21)

where,mðnÞ
1 ,mðnÞ

2 are numbers of unit cells at level (n� 1) along the
longitudinal direction of the columns ①, ② at level n (see Fig. 5d),
the buckling strain at level (n � 1) is expressed as:

D 3
ðn�1 Þ
cr

�����!
¼ 1

lðnÞsinqðnÞ þ hðnÞ
mðn Þ��!

5D dðn�1 Þ
cr

������!
(22)

2.3. Elastic buckling of the first level structure

2.3.1. Buckling stress analysis
Similarly, the above stress result can be used for the first level

structure by extending Eqs. (17)e(19), i.e.:

Pð1 Þ
��!

¼
 
sAð1Þ lð1Þ

tð1Þ

!
5uðn Þ��!

5uðn�1 Þ����!
.5uð1 Þ��!

(23)
The critical stresses of each pair at level 1 are:

sð1Þcr

��!
¼
�
uðnÞ��!��1

5
�
uðn�1Þ����!��1

.5
�
uð2Þ��!��1

5
�h

Kð1Þ
i�

uð1Þ��!��1�
Eð0Þ1

(24)

The local buckling stress at level 1 is:

sð1Þcr ¼ min
�
sð1 Þcr

��!�
(25)

2.3.2. Buckling strain analysis
Extending Eq. (22), the buckling strain at level 1 is expressed as:

D 3
ð1Þ
cr

���!
¼ 1

lðnÞsinqðnÞ þhðnÞ
mðnÞ��!

5mðn�1Þ����!
5.5mð2Þ��!

5Ddð1Þcr

���!
(26)

2.4. Local buckling stress of the whole hierarchical structure

Now, we have the local buckling loads at each level, but we
usually need the buckling load for the whole structure, that is:

SðnÞcr ¼ min
�
sð1Þcr ; sð2Þcr ;.; sðnÞcr

�
(27)

2.5. The strength-to-density ratio

The strength-to-density ratio is an important index to design
and optimize energy-absorption materials. Budiansky (1999)
studied the structural efficiency of several compression structures
(e.g., hollow columns and foam-filled sandwich columns) by the
maximum stress and strain theory. Here, in order to evaluate the
strength efficiency of the hierarchical honeycombs, we employ
a strong tie provided by Ashby (2010). For a uni-axially loaded
structure, the strong tie is expressed as Ps1 ¼ S/r, and a light but
strong structure can be obtained by maximizing this value.
Employing the expression of the relative density for
non-hierarchical honeycombs (Gibson and Ashby, 1997), we have:

rðnÞ

rðn�1Þ ¼
�
hðnÞ=lðnÞ þ 2

�
2cosqðnÞ

�
hðnÞ=lðnÞ þ sinqðnÞ

� tðnÞ
lðnÞ

(28)

Thus, the density of the n-level hierarchical structure is derived
by an iterative process as:

rðnÞ

rð0Þ
¼
Yn
i¼1

 
gðiÞ

tðiÞ

lðiÞ

!
(29)

with

gðiÞ ¼
�
hðiÞ=lðiÞ þ 2

�
2cosqðiÞ

�
hðiÞ=lðiÞ þ sinqðiÞ

�
Therefore, combining Eqs. (27) and (29), the strength-to-density

is expressed as:

SðnÞcr

rðnÞ
¼

min
�
sð1Þcr ; sð2Þcr ;.; sðnÞcr

�
rð0Þ �Qn

i¼1

 
gðiÞ

tðiÞ

lðiÞ

! (30)



Fig. 6. Parametric analysis on the buckling stress Sð2Þcr of a two-level hierarchical honeycomb. Insets in Fig. 6a, b are local magnifications, respectively.
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3. Parametric analysis

The influences of the parameters in the vector
cði Þ
��!

¼ ðqðiÞ;hðiÞ=lðiÞ; tðiÞ=lðiÞÞ are investigated under the self-similar
conditions: h(i)/l(i) ¼ h/l, t(i)/l(i) ¼ t/l, and thus t(i)/h(i) ¼ t/h ; the
boundary coefficient lðiÞ2 is a function of h(i)/l(i), as well as lðiÞ2 ¼ l2.
Thus, the self-similar conditions are:

cði Þ
��!

¼ c! ¼ ðq;h=l; t=lÞ i ¼ 1;2;.;n (31)

In this section, inspired by wood, we treat the example of
hierarchical honeycombs. The elastic modulus Eð0Þ1 ¼ 10;600 MPa
and density r(0) ¼ 1.5 g/cm3 (Easterling et al., 1982) of wood cell
walls are adopted here.
Fig. 7. Parametric analysis on the strength-to-density
3.1. Local buckling stress

Here, the local buckling stress refers to the value under which
the first column takes place, see Eq. (27). Taking a two-level self-
similar honeycomb, as an example, the parametric analysis results
are plotted in Fig. 6.

Fig. 6 shows the influences of two components in the vector c!
with the left one fixed. We can see that the buckling stress
generally increases when t/l and q increase (Fig. 6a,c); while it
decreases when h/l increases (see the inset in Fig. 6b), wheras
increasing h/l produces a weak influence (Fig. 6c), compared with
the previous ones. Regarding the influence on the mechanical
behavior of the three geometric parameters appearing in the
vector c!, we note that: increasing t/l produces a larger bending
ratio of the two-level hierarchical honeycomb.



Fig. 8. Schematic of a three-level hierarchical honeycomb. The subscripts of each
column reflect the location in the hierarchical structure; the first subscript denotes the
level and the second its location in the level.

Fig. 9. Progressive failure stressestrain relationship of a three-level hierarchical honeycom
between theory and experiment.
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rigidity of the inclined columns, thus, the Young’s modulus and the
buckling strength are enhanced; likewise, increasing q, with the
other parameters fixed, results in larger Young’s modulus (Eqs. (7)
and (8)) and again in larger strengths; in contrast, the variation of
h/l yields to an opposite trend. Also, we compare our result with
the transverse strength of natural wood, which is defined as the
stress at the proportional limit, corresponding to the first buckling
stress in our model. For example, radial compression strength of
Balsa is about 1500 kPa (Easterling et al., 1982), which results in
a value of 1497 kPa at c! ¼ ð20�;1:0;0:4Þ (see the inset in Fig. 6a).
Besides, more strength measurements of some important
commercial woods are available in Green et al. (1999), and their
transverse compression strengths range from 1000 kPa to
19000 kPa, which match our result very well by selecting the
material properties.

3.2. Strength to density ratio

Based on the density value of wood, the strength-to-density
ratios Sð2Þcr =rð2Þ of the two-level hierarchical structures influenced
by q, h/l and t/l are shown in Fig. 7.

It suggests that the strength-to-density ratio increases when
one of these geometrical parameters increases. And the increase in
q or t/l is more efficient than that in h/l. The former improve the
buckling-resisting capacity by approximately two or six orders of
magnitude (q from 20� to 60� and t/l from 0.04 to 0.36), while the
latter is in the same order when h/l varies from 1.0 to 3.0. However,
differently from Fig. 6b, Fig. 7b shows that increasing h/l results in
b: (a) h/l ¼ 1.0, t/l ¼ 0.1; (b) q ¼ 40� , t/l ¼ 0.1; (c) q ¼ 40� , h/l ¼ 1.0; (d) comparison



Fig. 10. Stress/strain curve vs level n: (a) h/l ¼ 1.0, t/l ¼ 0.4, q ¼ 40�; (b) h/l ¼ 1.0, t/l ¼ 0.3, q ¼ 40�; (c) h/l ¼ 2.0, t/l ¼ 0.4, q ¼ 40� .

Fig. 11. Energy density and specific energy vs level n: (a) h/l ¼ 1.0, t/l ¼ 0.4, q ¼ 40�; (b) h/l ¼ 1.0, t/l ¼ 0.3, q ¼ 40�; (c) h/l ¼ 2.0, t/l ¼ 0.4, q ¼ 40� .
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a higher strength-to-density ratio. This is because increasing h/l
provides a lower density, and the influence on the density is
stronger than that on the strength. We can also see that the influ-
ences on the strength-to-density ratio from the other geometrical
parameters (q or t/l) are similar to those reported in Fig. 6a,c, since
the strength increment prevails on the density increment

3.3. Progressive buckling collapse

Compared with the first buckling stress, the progressive failure
of the hierarchical honeycomb is more complex. Thus, due to this
complexity, the calculation is here simplified by neglecting the
influences produced by the collapsed columns (e.g., a length
modification or a load redistribution in the surviving columns) and

plotting the stress vector ðsðn Þcr

��!
; s

ðn�1 Þ
cr

����!
;.; s

ð1 Þ
cr

��!
; s

ð0 Þ
cr

��!
Þ in ascending

order with corresponding normalized strain ðPD 3¼ 1Þ obtained
from the vector ðD 3
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cr
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Þ. Note that this

simplified assumption is conservative. Here, we investigate a three-
level self-similar honeycomb and treat 14 (8 þ 4 þ 2) different
columns, due to the symmetry, see Fig. 8.

Note that:

hðiÞ=lðiÞ ¼ mðiÞ
2 =mðiÞ

1 ¼ h=l (32)

Considering l(3) ¼ 30 mm and mðiÞ
1 ¼ 3 in the example, h(i), l(i)

and mðiÞ
2 could be obtained according to the self-similar condition

(32). The parametric analysis of the progressive failure is reported
in Fig. 9aec, in which each point corresponds to a column (Fig. 8);
in particular, the experimental stress/strain curve measured by
Easterling et al. (1982) is compared with our prediction for
c! ¼ ð20�;1:0;0:4Þ (Fig. 9d). In Fig. 9aec, bij denote the collapsed
columns in the hierarchical honeycomb, as described in Fig. 8. To
some extent, Fig. 9 reflects the degree of graceful failure
quantitatively.

3.4. Constitutive laws and deformation energy

In addition, employing the same procedure of Section 3.3, we
have investigated the stress/strain curves (Fig. 10) and absorbed
energy density (absorbed energy per unit volume) or specific
energy (absorbed energy per unit mass) (Fig. 11) for different levels
n, from one to three. We have found that increasing the hierarchical
level n, the energy density decreases but the specific energy
increases. This suggests that hierarchical cellular solids are ex-
pected to have superior properties as energy-absorption light
materials. Note that a compromise between energy density and
specific energy is reached for two hierarchical levels, as observed in
wood and grass stem, Fig. 2.

4. Conclusions

In this paper, we derive the buckling stresses and strains of
hierarchical honeycomb materials. Parametric analyses are dis-
cussed for a two-level or three-level hierarchical honeycomb
material, respectively. The former is employed to investigate the
geometrical influences on the local buckling stress and mechanical
efficiency. In general, they are improved by increasing the param-
eters except that increasing h/l results in a lower local buckling
stress and the transverse compression strength of natural wood
agrees well with our results. The latter model is considered to
investigate the geometrical influences on the progressive collapse.
Finally, the study on the stress/strain law and deformation energy
shows that increasing hierarchical level n induces lower energy
density but higher specific energy. The results indicate that the
mechanical behaviors of the hierarchical structure can be tuned at
each hierarchical level and thus is attractive for designing a new
class of light but effective energy-absorption materials.

It is worth to say that the model considers hierarchical more
than fractal architectures, to be more general and closer to the real
world. However, geometrical self-similarity would lead to fractals.
Thus fractals could be treated in our general hierarchical model as
limiting cases (see also Pugno, 2006). Also including a filling of
matrix in the present structure could show the existence of an
optimal toughness, as discussed by Zhang et al. (2011).
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