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a b s t r a c t

In this paper, the buckling under an applied external pressure and the self-buckling of nanostructures,

such as peapods, nanotubes and fullerenes, is numerically treated with Molecular Dynamics simula-

tions and compared with theoretical calculations. The self-buckling is due to the interaction among the

nanostructures caused by the surface energy; it is peculiar to the nanoscale and does not have a

macroscopiic counterpart. Atomistic simulations confirm that the influence on a single nanostructure

from the surrounding nanostructures in a crystal, is nearly identical to that of a liquid with surface

tension equal to the surface energy of the solid.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nanoscopic graphite filaments caught the attention of materials

scientists due to their outstanding mechanical properties, which are

closely related to those of graphite in the basal plane (see, for

example, [1]), even before the identification of carbon nanotubes

(CNTs) as graphene layers rolled into cylinders with hemispherical

fullerene caps [2]. Experimental [3–5] and theoretical works [6,7]

indicate that the axial stiffness and strength of CNTs are of the order

of 1 TPa and 50 GPa, respectively, both in agreement with those for

in-plane graphite [8] and graphene [9]. The interaction between

walls in CNTs and the self-interaction of CNTs in bundles, mostly

governed by van der Waals forces, is also similar to the interaction

between graphene layers in graphite and results in a low shear

strength between adjacent graphene layers that facilitates CNTs

sliding [10]. The assembly of CNTs into a macroscopic long bundle

composed of shorter fibres, a constraint still imposed by the current

technology, is thus challenging due to the aforementioned weak

shear interactions. The common orientation of the nanotubes along

the bundle axis is a strategy consistent with the basic principles for

making high performance fibres, the properties of which are derived

from extended molecules oriented along their main axis and parallel

to the fibre [11]. Indeed, CNT fibres with tensile properties in the

high-performance range, e.g. that of aramid but still far from that of

an individual CNT, are currently produced by various nanotechnol-

ogy approaches.

A key factor for increasing the bundle strength is the self-

buckling of the nanotubes [12]. The elastic buckling under applied

mechanical pressure, and even in the absence of pressure, i.e. the

self-buckling of nanotubes in a bundle, was investigated by

atomistic simulations in [13]. These authors have performed

Molecular Dynamics (MD) simulations to confirm that single-wall

carbon nanotubes (SWCNTs) undergo a discontinuous collapse

transition under hydrostatic pressure. They also predicted a

critical diameter for the self-collapse of SWCNTs, at standard

temperature and pressure, lying between 4.2 and 6.9 nm with the

simple generic force field used. In addition, there was good

agreement between their simulations, calibrated with X-ray

compression data for graphite, and the experimentally observed

transition pressures for laser-grown nanotubes. This level of

agreement raised confidence that the simple and computationally

inexpensive force field used [13] can be suitable for examining

the nanomechanics of nanotubes.

Moreover, the self-buckling of nanotubes in a bundle has been

experimentally observed [14]. These authors have introduced a

method for the direct spinning of pure carbon nanotube fibres from

an aerogel formed during chemical vapour deposition. The contin-

uous withdrawal of product from the gas phase as a fibre imparts

high commercial potential to the process, including the possibility of

in-line post-spin treatments for further product optimisation. Also,

these authors [14] have shown that the mechanical properties of the

fibres are directly related to the type of nanotubes present (i.e.,

multiwall or single wall, diameters, etc.), which in turn, can be, at

least ideally, controlled by the careful adjustment of process para-

meters. In particular, they obtained high performance fibres from

dog-bone, i.e. self-collapsed, carbon nanotubes.

Only very recently, a full theoretical explanation of the self-

buckling has been given, including its beneficial implication on the

overall mechanical strength [12] in the case of sliding failure.

Roughly, the self-collapse enlarges the interface surface area

between the nanotubes and thus also the strength of the junctions

between nanotubes and finally the overall fracture strength of the
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bundle, in case of sliding failure. For the prediction of the compli-

mentary intrinsic fracture see [15–22].

The present paper is focused on the buckling of peapods,

nanotubes and fullerenes and compares new ad hoc Molecular

Dynamics simulations with analytical results calculated according

to the approach presented in [12]. In particular, Figs. 1, 3, 4, 6 and

Table 1 show the main new results of the present paper.

2. Theory and molecular dynamic simulations

We treat the crystal as a liquid-like material with surface tension

gt¼g, as imposed by the energy equivalence (the surface tension has

the thermodynamic significance of work spent to create the unit

surface, as the surface energy), thus deducing a pressure g/R acting

on a single nanotube of radius R within a bundle, as evinced by the

Laplace’s equation [12]. In other words, considering a cylindrical

cavity/nanotube of size R under a pressure p in a liquid/nanotube

bundle having surface tension/energy g, the free energy (per unit

length) of the system can be written as E¼ÿp(pR2)þg(2pR)þconst

and has to be minimal at the equilibrium; thus posing dE¼0, we

find p¼ g=R. Note that for a crystal composed by fullerenes of radius

R, the pressure p¼2g/R on a fullerene could be deduced from

E¼ÿp((4/3)pR3)þg(4pR2)þconst posing dE¼0, again in agreement

with the prediction of the Laplace’s equation. Mixed systems, such

as peapods, are also considered in this paper.

2.1. Nanotubes

The critical pressure pC can be accordingly derived as [12]:

pC ¼
3NaD

R3
ÿ g

R
ð1Þ

where N is the number of walls and 1rar3: assuming perfect

bonding between the walls would correspond to a¼3, whereas

for independent walls a¼1, D is the bending stiffness of gra-

phene; however, note that in the equations it appears always as

the group NaD, that is the total bending stiffness.

The first term in Eq. (1) is that governing the buckling of a

perfectly elastic cylindrical long thin shell (of bending stiffness

NaD), whereas the second term is the pressure imposed by the

surrounding nanotubes, significant only at the nanoscale.

Treating the MD simulations results for single-wall carbon

nanotubes (SWCNTs) [13], excluding the three smallest nano-

tubes for which the finite wall thickness becomes significant, a

good agreement with Eq. (1) is observed, with plausible fitted

values of DfitE0.21 nNnm and gfitE0.23 Nmÿ1, as shown in

Fig. 1(a). However, when data from the three smallest nanotubes

were also considered, as shown in Fig. 1(b), a linear fit of the form

pCp1/R is more suitable, as found originally by Elliott et al. [13].

Furthermore, a new additional comparison between theory and

MD simulations for single and double wall carbon nanotubes

(DWCNTs) is reported in Table 1, showing a good agreement.

From Eq. (1) we derive the following condition for the self-

collapse, i.e. collapse under zero pressure, of a nanotube in a

bundle [12]:

RZRðNÞ
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

3NaD

g

s

¼
ffiffiffi

6
p

RðNÞ
0 : ð2Þ

Taking D¼0.11 nNnm and g¼0.18 N/m we find 2Rð1Þ
C � 2:7 nm.

Considering an intermediate coupling between the walls with aE2,

the critical diameters for double and triple walled nanotubes

are 2Rð2Þ
C � 5:4 nm and 2Rð3Þ

C � 8:1 nm. Note that for self-similar

structures (t/R¼const) the minimum thickness Nt (Dpt3) re-

quired for the self-buckling is very small, thus the self-collapse is

peculiar to the nanoscale and does not have a macroscopic

counterpart.

Fig. 1. Critical collapse pressure for SWCNTs in a bundle, with data points calculated according to MD simulations [13], fitted by: (a) relationship for critical pressure (Eq.

(1)), expressed as pCþg/R vs. 1/R3 and shown by solid line with gradient 3D, and (b) extrapolation of fit to tubes with smaller diameter, with alternative fit of pCþconst vs.

1/R shown by dotted line.

Table 1

Collapse pressure of SWCNTs and DWCNTs in a bundle: comparison of MD

simulations to theory. (ÿ) indicates tube diameter too small to be fitted by Eq. (1).

Nanotube Diameter

[nm]

Collapse pressure

[GPa] (MD)

Collapse pressure

[GPa] (Eq. (1))

(7,0) 0.54 11.70 –

(6,6) 0.82 6.70 –

(7,7) 0.95 5.50 –

(13,0) 1.02 5.00 5.05

(10,10) 1.36 2.20 2.27

(11,11) 1.49 1.91 1.76

(13,9) 1.50 2.03 1.74

(19,0) 1.49 1.99 1.76

(16,5) 1.49 1.98 1.76

(15,15) 2.04 0.95 0.83

(20,20) 2.72 0.40 0.48

(30,30) 4.08 0.16 0.30

{(15,15),(10,10)} 2.04/1.36 3.45 2.64

{(10,10),(5,5)} 1.36/0.68 9.47 8.37

{(11,11),(7,7)} 1.49/0.95 6.80–7.20 6.42

{(15,15),(7,7)} 2.04/0.95 1.00–3.00 2.64
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In [14], 17 experimental observations on the self-collapse of

nanotubes in a bundle have been reported, see Fig. 2 and related

Table 2. A number of 5 SWCNTs with diameters in the range 4.6–

5.7 nm were all observed as collapsed; moreover, while the

3 doubly walled carbon nanotubes observed with internal dia-

meters in the range 4.2–4.7 nm (the effective diameters are larger

by a factor of �0.34/2 nm) had not collapsed, the observed

8 double-wall nanotubes with internal diameters in the range

6.2–8.4 nm had collapsed. Finally, a triple-wall nanotube of

14 nm internal diameter (the effective diameter is �14.34 nm)

was also observed as collapsed. All 17 observations are in

agreement with our theoretical predictions of Eq. (2), supporting

our conjecture of liquid-like nanotube bundles [12].

2.2. Fullerenes

Similarly, the critical pressure of fullerenes in a fullerite crystal

is [12]:

pC ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1ÿv2Þ
p

NaEt2

R2
ÿ2g

R
ð3Þ

where 1rar2 describes the interaction between the walls, E is

the Young modulus and t is the monolayer thickness (�0.34 nm);

the first term is that posed by elasticity (that considers a¼2; see

for instance [12]), whereas the second one models the fullerene

interaction, as previously discussed.

Note that the factor (t/R)2 for fullerenes, appearing instead of

(t/R)3 for nanotubes, shows that the critical pressure for fullerenes

is much higher than that for nanotubes, at least for t=R51.

From Eq. (3) we derive the following condition for the self-

buckling [12]:

R Nð Þ
C ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1ÿv2Þ
p

NaEt2

g
: ð4Þ

Note that for v¼0, N¼1, E¼1 TPa, t¼0.34 nm, g¼0.2 N/m, we

find Rð1Þ
C � 0:33 mm, showing that fullerenes are highly stable and

thus that peapods with high fullerene concentrations may pre-

vent nanotube buckling. Note that for self-similar structures

(t/R¼const) the minimum thickness Nt required for the self-

buckling is very small, thus the self-collapse is peculiar of the

nanoscale and does not have a macroscopic counterpart.

2.3. Peapods

In the case of peapods, shown in Figs. 3 and 4, the collapse

pressure is increased as a consequence of the presence inside the

nanotube of the fullerenes; since the critical pressure of fullerenes

is much higher than that of a nanotube, we treat the peapod as a

nanotube of finite length L, equal to the (centre-to-centre)

distance between two adjacent fullerenes. Note that the classical

buckling formula of cylindrical shells assumes an infinite length

for the cylinder.

According to classical elasticity [23,24], the buckling pressure

for a long cylinder is:

pC ¼
3NaD

R3
, LbLc ð5aÞ

whereas for short cylinders [23,24] it is:

pC ¼
4p2NaD

RL2
, L5Lc : ð5bÞ

The critical length governing the transition can be calculated

equating Eqs. (5a) and (5b):

Lc ¼
2p
ffiffiffi

3
p R: ð6Þ

Fig. 2. Self-collapsed nanotubes in a bundle [14].

Table 2

Self-collapse of nanotubes in a bundle: theory [12] and MD simulations [13]

exactly fit the experimental observations [14].

Nanotube

number

Number N of

walls

Diameter of the internal

wall [nm]

Collapsed (Y/N) theo.,

MD and exp.

1 1 4.6 Y

2 1 4.7 Y

3 1 4.8 Y

4 1 5.2 Y

5 1 5.7 Y

6 2 4.2 N

7 2 4.6 N

8 2 4.7 N

9 2 6.2 Y

10 2 6.5 Y

11 2 6.8 Y

12 2 6.8 Y

13 2 7.9 Y

14 2 8.3 Y

15 2 8.3 Y

16 2 8.4 Y

17 3 14.0 Y
Fig. 3. Peapod treated by MD simulations.
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For intermediate lengths, elasticity poses [23,24]:

pc ¼
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffi

1ÿv2
pp

NaD

RL
ffiffiffiffiffi

Rt
p , L� Lc : ð5cÞ

Revisiting the previous elastic results, we thus expect for the

buckling of peapods the following regimes [12]:

pC ¼
3NaD

R3
ÿ gþgt

R
, LbLc ð6aÞ

pC ¼
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffi

1ÿv2
pp

NaD

RL
ffiffiffiffiffi

Rt
p ÿ gþgt

R
, L� Lc ð6bÞ

pC ¼
4p2NaD

RL2
ÿ gþgt

R
, L5Lc: ð6cÞ

Let us introduce the fullerene content as:

f ¼ 2R

L
: ð7Þ

Then the previous equation becomes [12]:

pC ¼
3NaD

R3
ÿ gþgt

R
, f5 f c ¼

ffiffiffi

3
p

p
ð7aÞ

pC ¼
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffi

1ÿv2
pp

NaD

2R2
ffiffiffiffiffi

Rt
p fÿ gþgt

R
, f � f c ð7bÞ

pC ¼
p2NaD

R3
f
2ÿ gþgt

R
, fb f c : ð7cÞ

These three stiffening regimes are summarised in Fig. 5.

We can estimate the ratio q between the buckling pressures

for fullerene contents f¼0 and f¼1, as:

q¼ pCðf ¼ 1Þ
pCðf ¼ 0Þ ¼

p2ÿðgþgtÞR
2=ðNaDÞ

3ÿðgþgtÞR
2=ðNaDÞ

: ð8Þ

From Eq. (8), we expect q4p
2/3, as here confirmed by MD

simulations, see Fig. 6.

From Eq. (6) we derive the following conditions for the self-

buckling [12]:

R Nð Þ
C ¼

ffiffiffi

3
p ffiffiffiffiffiffi

Na
p

ffiffiffiffiffiffiffiffiffiffiffiffi

D

gþgt

s

, LbLc ð9aÞ

RðNÞ
C LðNÞ2C ¼ p4D2

ffiffiffiffiffiffiffiffiffiffiffiffi

1ÿv2
p

ðgþgtÞ2t
, L� Lc ð9bÞ

L Nð Þ
C ¼

ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffi

Na
p

ffiffiffiffiffiffiffiffiffiffiffiffi

D

gþgt

s

, L5Lc: ð9cÞ

Note that for small fullerene content the self-collapse is

dictated by a critical radius, as for empty nanotubes, whereas

for large fullerene content the self-collapse is dictated by a critical

distance between two adjacent fullerenes (in the intermediate

case, length and radius are comparable).

Fig. 4. Cross-section of collapsed peapods: full (a), three quarter full (b), half-full parallel to the tube axis (c), half-full perpendicular to the tube axis.

pC ( f ) / pC ( f=0 )

fc

f

1

1

q

Fig. 5. Theoretical dependence of the buckling pressure vs. fullerene content: note

the intermediate linear regime [12].
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3. Conclusions

New Molecular Dynamics simulations, to study the buckling and

self-buckling of nanotubes, fullerenes and especially peapods, have

been conducted and theoretically [12] verified; our coupled

approach could have interesting applications for producing smart

actuators and super-strong materials.

Acknowledgements

NMP thanks the support from the METREGEN grant.

References

[1] M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg,

Graphite Fibers and Filaments, Springer-Verlag, Berlin, 1988.
[2] S. Iijima, Nature 354 (1991) 56.
[3] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971.
[4] D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith,

R.E. Smalley, Appl. Phys. Lett. 74 (1999) 3803.
[5] M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287

(2000) 637.
[6] J. Lu, Physical Review Letters 79 (1997) 1297.
[7] B.I. Yakobson, C.J. Brabec, J. Bernholc, Physical Review Letters 76 (1996) 2511.
[8] A.Strong Kelly, Solids, Oxford University Press, Oxford, 1966.
[9] C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385.
[10] R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M. Dresselhaus, Chemical

Physics Letters 348 (2001) 187.
[11] H. Staudinger, Die Hochmolekularen Organischen Verbindungen, Springer-

Verlag, Berlin, 1932.
[12] N.M. Pugno, Journal of the Mechanics and Physics of Solids 58 (2010) 1397.
[13] J.A. Elliott, J.K. Sandler, A.H. Windle, R.J. Young, M.S. Shaffer, Physical Review

Letters 92 (2004) 095501.
[14] M.S. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, Advanced Materials 19

(2007) 3721.
[15] N. Pugno, R. Ruoff, Philosophical Magazine 84/27 (2004) 2829.
[16] N. Pugno, International Journal of Fracture 140 (2006) 159.
[17] N. Pugno, International Journal of Fracture 141 (2006) 311.
[18] N. Pugno, Applied Physics Letters 90 (2007) 043106.
[19] N.M. Pugno, Journal of Physics:Condensed Matter 18 (2006) S1971.
[20] N.M. Pugno., Acta Materialia 55 (2007) 5269.
[21] N.M. Pugno, Nano Today 2 (2007) 44.
[22] N. Pugno, Nanotechnology 17 (2006) 5480.
[23] R.M. Jones, Buckling of Bars, Plates and Shells, Bull Ridge Publishing,

Blacksburg, Virginia, USA, 2006.
[24] A.V. Pogorevol, Bending of Surface and Stability of Shells, American Mathe-

matical Society, Providence, Rhode Island, USA, 1988.

0

1

2

3

4

5

6

7

8

0

Percentage Filling

C
o

ll
a

p
s

e
 P

re
s

s
u

re
 /

 G
P

a

25 50 75 100
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simulations (dots) vs. linear theoretical prediction (line).
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