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evidence of a crucial synergy between hierarchy and material mixing
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Natural materials are often organized in complex hierarchical architectures to optimize mechanical

properties. Artificial bio-inspired materials, however, have thus far failed to successfully mimic how

these architectures improve material characteristics, for example strength. Here, a method is proposed

for evaluating the role of hierarchy on structural strength. To do this, we consider different hierarchical

architectures of fiber bundles through analytical multiscale calculations based on a fiber bundle model

at each hierarchical level. In general, we find that an increase in the number of hierarchy levels leads to

a decrease in the strength of material. However, when a composite bundle with two different types of

fibers is considered, an improvement in the mean strength is obtained for some specific hierarchical

architectures, indicating that both hierarchy and material ‘‘mixing’’ are necessary ingredients to obtain

improved mechanical properties. Results are promising for the improvement and ‘‘tuning’’ of the

strength of bio-inspired materials.
1. Introduction

The vast majority of biological materials is hierarchically struc-

tured, beginning at the smallest scale with mineral particles,

nano-fibers or platelets, which are typically embedded within

a protein matrix.1 For example, up to 7 levels of hierarchy can be

found in bone and dentin,2 where the largest structural elements

reach length scales of millimetres. Detailed descriptions of the

hierarchical structures of several biological materials, such as

shells, bone, teeth, sponge and spicules, can be found in recently

published review articles.3–5

Given a hierarchical organization, a variety of designs are

possible, by changing the type and arrangement of the compo-

nents at different hierarchical levels.6 In the case of bone, for

example, the variability at the nanometre level is in the shape and

size of mineral particles, at the micron level in the arrangement of

mineralized collagen fibers into lamellar structures and beyond in

the inner architecture, the porosity and the shape of the bone.

The mechanical properties of bone are well known to strongly

depend on all these parameters.7–11 The same behavior is found in

other natural materials, e.g. wood,12 nacre,13,14 spider silk,15 etc.
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Biological materials differ fundamentally from most man-

made materials, in being inherently structurally hierarchical. For

example, as shown in Fig. 1a, the structure of tendons can be

divided into six major hierarchical levels, from collagen fibrils

(groups of interconnected collagen strands), to collagen fibers

(bundles of fibrils), to bundles of collagen fibers, to secondary

bundles of fiber bundles, to ‘‘fascicles’’ of bundles, to groups of

fascicles which constitute the tendon itself. At all hierarchical

levels, bundles are bound together by sheaths of stabilizing

endotenon and the tendon also has an exterior sheath of

connective tissue called epitenon. Hierarchy and functional

grading imply that the mechanical properties of natural materials

are also different at different length scales, i.e. the overall

mechanical properties of a structure rarely reflect the bulk

properties of the materials constituting it, and rather they depend

on the hierarchical and functional grading architecture.1,16

Virtually all stiff biological materials are composites with the

smallest components mostly in the size-range of nanometres.17 In

some cases (plants or insect cuticles, for example), a polymeric

matrix is reinforced by stiff polymer fibers, such as cellulose or

keratin.12 Even stiffer structures are obtained when a (fibrous)

polymeric matrix is reinforced by hard particles, such as

carbonated hydroxyapatite in the case of bone or dentin.18 The

general mechanical performance of these composites is quite

remarkable. In particular, they combine two properties which are

usually quite contradictory, but essential for the function of these

materials, i.e. strength and toughness. Bones, for example, need

to be stiff to prevent bending and buckling (or strong to prevent

crushing), but they must also be tough, since they should not

break catastrophically even when the load exceeds the normal

range. This is achieved using proteins (collagen in the case of
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 (a) Hierarchical tendon structure (from ref. 38) and (b) corresponding schematic representation of the present hierarchical fiber bundle model.

The Weibull strength distribution at hierarchical level n is determined from Daniels’ theory applied to the fiber bundle at level (n � 1).
bone and dentin) that are tough but not very stiff, whilst mineral

is stiff but not very tough.8,19 The combination of these two

material types in a hierarchical architecture is responsible for the

exceptional properties of bone.

At nanoscale, studies have been carried out on intermediate

filaments in cell cytoskeletons, ranging from atomic to cellular

ranges, showing that a multi-scale structure is crucial for their

characteristic mechanical properties, in particular their ability to

undergo large deformations.20 Atomistic modeling has also

recently been employed to derive hierarchy-related increased

crack-propagation resistance in silica-based composite

structures.21

All of these observations lead to the hypothesis that the

exceptional mechanical behavior of biological materials is due to

two essential elements: hierarchy and material heterogeneity.

Thus, in fracture mechanics it is necessary to model these

materials as hierarchical heterogeneous structures in order to

correctly capture the observed behavior. Surprisingly, the

complexity involved in these fracture processes can often be

suitably treated by grossly simplified models. However, only

a few engineering models explicitly consider the role of complex

hierarchical structures in fracture processes.16–19,22 A very

important class of models of material failure is the fiber bundle

model (FBM) which has been extensively studied during the past

years (see the review23 and references therein). This model

consists of a set of parallel fibers having statistically distributed

strengths. The sample is loaded parallel to the fiber direction and

the fibers fail if the load exceeds their threshold value, with the

load carried by the broken fiber being redistributed among the

intact ones. Among the several theoretical approaches, one

simplification that makes the problem analytically tractable is the

assumption of global load transfer, which means that after

breakage of each fiber the stress is equally distributed on the

intact fibers, neglecting stress enhancement in the vicinity of

failed regions (Equal Load Sharing, ELS). A wealth of analytical

and numerical results are available in the literature to derive

predictions on fibrous materials and fiber-based composites. For

example, Bosia et al. studied the strength and toughness of

nanotube-based composites, starting from the properties and

volume fractions of the fragile and ductile constituents.24 Also,

a numerical study of damage evolution in hierarchical FBMs was
This journal is ª The Royal Society of Chemistry 2012
recently carried out by Mishnaevsky.25 The relevance of FBM is

manifold: in spite of their simplicity, these models capture

the most important aspects of material damage and due to the

analytic solutions they provide a deeper understanding of the

fracture process. Furthermore, they serve as a basis for more

realistic damage models also having practical importance.

In this paper we try to give an answer to the following ques-

tion: ‘‘how does hierarchy and/or material heterogeneity affect

the strength of a structure?’’, or, in other words, ‘‘is it possible by

varying the hierarchical structure and mixing different material

components to optimize the mechanical behavior of a material/

structure?’’ More specifically, we wish to evaluate the pure role of

hierarchy on multi-component fiber-based materials, without

addressing issues like the effect of the staggered reinforcements,

the effect of matrix shear26 and other geometry-related issues. To

answer the above questions, we introduce an analytical theory

for hierarchical composite FBMs with different fiber types in the

case of ELS.

The paper is structured as follows: in Section 2, we present the

analytical procedure to calculate the strength of hierarchical fiber

bundle architectures, both in the case of single-phase and

composite materials; in Section 3, we present results of calcula-

tions, together with comparisons with numerical simulations to

validate the procedure; finally, conclusions and outlook are

given.
2. Theory

2.1 Hierarchical fiber bundle theory

Many fibrous biological materials can be seen as a hierarchical

ensemble of fibers, much like a rope. Each can be seen to

correspond to a different hierarchical level, starting from single

fibers (level 0), a bundle of fibers (level 1), a bundle of bundle of

fibers (level 2), and so on. This hierarchical arrangement suggests

the use of a hierarchical procedure to determine higher-level

properties from level 0 constituent fiber properties only.

The strength distribution of a single element composing a fiber

bundle is assumed to be described by means of a two-parameter

Weibull distribution27,28 W(s) as:
Nanoscale, 2012, 4, 1200–1207 | 1201



W(s) ¼ 1 � e�(s/s0)m (1)

where s is the stress applied in the longitudinal direction, and s0
and m are the scale and shape parameters, respectively. Weibull

statistics are widely used in deterministic linear elastic fracture

mechanics for the strength distribution of solids and can be

applied to natural biological or artificial polymer fibers such as

those considered in this paper. However, the mathematical

treatment outlined below can also be extended to the nanoscale

(e.g. carbon nanotubes), with appropriate modifications

(e.g. nanoscale Weibull statistics29). The mean strength hsW i is
given by:26

�
sW

� ¼ s0G

�
1þ 1

m

�
(2)

and the standard deviation is:26

qW ¼\sW.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1þ 2=mÞ
G2ð1þ 1=mÞ � 1

s
(3)

The shape parameter, m, represents the dispersion of the

strength. A greater m value indicates a small strength variation

and when m tends to infinity the strength becomes

deterministic.

The case of a bundle made of a very large number, N, of

parallel elements of Weibull type was first tackled by Daniels.

Based on his analysis, the mean bundle strength is:30

hsDi ¼ s0(m)�1/me�1/m (4)

with standard deviation:30

qD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hsDi2

�
1� e�1=m

�
Ne�1=m

s
(5)

Again for m tending to infinity a deterministic strength is

predicted.

The previous relations can be exploited to derive strength

distributions for hierarchical structures such as a tendon shown

in Fig. 1a. To do this, we assume that each hierarchical level can

be represented as a bundle of Nn fibers, in which each constituent

fiber can in turn be represented by a bundle of lower level fibers,

and so on, as shown in Fig. 1b. It is reasonable to assume that at

each level n in the structure the strength of the constituent fibers

is Weibull distributed, i.e. is described by eqn (1)–(3) with scale

and shape parameters sn and mn. We now exploit the fact that

analytical results show a transition of the strength distribution

function for a fiber bundle from aWeibull to a Gaussian form for

large values of the number of fibers Nn. Therefore, the mean

strength hsWni and standard deviation qWn of the fibers at level n

should coincide with those calculated using Daniels’ theory (eqn

(4) and (5)) applied at level (n� 1). Thus, the Weibull parameters

of the constituent fibers at each hierarchical level can be deter-

mined from those at the lower level, down to level 0 (single fiber),

where the distribution parameters are usually known or can be

inferred. Accordingly, we impose:

hsWn+1i ¼ hsDni (6)

qWn+1 ¼ qDn (7)
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thus linking two adjacent hierarchical levels and extending

Daniels’ theory to hierarchical materials. The two equations

lead to

Gð1þ 2=mnþ1Þ
G2ð1þ 1=mnþ1Þ

¼
�

qDn

hsDni
�2

þ1 (8)

sðnþ1Þ ¼ hsDni
Gð1þ 1=mnþ1Þ (9)

The shape factor mn+1 for level (n + 1) can be easily numerically

calculated from eqn (8) and the scale factor s(n+1) can be obtained

from eqn (9). This procedure can be repeated for each hierar-

chical level, i.e. starting from the Weibull distribution at level 0,

Daniels’ theory can be applied to derive the strength at the first

hierarchical level and so on up to level n. Notice that this hier-

archical procedure amounts to relaxing the equal load sharing

hypothesis, because load sharing applies only to single fiber

bundles. This provides more realistic strength distribution esti-

mations than ‘‘single level’’ estimations, because in real materials

some form of ‘‘local load sharing’’ always takes place.

In the case of small bundles, i.e. structures composed of

a limited number of fibers in parallel, the previous equations need

to be modified because the ‘‘large N’’ hypothesis in Daniels’

theory is no longer justified. Thus, correction factors fN and gN
need to be introduced to account for the discrepancy between

Daniels’ normal approximation and the real Gaussian distribu-

tions for relatively small bundles: hs_ni ¼ fnhsDni and q
_

n ¼ gnqDn

where hs_ni and q
_

n are the corrected mean strength and standard

deviation. As discussed in detail elsewhere,31 we find the

expressions given in the literature32 for fN and gN to be inade-

quate (due to the non-self-consistency in the trivial case ofN¼ 1)

for very small bundles, i.e. for typical values in hierarchical

structures. Comparing results with a recently introduced

numerical Hierarchical Fibre Bundle Model (HFBM),33 our

improved and self-consistent expressions for the correction

factors can be derived imposing the validity of the known

limiting cases for N ¼ 1 as:

fn ¼ 1þ
�
Gð1þ 1=mnÞ
mn

�1=mne�1=mn
� 1

�
N�2=3 (10)

gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1þ 2=mnÞ � G2ð1þ 1=mnÞ

e�1=mnð1� e�1=mnÞ

s
NðamnþbÞ (11)

where a ¼ 0.01 and b ¼ �0.05 are numerically derived

coefficients.
2.2 Composite fiber bundles

We now consider a fiber bundle composed of two types of fibers

(‘‘composite bundle’’) with a well-defined percentage of each type

and apply the classical Daniels’ theory. The probability that this

structure will fail when subjected to a stress s is

WðsÞ ¼ x
	
1� e�ðs=s01Þm01


þ ð1� xÞ	1� e�ðs=s02Þm02



(12)

where x is the mixing parameter andm01, s01,m02 and s02 are the

shape and scale parameters of the fibres of first and second types.

The subscript ‘‘0’’ is an indication of the hierarchical level (0 in

this example) and subscripts 1 and 2 are indications of the fiber
This journal is ª The Royal Society of Chemistry 2012



Fig. 2 Schematic representation of the composite fiber bundle model at

the 1st level of the hierarchical chain of bundles structure.
types. By applying Daniels’ theory, the mean bundle stress is

obtained:

s ¼ P
	
xe�ðP=s01Þm01 þ ð1� xÞe�ðP=s02Þm02



(13)

where P is the stress sustained by surviving elements. The stan-

dard deviation is:

qD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
	
1� �

xe�ðP=s01Þm01 þ ð1� xÞe�ðP=s02Þm02
�


Nxðxe�ðP=s01Þm01 þ ð1� xÞe�ðP=s02Þm02 Þ

s
(14)

where Nx is the number of fibers in the bundle and subscript ‘‘D’’

indicates that Daniels’ theory has been used. By deriving eqn

(13), it is possible to numerically determine the stress Pf that

maximizes s and hence obtain the strength of the composite

bundle as well as the standard deviation of the strength by

substituting Pf in eqn (13) and (14).

When considering fiber bundles with two fiber types, it is also

necessary to consider the case in which they have different

Young’s moduli E1 and E2, as well as different Weibull-distrib-

uted strengths. In this case, one must calculate the maximal load

sustained by the bundle to calculate the overall strength of the

structure. For simplicity, a linear elastic relationship s ¼ Ei3 is

assumed up to fracture and a displacement controlled experiment

is considered. Eqn (1) for fiber type imay be written in alternative

form:

Wð3Þ ¼ 1� e�ð3=30iÞm0i
(15)

where W(3) is the failure probability of a single fiber under

a strain 3 and 30 ¼ s0i/Ei is the scale parameter of the Weibull

distribution for strain. The tensile load acting on a bundle

constituted by two types of fibers (i ¼ 1, 2) is given by

Fð3Þ ¼ 3
�
A1E1N1e

�ð3=301Þm01 þ A2E2N2e
�ð3=302Þm02

�
(16)

where A1 and A2 are the cross-sections of type 1 and type 2 fibers,

andN1 andN2 their total numbers in the bundle, respectively. The

maximal load Fmax sustained by the bundle can again be obtained

by setting to zero the derivative of eqn (16) and the mean strength

of the bundle can be expressed as hsi ¼ Fmax/(N01A1 + N02A2).

Clearly, the hierarchical Daniels’ theory outlined previously

can also be applied to a composite bundle of mixed fibers. In this

work we will consider two different fiber types, but the procedure

can be extended to any number of components. Thus, in the

general case, the nth level will be constituted by 2 types of bundles

of mixed fibers, each having characteristic shape and

scale parameters mni and sni, which can be calculated, from level

(n � 1) parameters. Eqn (13) and (14) can thus be expressed in

general hierarchical form as:

�
sDn

� ¼ snf

	
xne

�ðsnf =sn1Þmn1 þ ð1� xnÞe�ðsnf =sn2Þ
mn2 


(17)

qDn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hsDni2



1�

�
xne

�ðsnf =sn1Þmn1 þ ð1� xnÞe�ðsnf =sn2Þ
mn2

��

Nn

�
xne

�ðsnf =sn1Þmn1 þ ð1� xnÞe�ðsnf =sn2Þ
mn2

�
vuuuuut

(18)

where snf is the value of the stress that maximizes the load sus-

tained by the bundle at hierarchical level n and Nn is the corre-

sponding total number of bundles.
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2.3 Chains of composite fiber bundles

Finally, it is possible to extend the model at any level n to a chain

of Nyn statistically independent bundles with Nxn fibers in each

bundle, as shown in Fig. 2. To do this, the weakest link theory34

can be adopted. The strength distribution of the chain of first-

type bundles at the first hierarchical level will thus be given by:

W1ðsÞ ¼ 1� exp

�
�Ny1

�
s

s11

�m11
�

(19)

whereNy1 is the number of bundles in the chain. For each bundle

at the second hierarchical level Daniels’ theory can be applied to

calculate the Weibull parameters of the corresponding bundles

and so on.
3. Model application and results

3.1 Multi scale fiber bundles with hierarchical load sharing

The first issue we wish to address using the developed approach is

the effect of hierarchy alone on the strength of structures. Thus,

we first consider a multiscale hierarchical fiber bundle model

such as that described in Section 2.1. In the following, we will

adopt the following assumptions:

N: total number of fibers;

n: hierarchical level (n ¼ 1, 2, ., M) and

k ¼ k(n): number of elements at the nth hierarchical level (i.e.,

the number of lower level bundles in an upper level bundle or the

number of fibers in the 2nd level bundle).

To illustrate the adopted hierarchical load sharing rule, we

consider a 3-level structure as an example. In this case, the load is

transferred from the upper-level elements of the hierarchical

structure (corresponding to the ‘‘bundles-of-bundles-of-bundles-

of-fibers in a three level structure) to all lower elements of the

material (fibers, ultimately). The load is shared equally among all

the sub-elements of a given higher level element (as long as they

are intact) or among all remaining intact sub-elements after some

of them fail. For example, when one fiber breaks its load will be

redistributed to all fibers in the same bundle but not to all fibers

in the whole structure. Also, when a bundle fails, the load will be

redistributed among bundles at the same level. In other words,

there is equal load sharing at each hierarchical level. This we

define as ‘‘hierarchical load sharing’’.

We start with a very simple example. In Fig. 3a, the strengths

of 4 different hierarchical structures made up of N ¼ 8 fibers are

compared, with one to three hierarchical levels.

� The single level structure is made of eight parallel fibers

(indicated as ‘‘8’’).
Nanoscale, 2012, 4, 1200–1207 | 1203



Fig. 4 Mean strength versus different hierarchical structures for (a)

k(1) ¼ 8 and (b) k(M) ¼ 4.

Fig. 3 Strength versus hierarchical structure for (a) N ¼ 8 and (b) N ¼
128.
� Two different double-level structures are considered: two

bundles of four fibers (indicated as ‘‘4,2’’) and four bundles of

two fibers (indicated as ‘‘2,4’’).

� The third level structure is composed of two bundles made of

two bundles of two fibers (indicated as ‘‘2,2,2’’).

These structures are schematically shown in Fig. 3a. The level

0 fibers are assigned randomWeibull distributed strengths, using

carbon nanotube (CNT) properties: s0 ¼ 34 GPa andm¼ 2.74.35

Results in Fig. 3a show that the lowest hierarchy level structure

has the highest strength. Also, the strongest of the two double-

level structures is the one with the highest number of fibers in

parallel (highest lower-level k). The latter would therefore seem

to be the required condition for optimizing strength, i.e. the

highest possible number of lower level elements set in parallel.

This is confirmed by results in Fig. 3b relative to various 128-fiber

arrangements, ranging from single-level (128 fibers in parallel) to

4-level structures. Again the highest strength is achieved by 128

fibers in parallel, then with two 64-fiber bundles, and so on. It is

important to stress how the use of correction factors (eqn (10)

and (11)) is essential in these calculations whenever a structure

with a small number of parallel fibers or bundles is considered.

Neglecting these corrections would lead to significant differences

in the ordering according to the strength of the considered

structures.

The influence of the number of hierarchical levels on the mean

strength is next evaluated again for structures with the same total
1204 | Nanoscale, 2012, 4, 1200–1207
number of fibers N. In Fig. 4, structures having the same number

of elements (fibers) at the lowest level are compared, i.e. k(1)¼ 8,

with N ¼ 160, as well as with the corresponding level 1 structure

(k(1) ¼ 160) for reference. Once again a strength decrease is

found from the 1st level to 4th level structures, indicating that

increasing hierarchy leads to decreasing strength.

The same tendency is found when keeping constant the

number of elements at the highest hierarchical level, as shown in

Fig. 5, for N ¼ 320. In Fig. 5a the comparison is between four

different structures with k(M) ¼ 4, whilst in Fig. 5b the mean

strength is plotted vs. number of hierarchical levels for three

different values of k(M).

The observation that the increase in the number of hierarchical

levels leads to a lower material strength is consistent with other

results in the literature.25,36 However, it is in contrast with the

observations that many natural materials, built as hierarchical

fibrous composites, have extraordinarily high strength. This

leads to the conclusion that hierarchy alone is insufficient to

justify the strength of natural biomaterials.
3.2 Composite fiber bundle

Next, we wish to apply the theory outlined in Section 2.2 and

evaluate the influence on the mean strength of composite fiber

bundles of the chosen Weibull parameters for the two types of

fibers involved.

In the first example, shown in Fig. 6a, the mean composite

bundle strength is calculated for varying s01, m01 and m02 values,

setting s02 ¼ 0.01 GPa, and a linear dependence is highlighted.

As expected, the variation of m1 has an effect on the results in

a manner which is proportional to the mixture ratio x, i.e. its

effect increases with x, and increasing m1 values yield an increase

in mean strength. A linear behavior is also found between the

mean strength and mixture ratio as shown in Fig. 6b.

Another issue of interest is the comparison between the results

obtained with the present model (application of Daniels’ theory

to a composite bundle) and those obtained using a rule of

mixtures approach. In the latter, the mean composite bundle

strength hsRMi is calculated by using Daniels’ theory to sepa-

rately obtain the strengths hs1,Di and hs2,Di relative to bundles

composed of 100% of first and second types of fibres, respec-

tively, and then combining the two values using the relation:34

hsRMi ¼ xhs1,Di + (1 � x)hs2,Di (20)
This journal is ª The Royal Society of Chemistry 2012



Fig. 6 Mean bundle strength versus (a) scale parameter of the first type

of fibers and (b) mixture ratio x of the first type of fibers with m1 ¼ 2.

Fig. 5 (a) Mean strength of different hierarchical structures for k(M) ¼ 4 and (b) mean strength versus number of hierarchical levels for structures

having the same number of elements at the highest hierarchical level k(M).
where x is the volume fraction of the first bundle. Fig. 7a

illustrates the discrepancy D ¼ |hsDi � hsRMi| between the

mean bundle strengths calculated using the two approaches
Fig. 7 (a) Discrepancy between mean strength values for composite bundle

m01 ¼ 4, m02 ¼ 2) and (b) comparison between mean strength predictions fo

HFBM numerical simulations (‘‘FBM’’) for s02 ¼ 10 GPa, m1 ¼ 2, m2 ¼ 2.

This journal is ª The Royal Society of Chemistry 2012
for s02 ¼ 0.1 GPa, m01 ¼ 4, m02 ¼ 2 and various values of

s01. Clearly, D is zero for x ¼ 0 and x ¼ 1, but the discrepancy

is not negligible for intermediate x values. This is due to

the fact that when adopting a classical rule of mixture

approach an unrealistic load redistribution is assumed among

the different types of fibers as damage progresses in the

composite bundle. This justifies the adoption of the approach

outlined in Section 2.2.
3.3 Comparison with numerical results

To check the validity of the proposed approach, we now compare

some analytical calculations with numerical results obtained with

the Hierarchical Fibre Bundle Model (HFBM).33 First, we wish

to analyze the mean strength of various bundles composed of

different types of fibers. As an example, we consider a mean

strength calculation for a varying mixture ratio x and Weibull

parameter s01, for s02 ¼ 10 GPa, m1 ¼ 2, m2 ¼ 2. The mean

strength of all composite bundles is calculated analytically using

the procedure described in Section 2.2 and compared to values

obtained through numerical simulations. Results are shown in

Fig. 7b and display considerable agreement between analytical

and numerical calculations.

The comparison between analytical and numerical results is

extended to various different cases of composite bundles

composed of fibers with different Weibull parameters and for

various mixture ratios. Results in Table 1 are relative to bundles

composed of fibers with the same elastic modulus, whilst those in

Table 2 are relative to bundles composed of fibers with different

elastic moduli. Again good agreement is found in all cases, thus

proving the validity of the approach.
calculated using Daniels’ theory and rule of mixtures (s02 ¼ 0.1 GPa,

r a mixed fiber bundle: values are calculated using theory (‘‘Theo’’) and

Nanoscale, 2012, 4, 1200–1207 | 1205



Table 1 Comparison between theory and HFBM code for bundles
composed of fibers with the same elastic modulus

Case
s01/
GPa

s02/
GPa m1 m2 x

Mean strength
(GPa, theory)

Mean strength
(GPa, HFBM code)

1 50 10 2 4 1 21.440 21.672
2 50 10 2 4 0.5 10.780 10.917
3 50 10 2 4 0 5.506 5.533
4 20 10 2 4 1 8.577 8.676
5 20 10 2 4 0.5 6.070 6.133
6 20 10 2 4 0 5.506 5.523
7 10 0.01 2 4 1 4.300 4.329
8 10 0.01 2 4 0.7 3.002 3.021
9 10 0.01 2 4 0.5 2.140 2.173
10 10 0.01 2 4 0 0.006 0.005

Fig. 8 Mean bundle strength versus hierarchical structure for composite

hierarchical 2nd level bundles. The staggered line indicates the strength of

the corresponding non-hierarchical level 1 bundle.
3.4 Hierarchical composite bundle

To illustrate the possible variations in the mechanical behavior of

a hierarchical composite bundle, we consider some specific

examples. First, let us analyze the case of a bundle with two

types of fibers and a mixture ratio of x ¼ 0.5, with s01 ¼ 10 GPa,

s02 ¼ 0.01 GPa, m01 ¼ 2, m02 ¼ 3 and N ¼ 480. In the non-

hierarchical case, i.e. in the case of a level 1 bundle with all 480

fibers in parallel, the expected mean strength, according to the

calculation procedure in Section 2.2, is hsi ¼ 2.14 GPa.

One possibility for creating hierarchical architectures with this

set of fibers is to form single-fiber bundles at level 1 and mixed

bundle types at level 2. For example, we can build two types of

level 1 bundles, the first one consisting of two fibers of the first

type (s01 ¼ 10 GPa and m01 ¼ 2), the second of 5 fibers of the

second type (s02 ¼ 0.01 GPa and m02 ¼ 3), and create a level 2

structure composed of the resulting 120 bundles of the first type

and 48 of the second type. The chosen nomenclature for this type

of structure is [(2,5); (120,48)]. From the application of our

hierarchical fiber bundle model we get: s11 ¼ 8 MPa, s12 ¼ 0.007

MPa, m01 ¼ 2.4, m02 ¼ 5.2, and a mean strength for the 2nd level

bundle of 2.56 GPa, which is larger than the above non-hierar-

chical level 1 bundle.

This strength increase is obtained through various other

configurations, as documented in Fig. 8. All of these are 2nd level

structures, where the total number of the two types of fibers

remains constant, and only their hierarchical configuration in

bundles changes in the various considered cases. The general

tendency is that the greatest strength increase is obtained by

grouping strong fibers in small bundles and weak fibers in large

bundles at level 1. Clearly, the load redistribution during spec-

imen failure in this type of configuration favours an enhancement

of the resistance to damage progression. Clearly, this is only

a first example of how mechanical properties of composite
Table 2 Comparison between theory and HFBM code for bundles
composed of fibers elastic with different moduli (x ¼ 0.5)

N1, N2 m1 m2

s01/
GPa

s02/
GPa

E1/
GPa

E2/
GPa

Mean
strength
(GPa, theory)

Mean
strength
(GPa, HFBM code)

500 2 3 4 4 10 20 1.642 1.510
500 3 6 50 400 300 800 125.400 122.940
500 2 4 40 20 110 200 9.506 8.857
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structures can be tailored by an appropriate choice of the

components and their hierarchical arrangement. Further future

work requires extensive parametric studies to highlight in greater

detail the necessary strategies to obtain the desired structures

with superior mechanical behavior.
4. Conclusions

We have presented an altogether general and self-consistent

analytical procedure to calculate the strength of hierarchical

fiber bundles constituted by two (or more) types of fibers. We

have demonstrated how hierarchy alone is insufficient to yield

strength enhancement and how this increase in strength can be

obtained through a suitable choice of fiber distributions at

different hierarchical levels. In other words, the key to an

improvement in the strength and mechanical performance in

general of multiscale materials would seem to lie in hierarchical

structuring of multi-components. These results can be of great

interest, first as a means to interpret and further investigate the

exceptional mechanical performance of biomaterials, and

secondly as a strategy to design and fabricate new bio-inspired

materials with desired tailor-made properties. In future,

a possible continuation of this work could be to extend its

application to the molecular level by integrating results from

molecular dynamics simulations (e.g. on spider silk37) into the

described procedure, which at present relies on experimentally

determined level 0 Weibull parameters. Therefore, the role of

hierarchy and material mixing could truly be evaluated from the

nano- to macroscale, ideally with no free model parameters.

Future HFBM numerical simulations could also include shear

effects into a 2-D formulation, thus improving the evaluation of

the mechanical performance of hierarchical composite mate-

rials. In any case, the theory and analytical procedures outlined

in this work can provide a useful tool to help in understanding

the underlying mechanisms in the mechanical behavior of

natural materials and in designing bio-inspired materials with

tailor made properties.
This journal is ª The Royal Society of Chemistry 2012
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